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Abstract 

Background:  The principal objective of this study was to gain a better understanding of the mechanisms of type 2 
diabetes mellitus (T2DM) patients with fatigue (D-T2DM) through exome and transcriptome sequencing.

Methods:  After whole-exome sequencing on peripheral blood of 6 D-T2DM patients, the consensus mutations were 
screen out and analyzed by a series of bioinformatics analyses. Then, we combined whole-exome sequencing and 
transcriptome sequencing results to find the important genes that changed at both the DNA and RNA levels.

Results:  The results showed that a total of 265,393 mutation sites were found in D-T2DM patients compared with 
normal individuals, 235 of which were consensus mutations shared with D-T2DM patients. These genes significantly 
enriched in HIF-1 signaling pathway and sphingolipid signaling pathway. At the RNA level, a total of 375 genes were 
identified to be differentially expressed. After the DNA-RNA joint analysis, eight genes were screened that changed 
at both DNA and RNA levels. Among these genes, FUS and LMNA were related to carbohydrate metabolism, energy 
metabolism, and mitochondrial function. Subsequently, we predicted the herbs, including Qin Pi and Hei Zhi Ma, that 
might play a therapeutic role in D-T2DM through the SymMap database.

Conclusion:  These findings have significant implications for understanding the mechanisms of D-T2DM and provide 
potential targets for D-T2DM diagnosis and treatment.
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Background
Diabetes is a severe worldwide problem threatening the 
health of millions of people. The number of individuals 
with type 2 diabetes mellitus (T2DM) is rapidly increas-
ing worldwide. Current estimates indicate that by 2040, 
approximately 642 million people worldwide will be suf-
fered from T2DM [1]. The occurrence of T2DM has been 
associated with genetic and acquired factors [2]. In Tra-
ditional Chinese Medicine (TCM), there are several dif-
ferent types of diabetes. One type of diabetes is called 
“Dual Deficiency of Qi and Yin Syndrome”, a common 
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type of diabetes [3]. The main symptoms of this type 
are dry throat and mouth, fatigued spirit, and lack of 
strength. In modern medicine, some T2DM patients are 
also accompanied by thirst and frailty [4–8]. Hence, the 
diagnosis and treatment of this type of T2DM (D-T2DM) 
will become a problem facing the world.

Nowadays, with the emergence of next-generation 
sequencing technology, we can overcome the limitations 
of traditional genetic disease research methods. Whole-
exome sequencing technology (WES) is a method that 
performs high-throughput analysis of all exon regions 
to sensitively identify rare and low-frequency disease-
related mutations [9, 10]. WES involves three main steps 
to find the pathogenic genes: capture and enrichment of 
exome, high-throughput sequencing, and bioinformatic 
analysis. Several previous studies used WES to uncover 
variation associated with complex human traits. Some 
trials have explored the association between T2DM and 
exonic variants through WES, such as PAX4, RREB1, 
and PPP1R3A [11–13]. So far, however, there has been 
no detailed investigation of the changes in the exome of 
D-T2DM patients.

Therefore, this present study using the WES to find 
the specific mutation sites in D-T2DM patients com-
pared with normal people. In addition, we performed 
functional enrichment and pathway analysis to explore 
the potential functions of the mutation gene. Finally, we 
combined exome and RNA sequencing to explore the 
pathogenesis of D-T2DM. The results may provide refer-
ences for clinical application and introduce a new strat-
egy for the treatment of D-T2DM.

Methods
Sample information description
Ethical approval accorded with the Declaration of Hel-
sinki for this study was obtained from the Beijing Uni-
versity of Chinese Medicine ethics committee and Beijing 
Hepingli Hospital ethics committee. The primary inclu-
sion and exclusion criteria are listed in Table  1. Finally, 

a total of 12 individuals, including six D-T2DM patients 
and six healthy subjects, were included in this study 
and provided informed consent. These individuals were 
separated into the D-T2DM group (patient ID: QYD001, 
QYD002, QYD003, QYD004, QYD005, and QYD006) 
and the control group (patient ID: WZC001, WZC002, 
WZC003, WZC004, WZC005, and WZC006). Then, fast-
ing peripheral blood was collected from the participants 
and stored at – 80 ℃ for subsequent analysis.

