Anık A, Çatlı G, Abacı A, Böber E. Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab. 2015;28(3–4):251–63. https://doi.org/10.1515/jpem-2014-0384.
Article
CAS
PubMed
Google Scholar
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15-S33. https://doi.org/10.2337/dc21-S002
Misra S, Owen KR. Genetics of monogenic diabetes: present clinical challenges. Curr Diab Rep. 2018;18(12):141. https://doi.org/10.1007/s11892-018-1111-4.
Article
PubMed
PubMed Central
Google Scholar
Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):47–63. https://doi.org/10.1111/pedi.12772.
Article
PubMed
Google Scholar
Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. 2019;12:1047–56. https://doi.org/10.2147/DMSO.S179793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanik J, Dusatkova P, Cinek O, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480–4. https://doi.org/10.1007/s00125-013-3119-2.
Article
CAS
PubMed
Google Scholar
Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: Dominance of maternal inheritance. Pediatr Diabetes. 2018;19(7):1164–72. https://doi.org/10.1111/pedi.12714.
Article
CAS
PubMed
Google Scholar
Salzano G, Passanisi S, Mammì C, Priolo M, Pintomalli L, Caminiti L, Messina MF, Pajno GB, Lombardo F. Maturity onset diabetes of the young is not necessarily associated with autosomal inheritance: case description of a de novo HFN1A mutation. Diabetes Ther. 2019;10(4):1543–8. https://doi.org/10.1007/s13300-019-0633-3.
Article
PubMed
PubMed Central
Google Scholar
Kim SH. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes Metab J. 2015;39(6):468–77. https://doi.org/10.4093/dmj.2015.39.6.468.
Article
PubMed
PubMed Central
Google Scholar
Pettitt DJ, Talton J, Dabelea D, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–8. https://doi.org/10.2337/dc13-1838.
Article
PubMed
PubMed Central
Google Scholar
Mozzillo E, Salzano G, Barbetti F, Maffeis C, Lombardo F, Franzese A, Delvecchio M, Marigliano M. Survey on etiological diagnosis of diabetes in 1244 Italian diabetic children and adolescents: impact of access to genetic testing. Diabetes Res Clin Pract. 2015;107(3):e15–8. https://doi.org/10.1016/j.diabres.2015.01.003.
Article
PubMed
Google Scholar
Johansson BB, Irgens HU, Molnes J, et al. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 2017;60(4):625–35. https://doi.org/10.1007/s00125-016-4167-1.
Article
CAS
PubMed
Google Scholar
Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055–62. https://doi.org/10.1210/jc.2013-1279.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem. 2013;50(Pt 5):403–15. https://doi.org/10.1177/0004563213483458.
Article
PubMed
Google Scholar
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512–26. https://doi.org/10.1002/humu.21110.
Article
CAS
PubMed
Google Scholar
Kyithar MP, Bacon S, Pannu KK, Rizvi SR, Colclough K, Ellard S, Byrne MM. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications. Diabetes Metab. 2011;37(6):512–9. https://doi.org/10.1016/j.diabet.2011.04.002.
Article
CAS
PubMed
Google Scholar
Losekoot M, Broekman AJ, Breuning MH, de Koning EJ, Romijn JA, Maassen JA. Moleculaire diagnostiek bij aanwijzingen voor “maturity onset diabetes of the young”; resultaten bij 184 patiënten [Molecular diagnosis on indication of maturity onset diabetes of the young; results from 184 patients]. Ned Tijdschr Geneeskd. 2005;149(3):139–43.
CAS
PubMed
Google Scholar
Stride A, Ellard S, Clark P, Shakespeare L, Salzmann M, Shepherd M, Hattersley AT. Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers. Diabetes Care. 2005;28(7):1751–6. https://doi.org/10.2337/diacare.28.7.1751.
