Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5 Suppl):990s–1s. https://doi.org/10.1093/jn/127.5.990S.
Article
CAS
PubMed
Google Scholar
Hilal S, Perna S, Gasparri C. Comparison between Appendicular Skeletal Muscle Index DXA Defined by EWGSOP1 and 2 versus BIA tengvall criteria among older people admitted to the post-acute geriatric care unit in Italy. Nutrients. 2020;12(6):1818. https://doi.org/10.3390/nu12061818.
Article
CAS
PubMed Central
Google Scholar
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23. https://doi.org/10.1093/ageing/afq034.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Zhang Y, Hao Q, et al. Sarcopenia and hospital-related outcomes in the old people: a systematic review and meta-analysis. Aging Clin Exp Res. 2019;31(1):5–14. https://doi.org/10.1007/s40520-018-0931-z.
Article
PubMed
Google Scholar
Navarrete-Reyes AP, Avila-Funes JA. Diabetes mellitus and the syndrome of frailty in the elderly. Rev Invest Clin. 2010;62(4):327–32.
PubMed
Google Scholar
Bielorai B, Pinhas-Hamiel O. Type 2 Diabetes mellitus, the metabolic syndrome, and its components in adult survivors of acute lymphoblastic leukemia and hematopoietic stem cell transplantations. Nutrients. 2018;18(6):32. https://doi.org/10.1007/s11892-018-0998-0.
Article
Google Scholar
Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care, (2019);42(Suppl 1):s13-s28. https://doi.org/ 10.2337/dc19-S002.
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157: 107843. https://doi.org/10.1016/j.diabres.2019.107843.
Article
PubMed
Google Scholar
Guerrero N, Bunout D, Hirsch S, et al. Premature loss of muscle mass and function in type 2 diabetes. Diabetes Res Clin Pract. 2016;117:32–8. https://doi.org/10.1016/j.diabres.2016.04.011.
Article
CAS
PubMed
Google Scholar
Leenders M, Verdijk LB, van der Hoeven L, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc. 2013;14(8):585–92. https://doi.org/10.1016/j.jamda.2013.02.006.
Article
PubMed
Google Scholar
Kim TN, Park MS, Yang SJ, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9. https://doi.org/10.2337/dc09-2310.
Article
PubMed
PubMed Central
Google Scholar
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):pp. 264–9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
Article
PubMed
Google Scholar
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12. https://doi.org/10.1001/jama.283.15.2008.
Article
CAS
PubMed
Google Scholar
Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
Article
PubMed
PubMed Central
Google Scholar
Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.
Article
CAS
PubMed
Google Scholar
Tanaka S, Takubo M, G Kohno, et al. Inverse correlation between grip strength and serum phosphorus: A retrospective observational study in Japanese elderly with poorly controlled type 2 diabetes. Geriatrics. 2020. https://doi.org/10.3390/geriatrics5020033.
Article
PubMed
PubMed Central
Google Scholar
Miki A, Hamaguchi M, Kuwahata M, et al. Higher serum uric acid is a risk factor of reduced muscle mass in men with type 2 diabetes mellitus. Geriatr Gerontol Int. 2021;129(1):50–5. https://doi.org/10.1055/a-0805-2197.
Article
CAS
Google Scholar
Tuzun S, Cifcili S, Dabak MR, et al. Sarcopenia among genders in type 2 diabetes mellitus patients using different formulas of bioimpedance analysis. J Coll Physicians Surg Pak. 2018;28(8):586–9
https://doi.org/10.29271/jcpsp.2018.08.586.
Article
PubMed
Google Scholar
Osaka T, Hamaguchi M, Hashimoto Y, et al. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;139:52–8. https://doi.org/10.1016/j.diabres.2018.02.025.
Article
CAS
PubMed
Google Scholar
Oh TJ, Kang S, Lee JE, et al. Association between deterioration in muscle strength and peripheral neuropathy in people with diabetes. J Diabetes Complications. 2019;33(8):598–601. https://doi.org/10.1016/j.jdiacomp.2019.04.007.
Article
PubMed
Google Scholar
Bittel AJ, Bittel DC, Tuttle LJ, et al. Explanators of sarcopenia in individuals with diabesity: a cross-sectional analysis. J Geriatr Phys Ther. 2017;40(2):86–94. https://doi.org/10.1519/jpt.0000000000000076.