DNA extraction and sequencing
After DNA was extracted, Agarose gel electrophoresis 
was used to check the quality of DNA, and Qubit 3.0 
was used to determine the concentration of DNA. Next, 
in brief, DNA samples were fragmented by the Covaris 
instrument, then the sequencing library was constructed 
by end repair, A-tailing, and adapter ligation. After that, 
exome DNA was captured by Agilent SureSelect Human 
All Exon V6 Kit (Agilent). Then, the DNA libraries were 
attained after purification and PCR amplification. Finally, 
pair-end 150 bp sequencing was done using the Illumina 
sequencing platform.

Bioinformatics analysis
Raw DNA sequencing data were aligned to the GRCh37/
hg19, used as the reference genome for sequence align-
ment and subsequent analysis. The bioinformatics anal-
ysis involved quality assessment of sequencing data, 
mutation detection, mutation screening, and disease-
related prediction.

Screening of mutation site
The mutation site screening was performed to analyze 
the single nucleotide polymorphisms (SNP) or inser-
tion and deletion (InDel) information. Firstly, remove 
the mutation site with the reported frequency of > 1% 
by comparison with 1000h_all, esp6500si_all, gnomAD_
ALL, and gnomAD_EAS database. Secondly, preserve 
the mutation of coding regions and spice sites. Thirdly, 

Table 1  Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Subjects with D-T2DM Diagnosed with T2DM
Diagnosed T2DM for at least 3 months
Diagnosed with “Dual Deficiency of Qi and Yin Syndrome” 
according to TCM pattern diagnoses, including the key symp-
toms: dry throat and mouth, fatigued spirit and lack of strength

Diagnosed with type 1 diabetes, secondary diabetes, gesta-
tional diabetes, or unknown type of diabetes
Patients with stage III hypertension or myocardial infarction
Patients with severe primary diseases
Patients with serious complications, such as infection and 
diabetic ketoacidosis

Healthy Subjects FPG < 5.6 mmol/L
Healthy and no associated symptoms of “Dual Deficiency of Qi 
nd Yin Syndrome”

Subjects with a family history of diabetes
Subjects with hypertension or other cardiovascular and 
cerebrovascular diseases
Subjects are currently taking medications
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remove synonymous mutation and non-frameshift InDel 
mutation. Finally, retain the mutations that were harmful 
variations or cause splicing defects according to the SIFT, 
Polyphen, MutationTaster, and CADD software.

Mutation site harmful classification
According to the American Society of Medical Genetics 
and Genomics (ACMG) variant interpretation guidlines 
[14], the pathogenicity of mutations are classified into 
the categories as follows: pathogenic, likely pathogenic, 
uncertain significance, like benign and benign. Next, the 
number of mutation sites in each category was counted.

Analysis of the harmfulness of copy number variations (CNV)
CNVs are found in the biological genome, and some 
malignant CNVs can cause various diseases, including 
neurological disorders and cancer. CNVs were detected 
and annotated by CoNIFER and ANNOVAR software, 
respectively. After that, we further annotated the CNV 
results database using multiple databases, including 
DGV and CNVD database, to filter out benign CNVs and 
reserve malignant CNVs. Then, CNVs were classified into 
four types, including H (high), P (possibly deleterious), M 
(medium), and L (low).

Advanced analysis and DNA‑RNA conjoint analyses
Further advanced analysis was conducted to identify 
the true mutations responsible for the disease from all 
mutation results. The biological function and involv-
ing pathway of mutation genes were enriched by Gene 
Ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway analysis. In addition, we col-
lected disease-associated genes from the DisGeNet data-
base and constructed the gene-disease correlation map. 
Then, protein interaction networks of the mutant genes 
were constructed using the gene network prediction tool 
GeneMania (http://​genem​ania.​org/). Finally, we screened 

significantly differentially expressed genes among the 
shared mutation genes and performed functional enrich-
ment analysis with GO and KEGG pathway categories.

