Garcia C, Feve B, Ferre P, Halimi S, Baizri H, Bordier L, et al. Diabetes and inflammation: fundamental aspects and clinical implications. Diabetes Metab. 2010;36(5):327–38.
Article
CAS
PubMed
Google Scholar
Vu BG, Stach CS, Kulhankova K, Salgado-Pabon W, Klingelhutz AJ, Schlievert PM. Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. MBio. 2015;6(2):e02554. doi:10.1128/mBio.02554-14.
Article
PubMed Central
PubMed
Google Scholar
Calle MC, Fernandez ML. Inflammation and type 2 diabetes. Diabetes Metab. 2012;38(3):183–91.
Article
CAS
PubMed
Google Scholar
Manning PJ, Sutherland WH, Hendry G, de Jong SA, McGrath M, Williams SM. Changes in circulating postprandial proinflammatory cytokine concentrations in diet-controlled type 2 diabetes and the effect of ingested fat. Diabetes Care. 2004;27(10):2509–11.
Article
PubMed
Google Scholar
Chen F. Is NF-kappaB a culprit in type 2 diabetes? Biochem Biophys Res Commun. 2005;332(1):1–3.
Article
CAS
PubMed
Google Scholar
Csehi S-B, Mathieu S, Seifert U, Lange A, Zweyer M, Wernig A, et al. Tumor necrosis factor (TNF) interferes with insulin signaling through the p55 TNF receptor death domain. Biochem Biophys Res Commun. 2005;329(1):397–405.
Article
CAS
PubMed
Google Scholar
Skolnik EY, Marcusohn J. Inhibition of insulin receptor signaling by TNF: potential role in obesity and non-insulin-dependent diabetes mellitus. Cytokine Growth F R. 1996;7(2):161–73.
Article
CAS
Google Scholar
Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol. 2010;107(2):650–5.
Article
CAS
PubMed
Google Scholar
Leiherer A, Mundlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol. 2013;58:3–20.
Article
CAS
Google Scholar
Ahmed B, Khan S, Masood MH, Siddique AH. Anti-hepatotoxic activity of cichotyboside, a sesquiterpene glycoside from the seeds of Cichorium intybus. J Asian Nat Prod Res. 2008;10(3):223–31.
Article
PubMed
Google Scholar
Azay-Milhau J, Ferrare K, Leroy J, Aubaterre J, Tournier M, Lajoix A-D, et al. Antihyperglycemic effect of a natural chicoric acid extract of chicory (Cichorium intybus L.): a comparative in vitro study with the effects of caffeic and ferulic acids. J Ethnopharmacol. 2013;150(2):755–60.
Article
CAS
PubMed
Google Scholar
Keshk WA, Noeman SA. Impact of chicory-supplemented diet on HMG-CoA reductase, acetyl-CoA carboxylase, visfatin and anti-oxidant status in triton WR-1339-induced hyperlipidemia. J Food Biochem. 2015;39(2):164–72.
Article
CAS
Google Scholar
Lin W, Liu C, Yang H, Wang W, Ling W, Wang D. Chicory, a typical vegetable in mediterranean diet, exerts a therapeutic role in established atherosclerosis in apolipoprotein E-deficient mice. Mol Nutr Food Res. 2015;59(9):1–11.
Article
Google Scholar
Matvieieva NA, Kudryavets Iu I, Likhova AA, Shakhovskji AM, Bezdenezhnykh NA, Kvasko E. Antiviral activity of extracts of transgenic cichory and lettuce plants with the human interferon alpha-2b gene. Cytol Genet. 2012;46:285–90.
Article
Google Scholar
Saggu S, Sakeran MI, Zidan N, Tousson E, Mohan A, Rehman H. Ameliorating effect of chicory (Chichorium intybus L.) fruit extract against 4-tert-octylphenol induced liver injury and oxidative stress in male rats. Food Chem Toxicol. 2014;72:138–46.
Article
CAS
PubMed
Google Scholar
Xiao H, Xie G, Wang J, Hou X, Wang X, Wu W, et al. Chicoric acid prevents obesity by attenuating hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice. Food Res Int. 2013;54(1):345–53.
Article
CAS
Google Scholar
Abbas ZK, Saggu S, Sakeran MI, Zidan N, Rehman H, Ansari AA. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi. J Biol Sci. 2015;22(3):322–6.
CAS
Google Scholar
Nishimura M, Ohkawara T, Kanayama T, Kitagawa K, Nishimura H, Nishihira J. Effects of the extract from roasted chicory (Cichorium intybus L.) root containing inulin-type fructans on blood glucose, lipid metabolism, and fecal properties. J Tradit Complement Med. 2015;5(3):161–7.
Article
PubMed Central
PubMed
Google Scholar
Olsen NJ, Branch VK, Jonnala G, Seskar M, Cooper M. Phase 1, placebo-controlled, dose escalation trial of chicory root extract in patients with osteoarthritis of the hip or knee. BMC Musculoskel Dis. 2010;11:156.
Article
Google Scholar
Schumacher E, Vigh E, Molnar V, Kenyeres P, Feher G, Kesmarky G, et al. Thrombosis preventive potential of chicory coffee consumption: a clinical study. Phytother Res. 2011;25(5):744–8.
