Bjornstad P, Laffel L, Lynch J, et al. Elevated serum uric acid is associated with greater risk for hypertension and diabetic kidney diseases in obese adolescents with type 2 diabetes: an observational analysis from the treatment options for type 2 diabetes in adolescents and youth (TODAY) study. Diabetes Care. 2019;42(6):1120–8. https://doi.org/10.2337/dc18-2147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuwabara M, Kuwabara R, Hisatome I, et al. “Metabolically healthy” obesity and hyperuricemia increase risk for hypertension and diabetes: 5-year japanese cohort study. Obesity. 2017;25(11):1997–2008. https://doi.org/10.1002/oby.22000.
Article
CAS
PubMed
Google Scholar
Zhang N, Chang Y, Guo X, Chen Y, Ye N, Sun Y. A body shape index and body roundness index: two new body indices for detecting association between obesity and hyperuricemia in rural area of China. Eur J Intern Med. 2016;29:32–6. https://doi.org/10.1016/j.ejim.2016.01.019.
Article
CAS
PubMed
Google Scholar
Jia Z, Zhang X, Kang S, Wu Y. Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus: a meta-analysis of cohort studies. Diabetes Res Clin Pract. 2013;101(1):88–96. https://doi.org/10.1016/j.diabres.2013.03.026.
Article
CAS
PubMed
Google Scholar
Wan X, Xu C, Lin Y, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64(4):925–32. https://doi.org/10.1016/j.jhep.2015.11.022.
Article
CAS
PubMed
Google Scholar
Mandal A, Mount D. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–45. https://doi.org/10.1146/annurev-physiol-021113-170343.
Article
CAS
PubMed
Google Scholar
Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm. 2016;2016:8603164. https://doi.org/10.1155/2016/8603164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura Y, Tsukui D, Kono H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222212394.
Article
PubMed
PubMed Central
Google Scholar
Classification and Diagnosis of Diabetes. Standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17-s38. https://doi.org/10.2337/dc22-S002.
Article
Google Scholar
Lou Y, Qin P, Wang C, et al. Sex-specific association of serum uric acid level and change in hyperuricemia status with risk of type 2 diabetes mellitus: a large cohort study in China. J Diabetes Res. 2020;2020:9637365. https://doi.org/10.1155/2020/9637365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng D, Hu C, Du R, et al. Serum uric acid and risk of incident diabetes in middle-aged and elderly Chinese adults: prospective cohort study. Front Med. 2020;14(6):802–10. https://doi.org/10.1007/s11684-019-0723-7.
Article
PubMed
Google Scholar
Chao G, Zhu Y, Chen L. Role and risk factors of glycosylated hemoglobin levels in early disease screening. J Diabetes Res. 2021;2021:6626587. https://doi.org/10.1155/2021/6626587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei F, Chang B, Yang X, Wang Y, Chen L, Li WD. Serum uric acid levels were dynamically coupled with hemoglobin A1c in the development of type 2 diabetes. Sci Rep. 2016;6:28549. https://doi.org/10.1038/srep28549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawamoto R, Ninomiya D, Kasai Y, et al. Interaction between gender and uric acid on hemoglobin A1c in community-dwelling persons. J Endocrinol Invest. 2018;41(4):421–9. https://doi.org/10.1007/s40618-017-0760-5.
Article
CAS
PubMed
Google Scholar
García-Escobar E, Pérez-Valero V, Maseda D, et al. La hemoglobina glucosilada como marcador de riesgo de hiperuricemia en la población general glycosylated hemoglobin as a hyperuricemia risk marker in general population. Med Clin. 2011;136(11):465–70. https://doi.org/10.1016/j.medcli.2010.09.044.
Article
Google Scholar
Nayak AU, Singh BM, Dunmore SJ. Potential clinical error arising from use of HbA1c in diabetes: effects of the glycation gap. Endocr Rev. 2019;40(4):988–99. https://doi.org/10.1210/er.2018-00284.
Article
PubMed
Google Scholar
Hempe JM, Liu S, Myers L, McCarter RJ, Buse JB, Fonseca V. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial. Diabetes Care. 2015;38(6):1067–74. https://doi.org/10.2337/dc14-1844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soros AA, Chalew SA, McCarter RJ, Shepard R, Hempe JM. Hemoglobin glycation index: a robust measure of hemoglobin A1c bias in pediatric type 1 diabetes patients. Pediatr Diabetes. 2010;11(7):455–61. https://doi.org/10.1111/j.1399-5448.2009.00630.x.
Article
CAS
PubMed
Google Scholar
Yoo JH, Kang YM, Cho YK, et al. The haemoglobin glycation index is associated with nonalcoholic fatty liver disease in healthy subjects. Clin Endocrinol. 2019;91(2):271–7. https://doi.org/10.1111/cen.14001.
Article
CAS
Google Scholar
Marini MA, Fiorentino TV, Succurro E, et al. Association between hemoglobin glycation index with insulin resistance and carotid atherosclerosis in non-diabetic individuals. PLoS ONE. 2017;12(4): e0175547. https://doi.org/10.1371/journal.pone.0175547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Defining adult overweight & obesity. centers for disease control and prevention. Accessed 8 Aug 2022. https://www.cdc.gov/obesity/basics/adult-defining.html#:~:text=If%20your%20BMI%20is%20less,falls%20within%20the%20obesity%20range.
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.
Article
PubMed
PubMed Central
Google Scholar
Chinese Society of Endocrinology CMA. Guideline for the diagnose and management of hyperuricemia and gout in China (2019). Chinese J Endocrinol Metab. 2020;36(1):1–13. https://doi.org/10.3760/cma.j.issn.1000-6699.2020.01.001.