Herb‑gene interaction network
To predict herbs associated with the DE shared muta-
tions, an herb-gene interaction network was constructed 
base on the SymMap database (https://​www.​symmap.​
org/). Predicted candidate herbs for each gene were pre-
sented and visualized with Cytoscape 3.8.2.

Statistical analysis
All statistical analyses were accomplished by Student’s 
independent-samples t-test using the SPSS software 
(Version 20.0). Results were expressed as mean ± SEM, 
and with P < 0.05 considered statistically significant.

Results
Participants information description
At the beginning of the study, we recruited six D-T2DM 
patients (three males and three females) and six nor-
mal individuals (six females). All the patients fulfilled 
diagnostic criteria for D-T2DM. Figure  1 shows the 
characteristics of all individuals. There were no appar-
ent differences in age and BMI between the two groups 
(P > 0.05). In addition, FPG levels were higher in the 
D-T2DM group when compared to the control group 
(P < 0.01).

Whole‑exome sequencing data summary
Whole-exome sequencing was performed on fasting 
peripheral blood of six D-T2DM patients and six normal 
individuals. Approximately 153.4  Gb of raw data with a 
0.1% average error rate were obtained, and about 91.63% 
of raw reads had Qphred quality scores of > 30 (Addi-
tional file 1: Table S1). The clean reads were aligned and 
sorted to reference genome GRCh37/hg19 using BWA 

Fig. 1  Characteristics of study subjects

http://genemania.org/
https://www.symmap.org/
https://www.symmap.org/
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tools and SAMtools. 99.85% of the mapped content and 
97.5% of the target fraction were covered with at least 
10 × in depth. The average depth of sequencing was 
124.96 (Additional file 1: Table S2).

The results of variation detection
After obtaining mapped data, SAMtools was used to 
detect and filter the single nucleotide variant (SNV) sites. 
We detect a total of 265,393 exonic SNVs with 123,095 
missense SNV, 886 stop-gain, and 94 stop-less. These 
SNVs lead to changes in amino acids during transla-
tion. Next, ANNOVAR software was used to annotate 
the SNPs. The results of annotation included the loca-
tion, type, and conservative prediction of SNPs. Insertion 
and deletion (InDel) in the coding region and splice site 
can also cause acid changes during translation. Thus, we 
determined the count of InDel with different types on the 
coding region and the genome (Additional file 1: Tables 
S3 and S4).

Screening and classification of the mutation sites
After fundamental analysis, the SNP/InDel informa-
tion was screened for mutation sites, and finally, 3720 
mutation sites were obtained (Table  2). According to 
ACMG’s evidence, the mutation sites were classified into 

pathogenic, likely pathogenic, VUS, likely benign, and 
benign categories (Table 3). Lastly, a harmfulness analysis 
of CNV was performed and found a total of 160 malig-
nant CNVs (Additional file 1: Table S5).

Screening of shared mutated sites between samples
After filtering the harmful mutation sites, the mutated 
genes shared by more than two patients were screened. 
At the same time, follow the principle that 90% of nor-
mal individuals did not share. We think the more patients 
have the same mutated gene, the more likely this muta-
tion is to be associated with D-T2DM. The results 
indicated that there were 235 shared mutated sites in 
D-T2DM patients, and the top 15 were listed in Table 4. 
Among the results, the mutation of NT5DC4 was present 
in all six D-T2DM patients, and in addition, the PARP1 
gene, which is closely related to T2DM, was mutated in 
three D-T2DM patients.

