Huang X, Tong Y, Qi CX, Xu YT, Dan HD, Shen Y. Disrupted topological organization of human brain connectome in diabetic retinopathy patients. Neuropsychiatr Dis Treat. 2019;15:2487–502.
Article
Google Scholar
Horvath A, Leber B, Feldbacher N, Tripolt N, Rainer F, Blesl A, et al. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study. Eur J Nutr. 2020;59(7):2969–83.
Article
CAS
Google Scholar
Gao Y, Zheng T, Ran X, Ren Y, Chen T, Zhong L, et al. Vitamin D and incidence of prediabetes or type 2 diabetes: a four-year follow-up community-based study. Dis Markers. 2018;2018:1926308.
Article
Google Scholar
Raza ST, Abbas S, Siddiqi Z, Mahdi F. Association between ACE (rs4646994), FABP2 (rs1799883), MTHFR (rs1801133), FTO (rs9939609) genes polymorphism and type 2 diabetes with dyslipidemia. Int J Mol Cell Med. 2017;6(2):121–30.
PubMed
PubMed Central
Google Scholar
Wang J, Zhao D, Ding CZ, Guo F, Wu LN, Huang FJ, et al. MicroRNA-194: a novel regulator of glucagon-like peptide-1 synthesis in intestinal L cells. Cell Death Dis. 2021;12(1):113.
Article
CAS
Google Scholar
Gouda M, Matsukawa M, Iijima H. Associations between eating habits and glycemic control and obesity in Japanese workers with type 2 diabetes mellitus. Diabetes Metab Syndr Obes Targets Ther. 2018;11:647–58.
Article
CAS
Google Scholar
Chen Z, Zhang C, Fan G. Interrelationship between interpersonal interaction intensity and health self-efficacy in people with diabetes or prediabetes on online diabetes social platforms: an in-depth survey in China. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17155375.
Article
PubMed
PubMed Central
Google Scholar
Menini S, Iacobini C, Vitale M, Pugliese G. The inflammasome in chronic complications of diabetes and related metabolic disorders. Cells. 2020. https://doi.org/10.3390/cells9081812.
Article
PubMed
PubMed Central
Google Scholar
Balcı Okcanoğlu T, Kayabaşı Ç, Gündüz C. Effect of CCT137690 on long non-coding RNA expression profiles in MCF-7 and MDA-MB-231 cell lines. Bosn J Basic Med Sci. 2020;20(1):56–62.
PubMed
Google Scholar
Ma Q, Wang L, Yang Y, Su Y, Wang T, Hou Q, et al. Association between lncRNA and GCKR gene in type 2 diabetes mellitus. Clin Chim Acta. 2020;501:66–71.
Article
CAS
Google Scholar
Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Human Genom. 2018;12(1):41.
Article
Google Scholar
Yu W, Zhao GQ, Cao RJ, Zhu ZH, Li K. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav Neurol. 2017;2017:2941297.
PubMed
PubMed Central
Google Scholar
Zhang J, Chen K, Tang Y, Luan X, Zheng X, Lu X, et al. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway. Cell Death Dis. 2021;12(4):367.
Article
CAS
Google Scholar
Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentiis M, Botti G. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers. 2020. https://doi.org/10.3390/cancers12051197.
Article
PubMed
PubMed Central
Google Scholar
Biswas S, Feng B, Chen S, Liu J, Aref-Eshghi E, Gonder J, et al. The long non-coding RNA HOTAIR is a critical epigenetic mediator of angiogenesis in diabetic retinopathy. Investig Ophthalmol Vis Sci. 2021;62(3):20.
Article
CAS
Google Scholar
Bhan A, Mandal SS. LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta. 2015;1856(1):151–64.
CAS
PubMed
PubMed Central
Google Scholar
Shaker OG, Abdelaleem OO, Mahmoud RH, Abdelghaffar NK, Ahmed TI, Said OM, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life. 2019;71(3):310–20.
Article
CAS
Google Scholar
Qi K, Zhong J. LncRNA HOTAIR improves diabetic cardiomyopathy by increasing viability of cardiomyocytes through activation of the PI3K/Akt pathway. Experimental Ther Med. 2018;16(6):4817–23.