Article
PubMed
PubMed Central
Google Scholar
Fukuda T, Bouchi R, Takeuchi T, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res Care. 2017;5(1):e000404. https://doi.org/10.1136/bmjdrc-2017-000404.
Article
PubMed
PubMed Central
Google Scholar
Kang S, Oh TJ. Sex differences in sarcopenia and frailty among community-dwelling Korean older adults with diabetes: The Korean Frailty and Aging Cohort Study. J Diabetes Investig. 2021;12(2):155–64. https://doi.org/10.1007/s00223-020-00742-y.
Article
CAS
PubMed
Google Scholar
Takahashi F, Hashimoto Y. Habitual miso (fermented soybean paste) consumption is associated with a low prevalence of sarcopenia in patients with type 2 diabetes: a cross-sectional study. Nutrients. 2020. https://doi.org/10.3390/nu13010072.
Article
PubMed
PubMed Central
Google Scholar
Sung MJ, Lim TS. Sarcopenia is independently associated with the degree of liver fibrosis in patients with type 2 diabetes mellitus. Gut Liver. 2020;14(5):626–35. https://doi.org/10.5009/gnl19126.
Article
PubMed
PubMed Central
Google Scholar
Sugimoto K, Ikegami H, Takata Y, et al. Glycemic control and insulin improve muscle mass and gait speed in type 2 diabetes: the MUSCLES-DM study. J Am Med Dir Assoc. 2020. https://doi.org/10.1016/j.arteri.2020.10.003.
Article
PubMed
Google Scholar
Seo DH, Lee YH, Park SW, et al. Sarcopenia is associated with non-alcoholic fatty liver disease in men with type 2 diabetes. Diabetes Metab. 2020;46(5):362–9. https://doi.org/10.3390/nu11112636.
Article
CAS
PubMed
Google Scholar
Sazlina SG, Lee PY, Chan YM, et al. The prevalence and factors associated with sarcopenia among community living elderly with type 2 diabetes mellitus in primary care clinics in Malaysia. PLoS One. 2020;15(5):e0233299. https://doi.org/10.20960/nh.03180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pechmann LM. Sarcopenia in type 2 diabetes mellitus: a cross-sectional observational study. J Diabetes Res. 2020;2020:7841390. https://doi.org/10.1155/2020/6973469.
Article
CAS
Google Scholar
Nakanishi S, Iwamoto M, Shinohara H, et al. Significance of body mass index for diagnosing sarcopenia is equivalent to slow gait speed in Japanese individuals with type 2 diabetes: Cross-sectional study using outpatient clinical data. J Diabetes Investig. 2020;. https://doi.org/10.1016/j.exger.2020.111022.
Article
PubMed
PubMed Central
Google Scholar
Mori H, Kuroda A, Yoshida S, et al. High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: Findings from the Impact of Diabetes Mellitus on Dynapenia study. J Diabetes Investig. 2020;. https://doi.org/10.1111/jdi.13436.
Article
PubMed
PubMed Central
Google Scholar
Jung CH, Cho YY, Choi D, et al. Relationship of sarcopenia with microcirculation measured by skin perfusion pressure in patients with type 2 diabetes. Endocrinol Metab. 2020;35(3):578–86. https://doi.org/10.3803/EnM.2020.679.
Article
CAS
Google Scholar
Gorial FI, Sayyid OS, Al Obaidi SA. Prevalence of sarcopenia in sample of Iraqi patients with type 2 diabetes mellitus: a hospital based study. Diabetes Metab Syndr. 2020;14(4):413–6. https://doi.org/10.1016/j.cger.2020.04.010.
Article
PubMed
Google Scholar
de Freitas MM, de Oliveira VLP, Grassi T, et al. Difference in sarcopenia prevalence and associated factors according to 2010 and 2018 European consensus (EWGSOP) in elderly patients with type 2 diabetes mellitus. Exp Gerontol. 2020;132: 110835. https://doi.org/10.1016/j.exger.2020.110835.
Article
PubMed
Google Scholar
Cui M, Gang X, Wang G, et al. A cross-sectional study: associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Medicine (Baltimore). 2020;99(2): https://doi.org/10.1097/MD.0000000000018708.
Article
PubMed
PubMed Central
Google Scholar
Chen F, Xu S, Wang Y, et al. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J Diabetes Res. 2020;2020:3950404. https://doi.org/10.1155/2020/3950404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beretta MV, Dantas Filho FF, Freiberg RE, et al. Sarcopenia and Type 2 diabetes mellitus as predictors of 2-year mortality after hospital discharge in a cohort of hospitalized older adults. Diabetes Res Clin Pract. 2020;159:107969. https://doi.org/10.1016/j.diabres.2019.107969.
