Zhu YZC. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. CurrDiabetes Rep. 2016;16(1):7.
Google Scholar
HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med [Internet]. 2008;358 (19):1991–2002. Available from: https://doi.org/10.1056/NEJMoa0707943
Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018;6(1):89.
Article
Google Scholar
Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y, et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018;67(9):1614–25.
Article
CAS
Google Scholar
Kuang Y-S, Lu J-H, Li S-H, Li J-H, Yuan M-Y, He J-R, et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience [Internet]. 2017;6 (8):1–12. Available from: http://academic.oup.com/gigascience/article/6/8/1/4056270/Connections-between-the-human-gut-microbiome-and
Cortez RV, Taddei CR, Sparvoli LG, Ângelo AGS, Padilha M, Mattar R, et al. Microbiome and its relation to gestational diabetes. Endocrine. 2019;64(2):254–64.
Article
CAS
Google Scholar
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Bäckhed H, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80.
Article
CAS
Google Scholar
Mokkala K, Houttu N, Vahlberg T, Munukka E, Rönnemaa T, Laitinen K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol. 2017;54(12):1147–9.
Article
Google Scholar
Chen X, Li P, Liu M, Zheng H, He Y, Chen X, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513–22.
Article
CAS
Google Scholar
Hu J, Nomura Y, Bashir A, Fernandez-Hernandez H, Itzkowitz S, Pei Z, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS ONE. 2013;8(11):1.
Article
Google Scholar
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature [Internet]. 2012;486 (7402):207–14. Available from: https://doi.org/10.1038/nature11234
Soderborg TK, Carpenter CM, Janssen RC, Weir TL, Robertson CE, Ir D, et al. Gestational diabetes is uniquely associated with altered early seeding of the infant gut Microbiota. Front Endocrinol (Lausanne). 2020;11(November):1–13.
Google Scholar
Gritz ECBV. The human neonatal gut microbiome: a brief review. Front Pediatr. 2015;3(17):1.
Google Scholar
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168:928–43.
Article
CAS
Google Scholar
Biasucci G, Benenati B, Morelli L, Bessi EBG. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr. 2008;138:1796S-1800S.
Article
CAS
Google Scholar
Finucane MM, Sharpton TJ, Laurent TJPK. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE. 2014;9:e84689.
Article
Google Scholar
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature [Internet]. 2012;490 (7418):55–60. Available from: https://doi.org/10.1038/nature11450
Systems. WHOG status report 2014. H statistics and information. No Title. http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html; 2014.
Jatene A. RESOLUÇÃO No 196 DE 10 DE OUTUBRO DE 1996; 1996.
Brasilian Diabetes Guideline. Available from: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf
Fisberg RM, Marchioni DML, Colucci ACA. Avaliação do consumo alimentar e da ingestão de nutrientes na prática clínica. Arq Bras Endocrinol Metabol [Internet]. 2009;53:617–24. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302009000500014&nrm=iso
https://www.dietpro.com.br/store/softwares/dietpro-clinico/.
TACO—Núcleo de Estudos e Pesquisas em Alimentação. Tabela Brasileira de Composição de Alimentos. 2011. 161 p.
Penington JS, Penno MAS, Ngui KM, Ajami NJ, Roth-Schulze AJ, Wilcox SA, Bandala-Sanchez E, Wentworth JM, Barry SC, Brown CY, Couper JJ, Petrosino JF, Papenfuss AT, Harrison LC, Colman PG, Cotterill A, Craig ME, Davis EAPJV. Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Sci Rep. 2018;8:1–10.
Article
CAS
Google Scholar
Ombrello AK. Dada2. Encycl Med Immunol. 2020;13(7):1–7.
Google Scholar
Pires DEV, Oliveira FS, Correa FB, Morais DK, Fernandes GR. TAG.ME: taxonomic assignment of genetic markers for ecology. bioRxiv. 2018;1:1.
Google Scholar
Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22(4):1–20.
Article
Google Scholar
Lean SC, Derricott H, Jones RL, Heazell AEP. Advanced maternal age and adverse pregnancy outcomes: a systematic review and meta-analysis. PLoS ONE. 2017;12(10):e0186287.
Article
Google Scholar
Hasan S, Aho V, Paulin L, Koivusalo SB, Auvinen PEJ. Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years post-partum. Acta Obs Gynecol Scand. 2018;97(1):38–46.
Article
CAS
Google Scholar
Saad MJA, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31(4):283–93.
Article
CAS
Google Scholar
Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–30.
Article
CAS
Google Scholar
Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Pötgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut. 2020;69(11):1975–87.
Article
CAS
Google Scholar
Zhang L, Ouyang Y, Li H, Shen L, Ni Y, Fang Q, et al. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: a randomized crossover trial. Sci Rep. 2019;9(1):4736.
Article
Google Scholar
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):1556–73.
Article
CAS
Google Scholar
Ponzo V, Ferrocino I, Zarovska A, Amenta MB, Leone F, Monzeglio C, et al. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM). PLoS ONE [Internet]. 2019;14 (12):e0226545. Available from: https://doi.org/10.1371/journal.pone.0226545
Su M, Nie Y, Shao R, Duan S, Jiang Y, Wang M, et al. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE. 2018;13(10):e0205695.
Article
Google Scholar
Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First foods and gut microbes. Front Microbiol. 2017;8(March):356.
Google Scholar
Ma J, Li Z, Zhang W, Zhang C, Zhang Y, Mei H, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep [Internet]. 2020;10 (1):15792. Available from: https://doi.org/10.1038/s41598-020-72635-x
Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20.
Article
CAS
Google Scholar
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science (80–). 2001;291(5505):881–4.
Article
CAS
Google Scholar
Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr [Internet]. 2008;87 (1):534–8. Available from: http://ajcn.nutrition.org/content/87/3/534.short
Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol [Internet]. 2020;28 (1):28–45. Available from: https://doi.org/10.1016/j.tim.2019.07.010
Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77:220–8.
Article
CAS
Google Scholar
Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep [Internet]. 2016;6 (March):23129. Available from: https://doi.org/10.1038/srep23129
Zhu L, Luo F, Hu W, Han Y, Wang Y, Zheng H, et al. Bacterial communities in the womb during healthy pregnancy. Front Microbiol. 2018;9(Sept):2163.
Article
Google Scholar
Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird’s-eye view. Front Microbiol. 2017;8(July):1388.
Article
Google Scholar
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3.
Article
CAS
Google Scholar
Madan JC, Hoen AG, Lundgren SN, Farzan SF, Cottingham KL, Morrison HG, et al. Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr. 2016;170(3):212–9.
Article
Google Scholar
Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5(1):93.
Article
Google Scholar
Liu Y, Qin S, Song Y, Feng Y, Lv N, Xue Y, et al. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Front Microbiol. 2019;10(March):598.
Article
Google Scholar