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Abstract 

Overweight and obesity are a worldwide public health problem. Obesity prevalence has increased considerably, 
which indicates the need for more studies to better understand these diseases and related complications. Diet 
induced-obesity (DIO) animal models can reproduce human overweight and obesity, and there are many protocols 
used to lead to excess fat deposition. So, the purpose of this review was to identify the key points for the induction of 
obesity through diet, as well as identifying which are the necessary endpoints to be achieved when inducing fat gain. 
For this, we reviewed the literature in the last 6 years, looking for original articles that aimed to induce obesity through 
the diet. All articles evaluated should have a control group, in order to verify the results found, and had worked with 
Sprague–Dawley and Wistar rats, or with C57BL-/-6 mice strain. Articles that induced obesity by other methods, such 
as genetic manipulation, surgery, or drugs were excluded, since our main objective was to identify key points for the 
induction of obesity through diet. Articles in humans, in cell culture, in non-rodent animals, as well as review articles, 
articles that did not have obesity induction and book chapters were also excluded. Body weight and fat gain, as well 
as determinants related to inflammation, hormonal concentration, blood glycemia, lipid profile, and liver health, must 
be evaluated together to better determination of the development of obesity. In addition, to select the best model 
in each circumstance, it should be considered that each breed and sex respond differently to diet-induced obesity. 
The composition of the diet and calorie overconsumption are also relevant to the development of obesity. Finally, it is 
important that a non-obese control group is included in the experimental design.
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Introduction
Obesity is a global public health issue with high preva-
lence in all age groups [1, 2]. It generates a consider-
able social and economic impact, since it affects people’s 
health and quality of life [2]. Classically, obesity is defined 
as a visceral and subcutaneous lipid accumulation and 

body weight gain that may impair health [3, 4]. How-
ever, it is frequent to be accompanied by the deposition 
of lipids (ectopic fat) in non-adipose tissues, such as the 
liver [5].

The treatment and prevention of obesity involves the 
control of body weight and adiposity through a negative 
energy balance in which both, diet and physical activity, 
are important. But, due to changes in people’s lifestyles, 
with less physical activity and shifts in eating behavior, 
the study of alternatives for the treatment of obesity, such 
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as functional foods, and bioactive compounds, is gaining 
increasing relevance [2].

Obesity rates are increasingly higher [1, 2], which indi-
cates that the strategies currently used are insufficient 
to control this disease, and that preclinical studies with 
this disease are still necessary [6]. To study the devel-
opment of obesity and its risk factors, researchers use 
diet-induced obesity animal models, since these models 
reproduce with greater reliability human obesity in com-
parison with genetic models [7]. In addition, studies with 
animal models are carried out under controlled condi-
tions, which facilitates the understanding of the results.

This article aims to evaluate diets-induced obesity 
models in mouse and rat published in the last 6  years. 
It seeks to identify which are the main methodological 
strategies to induce obesity through diet, as well as iden-
tifying which are the main parameters to be taken into 
account to achieve a successful model.

Methodology
The search for articles was carried out manually on 
PubMed database by a single researcher in Febru-
ary 2020. The combination of the descriptors used was 
“diet” + “obesity” and “high fat diet” + “obesity”.

In the PubMed database the following filters were 
selected: “species/other animals”, “case reports”, “clini-
cal trial”, “clinical trial veterinary”, “comparative study”, 
“controlled clinical trial”, “evaluation study”, “newspa-
per article”, “observational study”, “observational study 
veterinary”, “periodical index”, “programmatic clinical 
trial”, “randomized controlled trial”, “twin study” e “vali-
dation study”. Duplicated articles were excluded and 

the rest were evaluated according to the inclusion and 
exclusion criteria (Table  1). We want to highlight that 
the aim of this study was to evaluate the induction of 
obesity through the diet. Therefore, any study that used 
other ways to induce obesity was excluded. We also high-
light that we evaluated only original articles, published 
between 2015 and 2020, in English, and that worked with 
Sprague–Dawley and Wistar rats, or with C57BL-/-6 
mice strain.

Results and discussion
Selection of articles
Initially, 90474 articles were found: 70658 by using the 
terms “diet” + “obesity” and 19816 by the terms “high fat 
diet” + “obesity”. After using the filters on PubMed data-
base, 1625 articles were found for the “diet” + “obesity” 
search and 819 articles for the “high fat diet” + “obesity” 
search, totaling 2444 articles. After the exclusion of 812 
articles that were duplicated, 1632 articles were consid-
ered eligible for reading titles and abstracts. According to 
the inclusion and exclusion criteria (Table 1), 165 articles 
were selected for full reading, 1447 articles were excluded 
and 20 articles were not available for reading, due to 
restricted access to their abstracts (Fig. 1).