Article
CAS
PubMed
Google Scholar
Yanagita I, Fujihara Y, Kitajima Y, et al. A high serum cortisol/DHEA-S ratio is a risk factor for sarcopenia in elderly diabetic patients. J Endocr Soc. 2019;3(4):801–813. https://doi.org/10.1210/js.2018-00271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugimoto K, Tabara Y, Ikegami H, et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: the multicenter study for clarifying evidence for sarcopenia in patients with diabetes mellitus. J Diabetes Investig. 2019;10(6):1471–1479. https://doi.org/10.1111/jdi.13070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamura T, Hashimoto Y, Miki A, et al. High brain natriuretic peptide is associated with sarcopenia in patients with type 2 diabetes: a cross-sectional study of KAMOGAWA-DM cohort study. Endocr J. 2019;66(4):369–77. https://doi.org/10.1507/endocrj.EJ19-0024.
Article
CAS
PubMed
Google Scholar
Ogama N, Sakurai T, Kawashima S, et al. Association of glucose fluctuations with sarcopenia in older adults with type 2 diabetes mellitus. J Clin Med. 2019. https://doi.org/10.3390/jcm8030319.
Article
PubMed
PubMed Central
Google Scholar
Mori H, Kuroda A, Ishizu M, et al. Association of accumulated advanced glycation end-products with a high prevalence of sarcopenia and dynapenia in patients with type 2 diabetes. 2019;10(5):1332–1340. https://doi.org/10.1111/jdi.13014.
Article
CAS
Google Scholar
Kaji A, Hashimoto Y. Sarcopenia is associated with tongue pressure in older patients with type 2 diabetes: a cross-sectional study of the KAMOGAWA-DM cohort study. Geriatr Gerontol Int. 2019;19(2):153–158. https://doi.org/10.1111/ggi.13577.
Article
PubMed
Google Scholar
Fung FY, Koh YLE, Malhotra R, et al. Prevalence of and factors associated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting. BMC Geriatr. 2019;19(1):122. https://doi.org/10.1186/s12877-019-1137-8.
Article
PubMed
PubMed Central
Google Scholar
Trierweiler H, Kisielewicz G, Jonasson TH, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr. 2018;10:25. https://doi.org/10.1186/s13098-018-0326-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata Y, Kadoya Y, Yamada S, et al. Sarcopenia in elderly patients with type 2 diabetes mellitus: prevalence and related clinical factors. Diabetol Int. 2018;9(2):136–42. https://doi.org/10.1007/s13340-017-0339-6.
Article
PubMed
Google Scholar
Murai J, Nishizawa H. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc Diabetol. 2018;17(1):112. https://doi.org/10.1186/s12933-018-0755-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto Y, Kaji A, Sakai R, et al. Sarcopenia is associated with blood pressure variability in older patients with type 2 diabetes: a cross-sectional study of the KAMOGAWA-DM cohort study. Geriatr Gerontol Int. 2018;18(9):1345–9. https://doi.org/10.1111/ggi.13487.
Article
PubMed
Google Scholar
Bouchi R, Fukuda T, Takeuchi T, et al. Sarcopenia is associated with incident albuminuria in patients with type 2 diabetes: a retrospective observational study. J Diabetes Investig. 2017;8(6):783–7. https://doi.org/10.1111/jdi.12636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Feng X, Zhou J, et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6: 38937. https://doi.org/10.1038/srep38937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka K, Kanazawa I, Sugimoto T. Reduction in endogenous insulin secretion is a risk factor of sarcopenia in men with type 2 diabetes mellitus. Calcif Tissue Int. 2015;97(4):385–90. https://doi.org/10.1007/s00223-015-9990-8.
Article
CAS
PubMed
Google Scholar
Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55(6):1813–8. https://doi.org/10.2337/db05-1183.
Article
CAS
PubMed
Google Scholar
Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010;29(2):154–9. https://doi.org/10.1016/j.clnu.2009.12.004.
Article
CAS
PubMed
Google Scholar
Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adult. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56. https://doi.org/10.1016/j.jamda.2011.01.003.
Article
PubMed
Google Scholar
Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025.