GO and KEGG pathway enrichment analysis of the mutated 
sites
Since different genes usually cooperate to perform their 
biological functions, especially in a complex disease like 
T2DM. To reveal the biological functions of the mutated 
genes, gene ontology (GO) analysis was performed to 

Table 2  The results of mutation sites screening (partial)

Priority POS ID Gene Name Exonic Func Gencode

H 979560 rs762554040 AGRN missense SNV ENSG00000188157.14, ENST00000379370.6, ENST00000620552.4

H 1221564 rs61740392 SCNN1D missense SNV ENST00000379116.9, ENST00000325425.12, ENST00000400928.7, ENST00000379101.8, 
ENSG00000162572.20, ENST00000338555.6

H 1233779 rs544359869 ACAP3 missense SNV ENST00000354700.9, ENST00000476572.1, ENST00000467278.5, ENST00000492936.5, 
ENSG00000131584.18, ENST00000353662.4

H 1262875 rs564546199 CPTP missense SNV ENST00000343938.8, ENST00000464957.1, ENSG00000224051.6

H 1269024 TAS1R3 missense SNV ENST00000339381.5, ENSG00000169962.4

H 1269399 rs571862161 TAS1R3 missense SNV ENST00000339381.5, ENSG00000169962.4

H 1269623 rs199779671 TAS1R3 missense SNV ENST00000339381.5, ENSG00000169962.4

H 1309567 rs199844974 AURKAIP1 missense SNV ENST00000378853.3, ENST00000338338.9, ENST00000321751.9, ENST00000338370.7, 
ENSG00000175756.13

H 1309675 rs758605382 AURKAIP1 missense SNV ENST00000489799.1, ENST00000378853.3, ENST00000338338.9, ENST00000321751.9, 
ENST00000338370.7, ENSG00000175756.13

Table 3  Harmful classification screening results of each patient

Patient Total Pathogenic LikelyPathogenic VUS LikelyBenign Benign

QYD1 25,518 3 5 1240 1287 22,983

QYD2 25,540 4 6 1253 1264 23,013

QYD3 25,418 3 3 1262 1282 22,868

QYD4 25,398 1 7 1312 1226 22,852

QYD5 25,352 5 6 1241 1262 22,838

QYD6 25,897 3 4 1323 1244 23,323
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classify genes according to their biological functions. 
GO analysis enriched the mutated genes in three differ-
ent categories, including biological process (BP), cellular 
component (CC), and molecular function (MF). In our 
results, the total number of significantly enriched BP, CC, 
and MF were 422, 89, and 81 (P < 0.05), respectively. As 
well, the most enriched term in BP, CC, and MF was cel-
lular process (GO: 0098656), cytoplasm (GO: 0005737), 
and molecular function (GO: 0003674), respectively 
(Fig. 2A, B, C).

In addition, to further investigate the biological func-
tions of the mutated genes in D-T2DM patients, we per-
formed pathway enrichment analysis based on the KEGG 
database. The results showed that a total of 6 pathways 
were enriched significantly (P < 0.05). The scatterplot 
in Fig.  2D demonstrates the top 10 enriched pathways. 
Among them, the HIF-1 signaling pathway (hsa04066) 
and sphingolipid signaling pathway (hsa04071) are 
related to T2DM and mitochondrial function.

Gene‑disease phenotype correlation analysis
Based on the DisGeNte database V5.0 (a database of 
gene-disease associations with 561,119 gene-disease and 
135,588 mutation-disease association records), we stud-
ied the associations between T2DM and our sequenc-
ing results. The results showed that in our sequencing 
results, there were 23,230 genes associated with the 
development of T2DM. Next, we constructed the gene-
phenotype-D-T2DM interaction network based on the 
first 49 genes of the candidate genes (Fig.  3). Then, we 
subjected the candidate genes to Phenolyzer Software to 
generate a ranked gene list. As illustrated in Fig.  4, the 

higher the rank, the higher the correlation between can-
didate genes and T2DM, and the top two genes with the 
highest rank were RELA and APP.

Protein‑protein interaction analysis
To further explore potential interactions among the 
shared mutated genes, we performed protein functional 
interaction network analysis using the online software 
GeneMania [15]. It includes protein–protein, protein-
DNA-genetic interactions, pathways, reactions, gene-
protein expression data, protein domains-phenotypic 
screening profiles. Afterwards, the protein–protein inter-
action network was constructed by Cytoscape software 
(Fig. 5).