Article
Google Scholar
Zhonghua X. Chinese guideline for the management of dyslipidemia in adults. Chinese J Cardiol. 2016;2016(10):833–53.
Google Scholar
Marrie RA, Dawson NV, Garland A. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J Clin Epidemiol. 2009;62(5):511-7.e1. https://doi.org/10.1016/j.jclinepi.2008.05.015.
Article
PubMed
Google Scholar
Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011;20(1):40–9. https://doi.org/10.1002/mpr.329.
Article
PubMed
PubMed Central
Google Scholar
Li FR, Yang HL, Zhou R, et al. Diabetes duration and glycaemic control as predictors of cardiovascular disease and mortality. Diabetes Obes Metab. 2021;23(6):1361–70. https://doi.org/10.1111/dom.14348.
Article
CAS
PubMed
Google Scholar
Saravia G, Civeira F, Hurtado-Roca Y, et al. Glycated hemoglobin, fasting insulin and the metabolic syndrome in males cross-sectional analyses of the aragon workers health study baseline. PLoS ONE. 2015;10(8):e0132244. https://doi.org/10.1371/journal.pone.0132244.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Schaft N, Brahimaj A, Wen KX, Franco OH, Dehghan A. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study. PLoS ONE. 2017;12(6): e0179482. https://doi.org/10.1371/journal.pone.0179482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Gao J, Li S, et al. Gender differences in the association between serum uric acid and arteriosclerotic cardiovascular risk among Chinese type 2 diabetes mellitus patients. Int J Gen Med. 2021;14:687–95. https://doi.org/10.2147/ijgm.S300196.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Fan Y, Liu Q, et al. Sex-specific association of serum uric acid dynamics with the incidence of metabolic syndrome in a health check-up Chinese population: a prospective cohort study. BMJ Open. 2020;10(7):e035289. https://doi.org/10.1136/bmjopen-2019-035289.
Article
PubMed
PubMed Central
Google Scholar
Zhong X, Zhang D, Yang L, Du Y, Pan T. The relationship between serum uric acid within the normal range and β-cell function in Chinese patients with type 2 diabetes: differences by body mass index and gender. PeerJ. 2019;7: e6666. https://doi.org/10.7717/peerj.6666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zitt E, Fischer A, Lhotta K, Concin H, Nagel G. Sex- and age-specific variations, temporal trends and metabolic determinants of serum uric acid concentrations in a large population based Austrian cohort. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-64587-z.
Article
PubMed
PubMed Central
Google Scholar
Xiong Q, Liu J, Xu Y. Effects of uric acid on diabetes mellitus and its chronic complications. Int J Endocrinol. 2019;2019:9691345. https://doi.org/10.1155/2019/9691345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tassone EJ, Cimellaro A, Perticone M, et al. Uric acid impairs insulin signaling by promoting enpp1 binding to insulin receptor in human umbilical vein endothelial cells. Front Endocrinol. 2018;9:98. https://doi.org/10.3389/fendo.2018.00098.
Article
Google Scholar
Sun X, Zhang R, Jiang F, et al. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population. PLoS ONE. 2015;10(1): e0116714. https://doi.org/10.1371/journal.pone.0116714.
Article
PubMed
PubMed Central
Google Scholar
Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6): e1000504. https://doi.org/10.1371/journal.pgen.1000504.
Article
CAS
PubMed
PubMed Central
Google Scholar
So A, Thorens B. Uric acid transport and disease. J Clin Invest. 2010;120(6):1791–9. https://doi.org/10.1172/jci42344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barr WG. Uric Acid. In: Walker HK, Hall WD, Hurst JW, eds. Clinical methods: The history, physical, and laboratory examinations. butterworths Copyright © 1990, Butterworth Publishers, a division of Reed Publishing. 1990.
Adeyanju OA, Michael OS, Soladoye AO, Olatunji LA. Blockade of mineralocorticoid receptor ameliorates oral contraceptive-induced insulin resistance by suppressing elevated uric acid and glycogen synthase kinase-3 instead of circulating mineralocorticoid. Arch Physiol Biochem. 2020;126(3):225–34. https://doi.org/10.1080/13813455.2018.1509220.
Article
CAS
PubMed
Google Scholar
Le May C, Chu K, Hu M, et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA. 2006;103(24):9232–7. https://doi.org/10.1073/pnas.0602956103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G. Glomerular hyperfiltration. Nat Rev Nephrol. 2022;18(7):435–51. https://doi.org/10.1038/s41581-022-00559-y.
Article
PubMed
Google Scholar
Golik A, Weissgarten J, Cotariu D, et al. Renal uric acid handling in non-insulin-dependent diabetic patients with elevated glomerular filtration rates. Clin Sci. 1993;85(6):713–6. https://doi.org/10.1042/cs0850713.
Article
CAS
Google Scholar
Remuzzi A, Viberti G, Ruggenenti P, Battaglia C, Pagni R, Remuzzi G. Glomerular response to hyperglycemia in human diabetic nephropathy. Am J Physiol. 1990;259(4 Pt 2):F545–52. https://doi.org/10.1152/ajprenal.1990.259.4.F545.
Article
CAS
PubMed
Google Scholar
Toyoki D, Shibata S, Kuribayashi-Okuma E, et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 2017;313(3):F826-f834. https://doi.org/10.1152/ajprenal.00012.2017.
Article
CAS
PubMed
Google Scholar
Shichiri M, Iwamoto H, Shiigai T. Diabetic renal hypouricemia. Arch Intern Med. 1987;147(2):225–8. https://doi.org/10.1001/archinte.1987.00370020045033.
Article
CAS
PubMed
Google Scholar