Article
PubMed
Google Scholar
Ghamarian A, Abdollahi M, Su X, Amiri A, Ahadi A, Nowrouzi A. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. Daru. 2012;20(1):56.
Article
PubMed Central
PubMed
Google Scholar
Viollet B, Foretz M. Revisiting the mechanisms of metformin action in the liver. Ann Endocrinol (Paris). 2013;74(2):123–9.
Article
CAS
Google Scholar
Yeomans ND. Aspirin: old drug, new uses and challenges. J Gastroen Hepatol. 2011;26(3):426–31.
Article
CAS
Google Scholar
Law EH, Simpson SH. Aspirin use rates in diabetes: a systematic review cross-sectional study. Can J Diabetes. 2010;34(3):211–7.
Article
Google Scholar
Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Brit Med J. 1901;1(2100):760–2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355–69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Pushparaj PN, Low HK, Manikandan J, Tan BKH, Tan CH. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2007;111(2):430–4.
Article
CAS
PubMed
Google Scholar
Sun X, Han F, Yi J, Han L, Wang B. Effect of aspirin on the expression of hepatocyte NF-kappaB and serum TNF-alpha in streptozotocin-induced type 2 diabetic rats. J Korean Med Sci. 2011;26(6):765–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Irondi EA, Oboh G, Akindahunsi AA, Boligon AA, Athayde ML. Phenolics composition and antidiabetic property of Brachystegia eurycoma seed flour in high-fat diet, low-dose streptozotocin-induced type 2 diabetes in rats. Asian Pac J Trop Dis. 2015;5(Supplement 1):S159–65.
Article
CAS
Google Scholar
Chou TW, Ma CY, Cheng HH, Chen YY, Lai MH. A rice bran oil diet improves lipid abnormalities and suppress hyperinsulinemic responses in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J Clin Biochem Nutr. 2009;45(1):29–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes. 1998;47(2):224–9.
Article
CAS
PubMed
Google Scholar
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;8(1):81–100.
Article
Google Scholar
Chu Y-F, Chen Y, Black RM, Brown PH, Lyle BJ, Liu RH, et al. Type 2 diabetes-related bioactivities of coffee: assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake. Food Chem. 2011;124(3):914–20.
Article
CAS
Google Scholar
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010;1799(10–12):775–87.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma Q, Kinneer K, Ye J, Chen BJ. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol Pharmacol. 2003;64(2):211–9.
Article
CAS
PubMed
Google Scholar
Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 2009;61(4):595–603.
Article
CAS
PubMed
Google Scholar
Nowrouzi A, Pourfarjam Y, Amiri A. Cichorium intybus L. (CI) as an insulin sensitizer. Diabetes. 2013;62(Suppl 1):A304.
Google Scholar
Rizvi W, Fayazuddin M, Shariq S, Singh O, Moin S, Akhtar K, et al. Anti-inflammatory activity of roots of Cichorium intybus due to its inhibitory effect on various cytokines and antioxidant activity. Anc Sci Life. 2014;34(1):44–9.
Article
PubMed Central
PubMed
Google Scholar
Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000;11(6):212–7.
Article
CAS
PubMed
Google Scholar
Sun SC. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011;21(1):71–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kabuta T, Hakuno F, Cho Y, Yamanaka D, Chida K, Asano T, et al. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-kappaB activity. Biochem Biophys Res Commun. 2010;394(3):697–702.
Article
CAS
PubMed
Google Scholar
Cavin C, Delannoy M, Malnoe A, Debefve E, Touche A, Courtois D, et al. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem Biophys Res Commun. 2005;327(3):742–9.
Article
CAS
PubMed
Google Scholar
Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, et al. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARalpha and SREBP-1. Food Chem Toxicol. 2013;58:198–209.
Article
CAS
PubMed
Google Scholar
Dragomir E, Tircol M, Manduteanu I, Voinea M, Simionescu M. Aspirin and PPAR-α activators inhibit monocyte chemoattractant protein-1 expression induced by high glucose concentration in human endothelial cells. Vasc Pharmacol. 2006;44(6):440–9.
Article
CAS
Google Scholar
Yuan H, Li L, Zheng W, Wan J, Ge P, Li H, et al. Antidiabetic drug metformin alleviates endotoxin-induced fulminant liver injury in mice. Int Immunopharmacol. 2012;12(4):682–8.
Article
CAS
PubMed
Google Scholar
Arai M, Uchiba M, Komura H, Mizuochi Y, Harada N, Okajima K. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J Pharmacol Exp Ther. 2010;334(1):206–13.
Article
CAS
PubMed
Google Scholar
Yuen KH, Peh KK. Simple high-performance liquid chromatographic method for the determination of metformin in human plasma. J Chromatogr B. 1998;710(1–2):243–6.
Article
CAS
Google Scholar
Buse JB, DeFronzo RA, Rosenstock J, Kim T, Burns C, Skare S, et al. The primary glucose-lowering effect of metformin resides in the Gut, not the circulation. results from short-term Pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2015. doi:10.2337/dc15-0488.
Google Scholar
Tousch D, Lajoix AD, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, et al. Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun. 2008;377(1):131–5.
Article
CAS
PubMed
Google Scholar
Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ, et al. Nutrition recommendations and interventions for diabetes-2006: a position statement of the American Diabetes Association. Diabetes Care. 2006;29(9):2140–57.
Article
PubMed
Google Scholar