DNA and RNA joint analysis results
Screening of the differentially expressed consensus mutated 
genes in D‑T2DM patients
We thought that if a gene is a shared mutated gene 
in D-T2DM patients and significantly differentially 
express in D-T2DM patients compared with nor-
mal people, this gene may be critical for the develop-
ment of D-T2DM. Therefore, we analyzed the relative 
expression of the shared mutated genes at the RNA 
level. Differential gene expression was assessed using 
the Cuffdiff software. Then, based on the sequencing 
depth and gene length for the reads count, FPKM was 
chosen to express the expression values of genes. The 
results were shown in Fig.  6 and Table  5: eight shared 
mutate genes were screened with significant differen-
tial expression. Among them, the CDH23 gene mutated 
in three patients, the rest of the mutated genes were 

Table 4  The top 15 shared mutated genes and their annotation results

Priority CHROM POS ID GeneName ExonicFunc Patient shared 
number

Normal 
shared 
number

H 2 113479751 NT5DC4 6 0

H 2 113481035 NT5DC4 nonframeshift deletion 6 0

H 2 113483863 rs368642527 NT5DC4 missense SNV 6 0

H 1 201177415 rs139658488 IGFN1 missense SNV 4 0

H 1 201190586 rs565007693 IGFN1 missense SNV 4 0

H 1 55252706 rs201017388 TTC22 missense SNV 3 0

H 1 55252712 rs370158426 TTC22 missense SNV 3 0

H 1 55252757 TTC22 3 0

L 1 100661986 rs760164623 DBT 3 0

L 1 100661987 DBT 3 0

H +  1 226555174 rs565966803 PARP1 3 0

H +  1 226567629 PARP1 missense SNV 3 0

H +  1 226576415 rs139232092 PARP1 missense SNV 3 0

H +  1 226595617 rs201256399 PARP1 missense SNV 3 0

H 10 73464873 rs535416598 CDH23 missense SNV 3 0
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shared with two patients. Moreover, CHD23, LMNA, 
LRTOMT, VSIG2, and XRCC3 were up-regulated, well 
FUS, GRAMD1C, and SFTPB were down-regulated in 
D-T2DM patients compared with normal individuals.

GO and KEGG pathway analysis of the differentially 
expressed consensus mutant genes in D‑T2DM patients
In order to identify a potential biological function for 
the key genes which were shared mutated genes in 

DNA level and differentially expressed in RNA level, 
GO and KEGG pathway analysis were proceed on these 
key genes. As shown in Fig.  7, the most significantly 
enriched BP, CC, and MF entry was the biological 
process, cellular component, and molecular function, 
respectively. The pathways in cancer, endocytosis, and 
ECM-receptor interaction were significantly enriched 
in the KEGG analysis.

Fig. 2  Scatter plot of the GO and KEGG pathway enrichment analysis of mutated sites. A GO category of BP. B GO category of CC. C GO category of 
MF. D KEGG pathway
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Drug prediction based on the interaction network of herbs 
and the differentially expressed consensus mutant genes
To further predict herbs that might act on the differ-
entially expressed consensus mutant genes, we con-
structed an interaction network of these genes with 
herbs through the SymMap database. As shown in 
Fig.  8, four genes could be predicted with their asso-
ciated herbs through the database. A total of 26, 39, 
52, and 34 herbs were associated with CDH23, FUS, 
LMNA, and SFTPB, respectively. Among these herbs, 
23 were related to two of the four genes, and four were 
related to three of the four genes. These four herbs were 
Qin Pi (Cortex Fraxini, bark of Largeleaf Chinese Ash), 
Ling Ling Xiang (Lysimachiae Foenigraeci Herba), Hei 
Zhi Ma (Semen Sesami Nigrum, Black Sesame), and Di 
Er Cao (Herba Hyperici Japonici, all-grass of Japanese 
St. Johnswort).

Discussion
In our work, we subjected 12 individuals (six D-T2DM 
patients and six normal individuals) to whole-exome 
sequencing. After comparison with the existing data-
base, the mutation site was screened out. Then we 

classified the pathogenicity of these mutations, screened 
the mutant genes shared in patients, and performed a 
series of bioinformatics analyses like GO, KEGG, and 
gene-disease phenotypic correlation analysis. Next, we 
combined alteration of genetic information of DNA 
level with RNA level to understand the pathogenesis of 
D-T2DM further and provide new targets for D-T2DM 
diagnosis and treatment.

