Wang H, Li N, Chivese T, et al. IDF diabetes atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by international association of diabetes in pregnancy study group’s criteria. Diabetes Res Clin Pract. 2022;183:109050. https://doi.org/10.1016/j.diabres.2021.109050.
Article
Google Scholar
Zhu H, Zhao Z, Xu J, et al. The prevalence of gestational diabetes mellitus before and after the implementation of the universal two-child policy in China. Front Endocrinol (Lausanne). 2022;13:960877. https://doi.org/10.3389/fendo.2022.960877.
Gorban de Lapertosa S, Sucani S, Salzberg S, et al. Prevalence of gestational diabetes mellitus in Argentina according to the Latin American Diabetes Association (ALAD) and International Association of Diabetes and Pregnancy Study Groups (IADPSG) diagnostic criteria and the associated maternal-neonatal complications. Health Care Women Int. 2021;42(4–6):636–656. https://doi.org/10.1080/07399332.2020.1800012.
Vounzoulaki E, Khunti K, Abner SC, Tan BK, Davies MJ, Gillies CL. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. Published 2020 May 13. https://doi.org/10.1136/bmj.m1361.
Li J, Song C, Li C, Liu P, Sun Z, Yang X. Increased risk of cardiovascular disease in women with prior gestational diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;140:324–38. https://doi.org/10.1016/j.diabres.2018.03.054.
Article
Google Scholar
Faith MS, Hittner JB, Hurston SR, et al. Association of infant temperament with subsequent obesity in young children of mothers with gestational diabetes mellitus. JAMA Pediatr. 2019;173(5):424–33. https://doi.org/10.1001/jamapediatrics.2018.5199.
Article
Google Scholar
Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6. https://doi.org/10.2337/dc07-1596.
Article
Google Scholar
McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5(1):47. https://doi.org/10.1038/s41572-019-0098-8.
Article
Google Scholar
Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of maternal insulin resistance during pregnancy: an updated overview. J Diabetes Res. 2019;2019:5320156. https://doi.org/10.1155/2019/5320156.
Article
CAS
Google Scholar
Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–1082. https://doi.org/10.1210/jcem-24-10-1076.
Hampton SM, Morgan LM, Tredger JA, Cramb R, Marks V. Insulin and C-peptide levels after oral and intravenous glucose. Contribution of enteroinsular axis to insulin secretion. Diabetes. https://doi.org/10.2337/diab.35.5.612.
Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492–8. https://doi.org/10.1210/jcem-63-2-492.
Article
CAS
Google Scholar
Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2(8571):1300–4. https://doi.org/10.1016/s0140-6736(87)91194-9.
Article
CAS
Google Scholar
Sathananthan A, Man CD, Micheletto F, et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 2010;33(9):2074–6. https://doi.org/10.2337/dc10-0200.
Article
CAS
Google Scholar
Li W, Li P, Li R, et al. GLP1R single-nucleotide polymorphisms rs3765467 and rs10305492 affect β cell insulin secretory capacity and apoptosis through GLP-1. DNA Cell Biol. 2020;39(9):1700–10. https://doi.org/10.1089/dna.2020.5424.
Article
CAS
Google Scholar
Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;51(3):379–86. https://doi.org/10.1038/s41588-018-0332-4.
Article
CAS
Google Scholar
Wessel J, Chu AY, Willems SM, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015;6:5897. https://doi.org/10.1038/ncomms6897.
Article
CAS
Google Scholar
Scott RA, Freitag DF, Li L, et al. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci Transl Med. 2016;8(341):341ra76. https://doi.org/10.1126/scitranslmed.aad3744.
Fang B, Luo J, Li Y, Li X, Yang Y. Association between GLP1R rs1042044 gene polymorphism and type 2 diabetes mellitus. J Xinjiang Med Univ. 2021;44(01):8–11.
Google Scholar
Tokuyama Y, Matsui K, Egashira T, Nozaki O, Ishizuka T, Kanatsuka A. Five missense mutations in glucagon-like peptide 1 receptor gene in Japanese population. Diabetes Res Clin Pract. 2004;66(1):63–9. https://doi.org/10.1016/j.diabres.2004.02.004.
Article
CAS
Google Scholar
Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342. https://doi.org/10.3390/ijms19113342.
Article
CAS
Google Scholar
Pervjakova N, Moen GH, Borges MC, et al. Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes [published online ahead of print, 2022 Feb 26]. Hum Mol Genet. 2022;ddac050. https://doi.org/10.1093/hmg/ddac050.