Article
CAS
PubMed
Google Scholar
Yeung RO, Hannah-Shmouni F, Niederhoffer K, Walker MA. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes. Rev Endocr Metab Disord. 2018;19(1):35–52. https://doi.org/10.1007/s11154-018-9446-3.
Article
PubMed
Google Scholar
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat. 2006;27(9):854–69. https://doi.org/10.1002/humu.20357.
Article
CAS
PubMed
Google Scholar
Ellard S, Bellanné-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network (EMQN) MODY group. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546–53. https://doi.org/10.1007/s00125-008-0942-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat. 2013;34(5):669–85. https://doi.org/10.1002/humu.22279.
Article
CAS
PubMed
Google Scholar
Salzano G, Passanisi S, Lucanto MC, Costa S, Pajno GB, Lombardo F. GCK-MODY in a child with cystic fibrosis: the doubt of the treatment plan. J Pediatr Endocrinol Metab. 2020;33(10):1359–62. https://doi.org/10.1515/jpem-2020-0093.
Article
PubMed
Google Scholar
Bacon S, Kyithar MP, Rizvi SR, Donnelly E, McCarthy A, Burke M, Colclough K, Ellard S, Byrne MM. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med. 2016;33(7):976–84. https://doi.org/10.1111/dme.12992.
Article
CAS
PubMed
Google Scholar
GoodSmith MS, Skandari MR, Huang ES, Naylor RN. The impact of biomarker screening and cascade genetic testing on the cost-effectiveness of MODY genetic testing. Diabetes Care. 2019;42:2247–55. https://doi.org/10.2337/dc19-0486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddle MC, Philipson LH, Rich SS, et al. Monogenic diabetes: From genetic insights to population-based precision in care reflections from a diabetes care editors’ expert forum. Diabetes Care. 2020;43(12):3117. https://doi.org/10.2337/dci20-0065.
Article
PubMed
Google Scholar
Delvecchio M, Mozzillo E, Salzano G, et al. Monogenic diabetes accounts for 6.3% of cases referred to 15 Italian pediatric diabetes centers during 2007 to 2012. J Clin Endocrinol Metab. 2017;102(6):1826–34. https://doi.org/10.1210/jc.2016-2490.
Article
PubMed
Google Scholar
Schober E, Rami B, Grabert M, et al. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database. Diabet Med. 2009;26(5):466–73. https://doi.org/10.1111/j.1464-5491.2009.02720.x.
Article
CAS
PubMed
Google Scholar
Galler A, Stange T, Müller G, et al. Incidence of childhood diabetes in children aged less than 15 years and its clinical and metabolic characteristics at the time of diagnosis: data from the Childhood Diabetes Registry of Saxony. Germany Horm Res Paediatr. 2010;74(4):285–91. https://doi.org/10.1159/000303141.
Article
CAS
PubMed
Google Scholar
Johnson SR, Ellis JJ, Leo PJ, et al. Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr Diabetes. 2019;20(1):57–64. https://doi.org/10.1111/pedi.12766.
Article
CAS
PubMed
Google Scholar
Carlsson A, Shepherd M, Ellard S, et al. Absence of islet autoantibodies and modestly raised glucose values at diabetes diagnosis should lead to testing for MODY: lessons from a 5-year pediatric Swedish national cohort study. Diabetes Care. 2020;43(1):82–9. https://doi.org/10.2337/dc19-0747.
Article
CAS
PubMed
Google Scholar
Shepherd M, Shields B, Hammersley S, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. pediatric diabetes population with monogenic diabetes. Diabetes Care. 2016;39(11):1879–88. https://doi.org/10.2337/dc16-0645.
Article
CAS
PubMed
Google Scholar
Sosenko JM, Geyer S, Skyler JS, et al. The influence of body mass index and age on C-peptide at the diagnosis of type 1 diabetes in children who participated in the diabetes prevention trial-type 1. Pediatr Diabetes. 2018;19(3):403–9. https://doi.org/10.1111/pedi.12609.