After sample preparation, sequencing procedure and 
analysis, consensus mutations were screened out. There 
was a total of 235 consensus mutations. Among them, 
NT5DC4 has mutations in all 6 D-T2DM patients. 
Although there have been no studies showing the rela-
tionship between NT5DC4 and T2DM, we speculated 
that NT5DC4 might play a role in the pathogenesis of 
D-T2DM. In addition, PARP1, poly(ADP-ribose) poly-
merase 1, is related to immune response, inflamma-
tion, and infection responses in diabetes [16]. Studies 
have shown that PARP1 regulates MMP-9 expression to 
maintain mitochondrial homeostasis through manipulat-
ing the binding of NF-kB/AP-1 at the MMP-9 promoter 
[17]. Nuclear PARP1 rapidly triggers mitochondrial 
dysfunction, and the inhibition of PARP can protect 

Fig. 3  Gene-phenotype-disease association network. The circle size for each of the indicated genes represents the strength of the correlation with 
the disease. Nodes with a green color represent genes related to diabetes according to existing reports or databases; nodes with an orange color 
represent genes related to green color genes according to various associations
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mitochondria and reduce ROS production via PARP-1-
ATF4-MKP-1-MAPK retrograde pathway [16, 18]. Mito-
chondria are essential organelles that provide energy in 
the form of adenosine triphosphate (ATP), including 
energy needed for muscle contraction, nerve impulses 
and the synthesis of all complex molecules in the body 
[19]. Thus, mitochondrial dysfunction will result in 
fatigue. In Traditional Chinese Medicine, the lack of “Qi” 
causes fatigue, a hallmark symptom of mitochondrial dis-
ease [20]. In addition, impaired mitochondrial function 
plays an important role in the development of diabetes 
and insulin resistance [21]. Therefore, the mechanism 
of D-T2DM may be related to mitochondrial dysfunc-
tion. In this study, we identified three missense muta-
tions of PARP1, including G1537A in exon 10, C659T 
in exon 5, and C14G in exon 1. Hence, it could conceiv-
ably be hypothesized that the mutation of PARP1 is pos-
sibly associated with the mitochondrial dysfunction in 
D-T2DM patients.

To further reveal the metabolic pathways associated 
with the consensus mutations of D-T2DM patients, 
we performed a KEGG pathway enrichment analysis. 

The results showed that there was significant enrich-
ment of 6 pathways. Based on previous studies, we 
found that some of these pathways may be associated 
with the pathogenesis of D-T2DM, including the met-
abolic pathway, HIF-1 signaling pathway, and sphin-
golipid signaling pathway. HIF-1 signaling pathway has 
well-established roles in insulin secretion and glucose 
homeostasis [22]. Previous studies established that 
HIF-1 regulates several critical pathways in the adaptive 
responses of cells to hypoxia [23]. In addition, HIF-1 
could influence mitochondrial function by suppressing 
both the TCA cycle and respiration and controls mito-
chondrial biogenesis and autophacy [24]. Sphingolipids 
maintain the structural integrity of cell membrane and 
regulate multiple critical cellular processes through sig-
nal transduction and gene regulation, which are related 
to the occurrence and development of various diseases 
such as diabetes, inflammatory bowel disease, asthma, 
etc [25, 26]. Furthermore, sphingolipids metabolize 
nearby mitochondria and regulate mitochondrial struc-
ture and function [27]. The dysregulated sphingolipid 
metabolism leads to mitochondrial dysfunction and 

Fig. 4  The top 20 genes in the network, which were ranked by association degree
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disease [27]. In our study, the consensus mutation gene 
in D-T2DM patients is significantly enriched in HIF-1 
and sphingolipid signaling pathways. Consequently, we 
speculated that the consensus mutant gene might influ-
ence the development of D-T2DM through functioning 
in pathways associated with glycan metabolism, energy 
metabolism, and mitochondrial disease.

