Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024.
Article
CAS
PubMed
Google Scholar
Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. https://doi.org/10.1038/nrneph.2015.173.
Article
CAS
PubMed
Google Scholar
Raptis AE, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S424–37. https://doi.org/10.1055/s-2001-18600.
Article
CAS
PubMed
Google Scholar
Zhang XX, Kong J, Yun K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in china: a meta-analysis of observational studies. J Diabetes Res. 2020;2020:2315607. https://doi.org/10.1155/2020/2315607.
Article
PubMed
PubMed Central
Google Scholar
Martinez B, Peplow PV. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res. 2019;14(11):1858–69. https://doi.org/10.4103/1673-5374.259602.
Article
PubMed
PubMed Central
Google Scholar
Yamagishi S, Fukami K, Ueda S, Okuda S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets. 2007;8(8):952–9. https://doi.org/10.2174/138945007781386884.
Article
CAS
PubMed
Google Scholar
Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–40. https://doi.org/10.1038/nrneph.2011.51.
Article
CAS
PubMed
Google Scholar
Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015;4(4):631–52. https://doi.org/10.3390/cells4040631.
Article
PubMed
PubMed Central
Google Scholar
Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol. 2013;9(12):713–23. https://doi.org/10.1038/nrendo.2013.184.
Article
CAS
PubMed
Google Scholar
Conserva F, Barozzino M, Pesce F, Divella C, Oranger A, Papale M, et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci Rep. 2019;9(1):11357. https://doi.org/10.1038/s41598-019-47778-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, et al. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol. 2018;9:706. https://doi.org/10.3389/fimmu.2018.00706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sun Y, Peng R, Liu H, He W, Zhang L, et al. The long noncoding RNA 150Rik promotes mesangial cell proliferation via miR-451/IGF1R/p38 MAPK signaling in diabetic nephropathy. Cell Physiol Biochem. 2018;51(3):1410–28. https://doi.org/10.1159/000495590.
Article
CAS
PubMed
Google Scholar
Campion CG, Sanchez-Ferras O, Batchu SN. Potential role of serum and urinary biomarkers in diagnosis and prognosis of diabetic nephropathy. Can J Kidney Health Dis. 2017;4:2054358117705371. https://doi.org/10.1177/2054358117705371.
Article
PubMed
PubMed Central
Google Scholar
El-Samahy MH, Adly AA, Elhenawy YI, Ismail EA, Pessar SA, Mowafy ME, et al. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes. J Diabetes Complications. 2018;32(2):185–92. https://doi.org/10.1016/j.jdiacomp.2017.10.014.
Article
PubMed
Google Scholar
Delic D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, et al. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE. 2016;11(3): e0150154. https://doi.org/10.1371/journal.pone.0150154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Kwan BC, Lai FM, Tam LS, Li EK, Chow KM, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology (Carlton). 2012;17(4):346–51. https://doi.org/10.1111/j.1440-1797.2012.01573.x.
Article
CAS
Google Scholar
Luque A, Farwati A, Krupinski J, Aran JM. Association between low levels of serum miR-638 and atherosclerotic plaque vulnerability in patients with high-grade carotid stenosis. J Neurosurg. 2018;131(1):72–9. https://doi.org/10.3171/2018.2.JNS171899.
Article
PubMed
Google Scholar
American DA. Erratum Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical Care in Diabetes-2016. Diabetes Care 2016;39(Suppl 1):S13-S22. Diabetes Care. 2016;39(9):1653. https://doi.org/10.2337/dc16-er09.
Article
Google Scholar
Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol. 2016;5(1):49–56.
PubMed
Google Scholar
Koya D, Haneda M, Inomata S, Suzuki Y, Suzuki D, Makino H, et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009;52(10):2037–45. https://doi.org/10.1007/s00125-009-1467-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LP, Gao YZ, Song B, Yu G, Chen H, Zhang ZW, et al. MicroRNAs in the progress of diabetic nephropathy: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2019;2019:3513179. https://doi.org/10.1155/2019/3513179.
Article
PubMed
PubMed Central
Google Scholar
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol. 2018;234(1):42–50. https://doi.org/10.1002/jcp.26895.
Article
CAS
PubMed
Google Scholar
Tang J, Yao D, Yan H, Chen X, Wang L, Zhan H. The Role of MicroRNAs in the pathogenesis of diabetic nephropathy. Int J Endocrinol. 2019;2019:8719060. https://doi.org/10.1155/2019/8719060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Duan L, Tian L, Liu J, Wang S, Gao Y, et al. Serum miR-21 may be a potential diagnostic biomarker for diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2016;124(7):417–23. https://doi.org/10.1055/s-0035-1565095.