CAS
Google Scholar
Li M, Guo Y, Wang XJ, Duan BH, Li L. HOTAIR participates in hepatic insulin resistance via regulating SIRT1. Eur Rev Med Pharmacol Sci. 2018;22(22):7883–90.
CAS
PubMed
Google Scholar
Alvarez-Silva C, Kashani A, Hansen TH, Pinna NK, Anjana RM, Dutta A, et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 2021;13(1):37.
Article
CAS
Google Scholar
Chang WW, Zhang L, Yao XM, Chen Y, Zhu LJ, Fang ZM, et al. Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: a case-control study. Molecular Cell Biochem. 2020;473(1–2):93–9.
Article
CAS
Google Scholar
Wang L, Su N, Zhang Y, Wang G. Clinical significance of serum lncRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. Medical Sci Monit Int Med J Exp Clin Res. 2018;24:6079–84.
CAS
Google Scholar
Fittipaldi E, Andrade AD, Santos ACO, Campos S, Fernandes J, Catanho M. Depressive symptoms are associated with high levels of serum low-density lipoprotein cholesterol in older adults with type 2 diabetes mellitus. Arquivos Bras Cardiol. 2020;115(3):462–7.
Google Scholar
Lee D, Han Y, Kwon EY, Choi MS. d-allulose ameliorates metabolic dysfunction in C57BL/KsJ-db/db mice. Molecules. 2020. https://doi.org/10.3390/molecules25163656.
Article
PubMed
PubMed Central
Google Scholar
Bhansali S, Bhansali A, Dutta P, Walia R, Dhawan V. Metformin upregulates mitophagy in patients with T2DM: a randomized placebo-controlled study. J Cell Mol Med. 2020;24(5):2832–46.
Article
CAS
Google Scholar
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: a promising remedy in the therapy of type 2 diabetes mellitus. Stem Cells. 2021. https://doi.org/10.1002/stem.3357.
Article
PubMed
PubMed Central
Google Scholar
Peng X, Wang X, Fan M, Zhao J, Lin L, Liu J. Plasma levels of von Willebrand factor in type 2 diabetes patients with and without cardiovascular diseases: a meta-analysis. Diab Metab Res Rev. 2020;36(1):e3193.
Article
CAS
Google Scholar
Liu X, Men P, Wang Y, Zhai S, Liu G. Impact of dipeptidyl peptidase-4 inhibitors on serum adiponectin: a meta-analysis. Lipids Health Dis. 2016;15(1):204.
Article
Google Scholar
Liu SX, Zheng F, Xie KL, Xie MR, Jiang LJ, Cai Y. Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/microRNA-382-3p/resistin axis. Mol Ther Nucleic Acids. 2019;18:34–44.
Article
CAS
Google Scholar
Cantile M, Di Bonito M, De Tracey BM, Botti G. Functional interaction among lncRNA HOTAIR and microRNAs in cancer and other human diseases. Cancers. 2021. https://doi.org/10.3390/cancers13030570.
Article
PubMed
PubMed Central
Google Scholar
Obaid M, Udden SMN, Alluri P, Mandal SS. LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Sci Rep. 2021;11(1):232.
Article
CAS
Google Scholar
Zhu HP. Silence of HOTAIR inhibits insulin secretion and proliferation in pancreatic β cells. Eur Rev Med Pharmacol Sci. 2020;24(2):784–92.
PubMed
Google Scholar
Ma Y, Hu M, Zhou L, Ling S, Li Y, Kong B, et al. Long non-coding RNA HOTAIR promotes cancer cell energy metabolism in pancreatic adenocarcinoma by upregulating hexokinase-2. Oncol Lett. 2019;18(3):2212–9.
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Zheng J, Hu X, Chen L. Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus. Endocrine. 2019;65(3):494–503.
Article
CAS
Google Scholar
Saeidi L, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M, et al. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol Biol Rep. 2018;45(6):2601–8.
Article
CAS
Google Scholar
Abdulle LE, Hao JL, Pant OP, Liu XF, Zhou DD, Gao Y, et al. MALAT1 as a Diagnostic and Therapeutic Target in Diabetes-Related Complications: A Promising Long-Noncoding RNA. Int J Med Sci. 2019;16(4):548–55.
Article
CAS
Google Scholar