In disease-related research, it is indispensable to iden-
tify the correlation between candidate genes and human 
disease. Therefore, by comparing with the database, we 
constructed a gene-phenotype-D-T2DM correlation net-
work. In the results, a total of 23 230 genes were found. In 

addition, we ranked these genes base on their relevance 
with T2DM. The results showed that the top two rel-
evant genes were RELA (RELA proto-oncogene, NF-kB 
subunit) and APP (amyloid-beta precursor protein). The 
combination of NFKB1and RELA constitutes the most 
abundant form of NF-kappa-B, a ubiquitous transcrip-
tion factor involved in several biological processes. The 
activation of NF-kappa-B is a crucial event early in the 
pathogenesis of diabetes [28]. In addition, NF-kappa-B 
is a physiological regulator of mitochondrial respiration 
and plays a role in metabolic adaptation in cells [29]. 
APP, a precursor protein of amyloid-beta (Aβ), is first 

Fig. 5  Protein–protein interaction network of the shared mutated genes



Page 10 of 14Lv et al. Diabetology & Metabolic Syndrome          (2022) 14:111 

cleaved by either α-secretase or β-secretase to produce 
CTFs 83aa (C83) or 99aa (C99) long, respectively. Then, 
C83 and C99 are cleaved by PS1 and PS2 to produce p3 
or Aβ, respectively. A recent study has reviewed that Aβ 
could affect insulin sensitivity, reduce glucose-dependent 
insulin secretion and contribute to the onset of diabetes 
[30]. Furthermore, mitochondria are one of the major 

targets that Aβ oligomers negatively impact, including 
the impairment of fast transport and fragmentation [31]. 
In addition, C99, the intermediate of Aβ, was a driver of 
mitochondrial dysfunction in Alzheimer’s disease and 
mediated by the loss of sphingolipid homeostasis [32]. 
Therefore, since RELA and APP were closely related to 
T2DM and mitochondrial dysfunction, we believe that 

Fig. 6  Clustering heatmap of differentially expressed consensus mutated genes

Table 5  Mutant genes and differentially expressed genes in D-T2DM patients

Gene name Number of 
patients

Corresponding 
transcript name

Log2 Fold Change P value of DE RNA q value of DE RNA

CDH23 3 ENSG00000107736 1.33058 0.00415 0.0562885

FUS 2 ENSG00000089280 − 1.24573 5.00E−05 0.00240707

GRAMD1C 2 ENSG00000178075 − 1.42239 0.00085 0.0200327

LMNA 2 ENSG00000160789 1.04216 5.00E−05 0.00240707

LRTOMT 2 ENSG00000184154 1.40101 0.0154 0.126948

SFTPB 2 ENSG00000168878 − 1.52488 0.0496 0.270932

VSIG2 2 ENSG00000019102 6.72329 0.0011 0.0235009

XRCC3 2 ENSG00000126215 1.42051 0.0026 0.0422863
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RELA and APP may serve as a clinical predictor of the 
diagnosis in patients with D-T2DM.

D-T2DM is a multifactor disease caused by a combina-
tion of environmental and genetic factors. In recent years, 
with the development of high-throughput sequencing 
technology, significant breakthroughs in the study on 
the occurrence and development of D-T2DM have been 
achieved. But a single-omic approach can only reveal the 
changes at an individual level. Accordingly, to deepen 
our understanding of the development mechanisms of 

D-T2DM, our efforts should focus on integrating multi-
omics datasets. The sequencing of the genome contains 
important information regarding the underlying genetic 
variations in D-T2DM. The transcriptome sequencing 
using high-throughput methods enables studies on gene 
expression of D-T2DM patients and links genome to pro-
teome. Consequently, we combined the sequencing of 
DNA and RNA level to establish the relationship between 
the information of genomic mutation and the changes of 
transcriptome expression.