Article
CAS
PubMed
Google Scholar
Abdelsalam M, Wahab AM, El Sayed ZM, Motawea M. MicroRNA-451 as an early predictor of chronic kidney disease in diabetic nephropathy. Int J Nephrol. 2020;2020:8075376. https://doi.org/10.1155/2020/8075376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao P, Zhang BL, Liu K, Qin B, Li ZH. Overexpression of miR-638 attenuated the effects of hypoxia/reoxygenation treatment on cell viability, cell apoptosis and autophagy by targeting ATG5 in the human cardiomyocytes. Eur Rev Med Pharmacol Sci. 2018;22(23):8462–71. https://doi.org/10.26355/eurrev_201812_16546.
Article
CAS
PubMed
Google Scholar
Jiao W, Zhang D, Wang D, Xu R, Tang L, Zhao M, et al. MicroRNA-638 inhibits human aortic valve interstitial cell calcification by targeting Sp7. J Cell Mol Med. 2019;23(8):5292–302. https://doi.org/10.1111/jcmm.14405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haimoto H, Sasakabe T, Umegaki H, Wakai K. Reduction in urinary albumin excretion with a moderate low-carbohydrate diet in patients with type 2 diabetes: a 12-month intervention. Diabetes Metab Syndr Obes. 2012;5:283–91. https://doi.org/10.2147/DMSO.S34306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito H, Komatsu Y, Mifune M, Antoku S, Ishida H, Takeuchi Y, et al. The estimated GFR, but not the stage of diabetic nephropathy graded by the urinary albumin excretion, is associated with the carotid intima-media thickness in patients with type 2 diabetes mellitus: a cross-sectional study. Cardiovasc Diabetol. 2010;9:18. https://doi.org/10.1186/1475-2840-9-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tofte N, Suvitaival T, Ahonen L, Winther SA, Theilade S, Frimodt-Moller M, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep. 2019;9(1):16398. https://doi.org/10.1038/s41598-019-52916-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Chen SJ, Wang JC, Niu HX, Jia QQ, Chen XW, et al. Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-kappaB-dependent mechanism. Oxid Med Cell Longev. 2015;2015: 934058. https://doi.org/10.1155/2015/934058.
Article
PubMed
PubMed Central
Google Scholar
Perez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernandez C, Navarro-Gonzalez JF. Inflammation in diabetic kidney disease. Nephron. 2019;143(1):12–6. https://doi.org/10.1159/000493278.
Article
CAS
PubMed
Google Scholar
Alipour S, Nouri M, Sakhinia E, Samadi N, Roshanravan N, Ghavami A, et al. Epigenetic alterations in chronic disease focusing on Behcet’s disease: Review. Biomed Pharmacother. 2017;91:526–33. https://doi.org/10.1016/j.biopha.2017.04.106.
Article
CAS
PubMed
Google Scholar
Ortega A, Romero M, Izquierdo A, Troyano N, Arce Y, Ardura JA, et al. Parathyroid hormone-related protein is a hypertrophy factor for human mesangial cells: Implications for diabetic nephropathy. J Cell Physiol. 2012;227(5):1980–7. https://doi.org/10.1002/jcp.22926.
Article
CAS
PubMed
Google Scholar
Wang Y, Zhao M, Zhang Y, Li X, Wang H. Serum IgA(1) from patients with IgA nephropathy induces phosphorylation of extracellular signal-regulated kinase and proliferation of human mesangial cells. Zhonghua Yi Xue Za Zhi. 2002;82(20):1406–9.
PubMed
Google Scholar
Cao Y, Cao X, Sun L, Li Y. miR-206 Inhibits Cell Proliferation and Extracellular Matrix Accumulation by Targeting Hypoxia-Inducible Factor 1-alpha (HIF-1alpha) in Mesangial Cells Treated with High Glucose. Med Sci Monit. 2019;25:10036–44. https://doi.org/10.12659/MSM.918912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linna-Kuosmanen S, Tomas Bosch V, Moreau PR, Bouvy-Liivrand M, Niskanen H, Kansanen E, et al. NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovasc Res. 2021;117(5):1339–57. https://doi.org/10.1093/cvr/cvaa219.
Article
PubMed
Google Scholar