Article
PubMed
Google Scholar
Huang CY, Hwang AC, Liu LK, et al. Association of dynapenia, sarcopenia, and cognitive impairment among community-dwelling older Taiwanese. Rejuvenation Res. 2016;19(1):71–8. https://doi.org/10.1089/rej.2015.1710.
Article
PubMed
Google Scholar
Dumont P, Royer V, Pascal T, et al. Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett. 2001;502(3):109–12. https://doi.org/10.1016/s0014-5793(01)02679-5.
Article
CAS
PubMed
Google Scholar
Yamada M, Nishiguchi S, Fukutani N, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc. 2013;14(12):911–5. https://doi.org/10.1016/j.jamda.2013.08.015.
Article
PubMed
Google Scholar
Oertel G. Changes in human skeletal muscles due to ageing. Histological and histochemical observations on autopsy material. Acta Neuropathol. 1986;69(3–4):309–13. https://doi.org/10.1007/bf00688309.
Article
CAS
PubMed
Google Scholar
Nomura T, Ishiguro T, Ohira M, et al. Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J Diabetes Investig. 2018;9(1):186–92. https://doi.org/10.1111/jdi.12658.
Article
CAS
PubMed
Google Scholar
Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab. 2010;12(Suppl 2):4–14. https://doi.org/10.1111/j.1463-1326.2010.01263.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horio M, Imai E, Yasuda Y, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61(2):197–203. https://doi.org/10.1053/j.ajkd.2012.07.007.
Article
CAS
PubMed
Google Scholar
Van Den Berghe G. On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016;194(11):1337–48. https://doi.org/10.1164/rccm.201607-1516CI.
Article
PubMed
Google Scholar
Saito K, Kasai T, Nagura Y, et al. Corticotropin-releasing hormone receptor 1 antagonist blocks brain-gut activation induced by colonic distention in rats. Gastroenterology. 2005;129(5):1533–43. https://doi.org/10.1053/j.gastro.2005.07.053.
Article
CAS
PubMed
Google Scholar
Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781–90. https://doi.org/10.1007/s00198-017-4151-8.
Article
CAS
PubMed
Google Scholar
Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013;92(2):151–62. https://doi.org/10.1007/s00223-012-9645-y.
Article
CAS
PubMed
Google Scholar
Bischoff-Ferrari HA, Dietrich T, Orav EJ, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥ 60 y. Am J Clin Nutr. 2004;80(3):752–8. https://doi.org/10.1093/ajcn/80.3.752.
Article
CAS
PubMed
Google Scholar
Remelli F, Vitali A, Zurlo A, et al. Vitamin D deficiency and sarcopenia in older persons. Nutrients. 2019. https://doi.org/10.3390/nu11122861.
Article
PubMed
PubMed Central
Google Scholar
Ascenzi F, Barberi L, Dobrowolny G, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell. 2019;18(3): e12954. https://doi.org/10.1111/acel.12954.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiedmer P, Jung T, Castro JP, et al. Sarcopenia—molecular mechanisms and open questions. Ageing Res Rev. 2021;65: 101200. https://doi.org/10.1016/j.arr.2020.101200.
Article
CAS
PubMed
Google Scholar
Han P, Kang L, Guo Q, et al. Prevalence and factors associated with sarcopenia in suburb-dwelling older Chinese using the asian working group for sarcopenia definition. J Gerontol A Biol Sci Med Sci. 2016;71(4):529–35. https://doi.org/10.1093/gerona/glv108.
Article
PubMed
Google Scholar
Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA. 1994;272(24):1909–14. https://doi.org/10.1001/jama.1994.03520240037038.
Article
CAS
PubMed
Google Scholar
Naranjo JD, Dziki JL, Badylak SF. Regenerative medicine approaches for age-related muscle loss and sarcopenia: a mini-review. Gerontology. 2017;63(6):580–9. https://doi.org/10.1159/000479278.
Article
CAS
PubMed
Google Scholar
Vasilaki A, Mansouri A, Van Remmen H, et al. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006;5(2):109–17. https://doi.org/10.1111/j.1474-9726.2006.00198.x.
Article
CAS
PubMed
Google Scholar
Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81. https://doi.org/10.1016/j.tem.2012.03.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kacimi R, Long CS, Karliner JS. Chronic hypoxia modulates the interleukin-1beta-stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation. 1997;96(6):1937–43. https://doi.org/10.1161/01.cir.96.6.1937.
Article
CAS
PubMed
Google Scholar