Fig. 7  The histogram of GO and the scatterplot of the KEGG pathway analysis. A Biological process. B Cellular Component. C Molecular Function. D 
KEGG pathway



Page 12 of 14Lv et al. Diabetology & Metabolic Syndrome          (2022) 14:111 

After the combined analysis, we screened out eight 
genes altered on both DNA and RNA levels. Among 
these genes, FUS (FUS RNA binding protein) could inter-
act with HSP60, a mitochondrial chaperonin, to pro-
mote mitochondrial damage [33]. The previous study 
has demonstrated that mitochondrial ATP production 
is impaired in FUS-expressing cells [34]. In our research, 
the FUS gene showed missense mutation at rs201533156 
sites in the exonic region and significantly down-regu-
lated (log2foldchange = −  1.24573) in D-T2DM patients 
compared with normal individuals. Lamin A/C (LMNA) 
plays a role in intracellular redox homeostasis. A study by 
Tom Sieprath et al. demonstrated that persistent LMNA 
depletion elevates reactive oxygen species (ROS) levels 
[35]. ROS, as prime modulators of cellular dysfunction 
contribution to disease pathophysiology, can act in the 
mitochondrial energy metabolism and the regulation of 
metabolic/inflammatory diseases such as diabetes [36]. 
In this study, we found that the LMNA gene mutated at 

rs200917748 and significantly up-regulated in mRNA 
expression levels (log2foldchange = 1.04216) in D-T2DM 
patients compared with normal individuals. Thus, we 
hypothesized that the FUS and LMNA genes might play 
a role in the pathogenesis of D-T2DM. Furthermore, the 
other six screened genes are also differentially expressed 
genes, and all have common mutations in D-T2DM 
patients. Although no previous studies have provided 
information on the relationship between these genes 
and T2DM or fatigue, we believe that these genes may 
have a role in the pathogenesis of D-T2DM because they 
changed at both the DNA and RNA levels.

To guide subsequent drug studies, we further predicted 
Chinese herbs associated with the key genes through the 
database. In total, four herbs were more correlated with 
differentially expressed shared mutations in the inter-
action network. Among them, Qin Pi is known to pos-
sess anti-inflammatory and anti-oxidative stress effects 
[37, 38]. In the previous researches by Prabakaran et al., 

Fig. 8  Herb-gene interaction network. Green squares represent the differentially expressed consensus mutant genes; Circles represent the 
predicted herbs; Different colors represent the different number of herbs associated with the node, yellow nodes associated with one herb, orange 
nodes associated with two herbs, red nodes associated with three herbs
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esculetin, one of the main active ingredients in Qin Pi, 
can exert antioxidant and anti-hyperglycemic capac-
ity in diabetic rats [39, 40]. Hei Zhi Ma is rich in nutri-
ents and has the effect of tonifying the liver and kidney 
and replenishing vital and blood in TCM theory [41]. 
Many recent studies have shown that Hei Zhi Ma extract 
has the ability to improve insulin resistance and reduce 
blood glucose [42, 43]. In addition, according to the Chi-
nese Pharmacopoeia, Ling Ling Xiang and Di Er Cao can 
be used to treat fatigue [41]. Accordingly, these herbs 
were likely to be able to exert the therapeutic effect on 
D-T2DM. Further experiments need to be done to inves-
tigate the detailed mechanisms.

Conclusions
Taken together, this study set out to gain a greater under-
standing of the mechanisms of occurrence and develop-
ment of D-T2DM. After whole-exome sequencing on 
peripheral blood of D-T2DM patients, the consensus 
mutations were screened out and analyzed by a series of 
bioinformatics analyses. Then, we combined the results 
of WES and transcriptome sequencing, and eight genes, 
including FUS and LMNA, were found that changed at 
both the DNA and RNA levels. Subsequently, we pre-
dicted the herbs that might play a therapeutic role in 
D-T2DM through the database. However, the patho-
logical mechanism of D-T2DM is complex and multi-
factorial. The peripheral blood selected as the subject in 
this study can only partially explain the mechanism of 
D-T2DM. Therefore, in the future, we intend to inves-
tigate the muscle, islet and adipose tissues of D-T2DM 
patients to further elucidate the developmental mecha-
nism of D-T2DM. In summary, our findings have impor-
tant implications for understanding the mechanisms 
of D-T2DM and provide potential targets for D-T2DM 
diagnosis and treatment.
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