Dennison RA, Chen ES, Green ME, et al. The absolute and relative risk of type 2 diabetes after gestational diabetes: a systematic review and meta-analysis of 129 studies. Diabetes Res Clin Pract. 2021;171:108625. https://doi.org/10.1016/j.diabres.2020.108625.
Article
Google Scholar
Li Z, Cheng Y, Wang D, et al. Incidence Rate of Type 2 Diabetes Mellitus after Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of 170,139 Women. J Diabetes Res. 2020;2020:3076463. Published 2020 Apr 27. https://doi.org/10.1155/2020/3076463.
Ma Y, Wang N, Gu L, et al. Postpartum assessment of the beta cell function and insulin resistance for Chinese women with previous gestational diabetes mellitus. Gynecol Endocrinol. 2019;35(2):174–8. https://doi.org/10.1080/09513590.2018.1512094.
Article
CAS
Google Scholar
Coussens AK, van Daal A. Linkage disequilibrium analysis identifies an FGFR1 haplotype-tag SNP associated with normal variation in craniofacial shape. Genomics. 2005;85(5):563–73. https://doi.org/10.1016/j.ygeno.2005.02.002.
Article
CAS
Google Scholar
Ohn JH, Kwak SH, Cho YM, et al. 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):27–34. https://doi.org/10.1016/S2213-8587(15)00336-8.
Article
CAS
Google Scholar
Yan B, Yu Y, Lin M, et al. High, but stable, trend in the prevalence of gestational diabetes mellitus: a population-based study in Xiamen, China. J Diabetes Investig. 2019;10(5):1358–64. https://doi.org/10.1111/jdi.13039.
Article
CAS
Google Scholar
Leng J, Shao P, Zhang C, et al. Prevalence of gestational diabetes mellitus and its risk factors in Chinese pregnant women: a prospective population-based study in Tianjin, China. PLoS ONE. 2015;10(3):e0121029. Published 2015 Mar 23. https://doi.org/10.1371/journal.pone.0121029.
Zhang X, Zhang R, Cheng L, et al. The effect of sleep impairment on gestational diabetes mellitus: a systematic review and meta-analysis of cohort studies. Sleep Med. 2020;74:267–77. https://doi.org/10.1016/j.sleep.2020.05.014.
Article
Google Scholar
Qiu Y, Zhang X, Ni Y. Association between polycystic ovarian syndrome and risk of gestational diabetes mellitus: a meta-analysis. Gynecol Obstet Invest. 2022;87(2):150–8. https://doi.org/10.1159/000521728.
Article
CAS
Google Scholar
Perfetti R, Merkel P. Glucagon-like peptide-1: a major regulator of pancreatic beta-cell function. Eur J Endocrinol. 2000;143(6):717–725. https://doi.org/10.1530/eje.0.1430717.
Hayes MR, De Jonghe BC, Kanoski SE. Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav. 2010;100(5):503–510. https://doi.org/10.1016/j.physbeh.2010.02.029.
Fletcher MM, Halls ML, Christopoulos A, Sexton PM, Wootten D. The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochem Soc Trans. 2016;44(2):582–588. https://doi.org/10.1042/BST20150244.
Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J Biol Chem. 2002;277(50):48146–48151. https://doi.org/10.1074/jbc.M209165200.
Kang G, Chepurny OG, Rindler MJ, et al. A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol. 2005;566(Pt 1):173–188. https://doi.org/10.1113/jphysiol.2005.087510.
Ahrén B, Yamada Y, Seino Y. The Incretin Effect in Female Mice With Double Deletion of GLP-1 and GIP Receptors. J Endocr Soc. 2019;4(2):bvz036. Published 2019 Dec 23. https://doi.org/10.1210/jendso/bvz036.
Hansotia T, Baggio LL, Delmeire D, et al. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes. 2004;53(5):1326–35. https://doi.org/10.2337/diabetes.53.5.1326.
Article
CAS
Google Scholar
Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37. https://doi.org/10.1016/j.cmet.2013.04.008.
Article
CAS
Google Scholar
Guan Z, Du Y, Li R, et al. Association between glucagon-like peptide-1 receptor gene polymorphism and treatment response to GLP1R agonists in Chinese patients with type 2 diabetes: a prospective cohort study. Eur J Clin Pharmacol. 2022;78(5):793–9. https://doi.org/10.1007/s00228-021-03249-z.