Article
CAS
PubMed
Google Scholar
Vehik K, Bonifacio E, Lernmark Å, et al. Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY Study. Diabetes Care. 2020;43(9):2066–73. https://doi.org/10.2337/dc19-2547.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald TJ, Colclough K, Brown R, Shields B, Shepherd M, Bingley P, Williams A, Hattersley AT, Ellard S. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabet Med. 2011;28(9):1028–33. https://doi.org/10.1111/j.1464-5491.2011.03287.x.
Article
CAS
PubMed
Google Scholar
Urrutia I, Martínez R, López-Euba T, Velayos T, Martínez-de-LaPiscina I, Bilbao JR, Rica I, Castaño L, Spanish Group for the Study of MODY and Type 1 diabetes. Lower frequency of HLA-DRB1 type 1 diabetes risk alleles in pediatric patients with MODY. PLoS ONE. 2017;12(1):e0169389. https://doi.org/10.1371/journal.pone.0169389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Møller AM, Dalgaard LT, Pociot F, Nerup J, Hansen T, Pedersen O. Mutations in the hepatocyte nuclear factor-1alpha gene in Caucasian families originally classified as having Type I diabetes. Diabetologia. 1998;41(12):1528–31. https://doi.org/10.1007/s001250051101.
Article
PubMed
Google Scholar
Karaoglan M, Nacarkahya G. Clinical and laboratory clues of maturity-onset diabetes of the young and determination of association with molecular diagnosis. J Diabetes. 2021;13(2):154–63. https://doi.org/10.1111/1753-0407.13097.
Article
CAS
PubMed
Google Scholar
Delvecchio M, Salzano G, Bonura C, et al. Can HbA1c combined with fasting plasma glucose help to assess priority for GCK-MODY vs HNF1A-MODY genetic testing? Acta Diabetol. 2018;55(9):981–3. https://doi.org/10.1007/s00592-018-1179-y.
Article
CAS
PubMed
Google Scholar
Kleinberger JW, Copeland KC, Gandica RG, et al. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med. 2018;20(6):583–90. https://doi.org/10.1038/gim.2017.150.
Article
PubMed
Google Scholar
Massa O, Meschi F, Cuesta-Munoz A, et al. High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetologia. 2001;44(7):898–905. https://doi.org/10.1007/s001250100530.
Article
CAS
PubMed
Google Scholar
Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002;45(3):427–35. https://doi.org/10.1007/s00125-001-0770-9.
Article
CAS
PubMed
Google Scholar
Hangül M, Erdoğan M, Hatipoğlu N, Köse M. Maturity-onset diabetes of the young: Different diabetes in an infant with cystic fibrosis. Pediatr Pulmonol. 2020;55(5):E5–7. https://doi.org/10.1002/ppul.24746.
Article
PubMed
Google Scholar
Scully KJ, Sawicki G, Kremen J, Putman MS. Monogenic diabetes in a child with cystic fibrosis: a case report and review of the literature. J Endocr Soc. 2020;5(1):bvaa165. https://doi.org/10.1210/jendso/bvaa165.
Article
PubMed
PubMed Central
Google Scholar
Mozzillo E, Franceschi R, Piona C, et al. Diabetes and prediabetes in children with cystic fibrosis: a systematic review of the literature and recommendations of the Italian society for pediatric endocrinology and diabetes (ISPED). Front Endocrinol (Lausanne). 2021. https://doi.org/10.3389/fendo.2021.673539.
Article
Google Scholar
Bellanné-Chantelot C, Clauin S, Chauveau D, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–32. https://doi.org/10.2337/diabetes.54.11.3126.
Article
PubMed
Google Scholar
Xu A, Lin Y, Sheng H, et al. Molecular diagnosis of maturity-onset diabetes of the young in a cohort of Chinese children. Pediatr Diabetes. 2020;21(3):431–40. https://doi.org/10.1111/pedi.12985.
Article
CAS
PubMed
Google Scholar