Article
CAS
Google Scholar
Jensterle M, Pirš B, Goričar K, Dolžan V, Janež A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71(7):817–24. https://doi.org/10.1007/s00228-015-1868-1.
Article
CAS
Google Scholar
Űrgeová A, Javorský M, Klimčáková L, et al. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors. Pharmacogenomics. 2020;21(5):317–23. https://doi.org/10.2217/pgs-2019-0147.
Article
CAS
Google Scholar
Liu K, Huo H, Jia W, et al. RAB40C gene polymorphisms rs62030917 and rs2269556 are associated with an increased risk of lumbar disc herniation development in the Chinese Han population. J Gene Med. 2021;23(4):e3252. https://doi.org/10.1002/jgm.3252.
Article
CAS
Google Scholar
Abdul-Maksoud RS, Elsayed WSH, Rashad NM, Elsayed RS, Elshorbagy S, Hamed MG. GLP-1R polymorphism (rs1042044) and expression are associated with the risk of papillary thyroid cancer among the Egyptian population. Gene. 2022;834:146597. https://doi.org/10.1016/j.gene.2022.146597.
Article
CAS
Google Scholar
Farokhnia M, Fede SJ, Grodin EN, et al. Differential association between the GLP1R gene variants and brain functional connectivity according to the severity of alcohol use. Sci Rep. 2022;12(1):13027. https://doi.org/10.1038/s41598-022-17190-3.
Article
CAS
Google Scholar
Yapici-Eser H, Appadurai V, Eren CY, et al. Association between GLP-1 receptor gene polymorphisms with reward learning, anhedonia and depression diagnosis. Acta Neuropsychiatr. 2020;32(4):218–25. https://doi.org/10.1017/neu.2020.14.
Article
Google Scholar
Han E, Park HS, Kwon O, et al. A genetic variant in GLP1R is associated with response to DPP-4 inhibitors in patients with type 2 diabetes. Medicine (Baltimore). 2016;95(44):e5155. https://doi.org/10.1097/MD.0000000000005155.
Article
CAS
Google Scholar
Nishiya Y, Daimon M, Mizushiri S, et al. Nutrient consumption-dependent association of a glucagon-like peptide-1 receptor gene polymorphism with insulin secretion. Sci Rep. 2020;10(1):16382. Published 2020 Oct 2. https://doi.org/10.1038/s41598-020-71853-7.
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology. 2021;162(7):bqab065. https://doi.org/10.1210/endocr/bqab065.
Mashayekhi M, Wilson JR, Jafarian-Kerman S, et al. Association of a glucagon-like peptide-1 receptor gene variant with glucose response to a mixed meal. Diabetes Obes Metab. 2021;23(1):281–6. https://doi.org/10.1111/dom.14216.
Article
CAS
Google Scholar
Javorský M, Gotthardová I, Klimčáková L, et al. A missense variant in GLP1R gene is associated with the glycaemic response to treatment with gliptins. Diabetes Obes Metab. 2016;18(9):941–4. https://doi.org/10.1111/dom.12682.
Article
CAS
Google Scholar
Chedid V, Vijayvargiya P, Carlson P, et al. Allelic variant in the glucagon-like peptide 1 receptor gene associated with greater effect of liraglutide and exenatide on gastric emptying: a pilot pharmacogenetics study. Neurogastroenterol Motil. 2018;30(7):e13313. https://doi.org/10.1111/nmo.13313.
Article
CAS
Google Scholar
de Luis DA, Diaz Soto G, Izaola O, Romero E. Evaluation of weight loss and metabolic changes in diabetic patients treated with liraglutide, effect of RS 6923761 gene variant of glucagon-like peptide 1 receptor. J Diabetes ications. 2015;29(4):595–8. https://doi.org/10.1016/j.jdiacomp.2015.02.010.
Article
Google Scholar
Yu M, Wang K, Liu H, Cao R. GLP1R variant is associated with response to exenatide in overweight Chinese Type 2 diabetes patients. Pharmacogenomics. 2019;20(4):273–7. https://doi.org/10.2217/pgs-2018-0159.
Article
CAS
Google Scholar
Kwak SH, Kim SH, Cho YM, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–41. https://doi.org/10.2337/db11-1034.
Article
CAS
Google Scholar
Zeng Z, Huang SY, Sun T. Pharmacogenomic studies of current antidiabetic agents and potential new drug targets for precision medicine of diabetes. Diabetes Ther. 2020;11(11):2521–38. https://doi.org/10.1007/s13300-020-00922-x.
Article
Google Scholar