After reading the complete articles, 99 were considered 
ineligible by some of the exclusion criteria established 
(Table  1). Another 14 articles were excluded because 
they did not include a control group and 18 articles were 
excluded because they did not provide enough informa-
tion to conclude that the treatment led to obesity. After 
reading the selected articles, one additional article was 
included in the study, totaling 35 articles (Fig. 1).

Table 1  Inclusion and exclusion criteria used to evaluate the pre-selected articles

Inclusion Exclusion

Diet-induced obesity
The main objective was the induction and evaluation of obesity
Study must be done with Sprague–Dawley or Wistar rats, or with C57BL-/-6 

mice strain
Original articles
Presence of a control group
Used commercial diets or produced them from standard ingredients
Published in the last 6 years (2015–2020)
Articles in English

Genetic manipulation
Drug-induced obesity
Surgically induced obesity
Main objective was the induction and/or evaluation of other diseases affect 

for obesity (diabetes, metabolic syndrome, heart disease, liver disease, 
dyslipidemia and surgery for weight loss)

Main objective was the induction and/or evaluation of other diseases (neu-
rological diseases, cancer, rheumatological diseases, endocrine diseases, 
gynecological diseases and kidney diseases)

The objective was to evaluate weight loss
Studies in which there was no induction of obesity
Studies in which there was an intervention before the obesity induction 

period
Study on pregnancy and/or lactation model
Study of a smoking model
Study with humans
Study with cell culture
Study with non-rodent animals (ex: dogs, cats, birds, monkeys, rabbits …)
Review articles, letters to the reviewer and book chapters
Studies published in languages other than English
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Studies that used non-commercial diets, such as caf-
eteria diets, were excluded, since the nutritional com-
position varied widely compared to diets produced from 
standardized ingredients and commercial diets.

Processed foods can contain food additives and be low 
in vitamins and minerals, which can influence the com-
position of the intestinal microbiota and, consequently, 
the occurrence of obesity and other metabolic changes. 
So, in these cases, it is difficult to determine whether a 
metabolic outcome is only due to the high content of 
lipids or whether the high amount of food additives or 
low content of micronutrientes may influence it. In addi-
tion, diets produced from food may contain food addi-
tives, which make it difficult to assess the real effect of 
nutrients on the development of obesity [8].

Diet composition
High-fat diets are commonly used to induce obesity in 
animals [8–10] since they generate adverse metabolic 
effects, meaning that diet is one of the major contributors 
to the obesity epidemic [1, 11].

All 35 studies evaluated used a high-fat diet to induce 
obesity; however, the amount of calories from lipids 
ranged from 41 to 60% (Table  2). Despite looking like 
a wide margin, according to Research Diets Inc [14], 
diet induced-obesity (DIO) animal models usually pro-
vides between 45 to 60% of calories from fats; therefore, 
all selected studies follow this recommendation. Nine 
studies [15–23] did not provide the composition of the 
macronutrients directly, which made it difficult to calcu-
late the amount of calories from fat.

The consumption of diets rich in fat can result in the 
development of human-like obesity, since it increases 

body adiposity and leptin, and stimulates the develop-
ment of hypertension and glucose intolerance. Matias 
et al. [3] observed that offering a diet rich in sugar did not 
lead to the development of metabolic changes that char-
acterize obesity. On the other hand, offering a diet with 
an excessive amount of fat leads to an increase in the adi-
posity index and visceral and body fat gain in comparison 
with sugar or control diets [3].

In addition, some studies highlighted that in their high-
fat diets the main lipid source was saturated fatty acids 
[2, 3, 8–10, 16, 17, 21–30], while others did not discuss 
the type of fatty acids used. This information should be 
available in the articles, since quantity and quality of fatty 
acids can interfere in the success of obesity induction [8, 
10]. Depending on the amount consumed, saturated or 
long-chain fatty acids can lead to a greater accumulation 
of body fat through the resynthesis of new triglycerides 
[27], as well as an increase in the production of inflam-
matory cytokines, which is a classical change observed in 
human obesity [27, 31].

The degree of response to the diet depends on its nutri-
tional composition [11]. Additionally, the determination 
of nutritional composition is important to assess the 
occurrence of obesity and to evaluate the results con-
sidered control/standard. Therefore, control diets must 
have a nutritional basis similar to obesogenic diets, which 
helps to interpret the results without bias [8]. That is, the 
test diet and the control diet should differ only in relation 
to the specific macronutrient (carbohydrate or fat) used 
to induce obesity. The micronutrients, fiber and other 
ingredients must remain the same in order to observe 
how a specific macronutrient influences or not the out-
come of obesity.

The palatability of diets interferes in the amount con-
sumed. Therefore, the consumption of palatable diets (as 
cafeteria diets) is relevant to the increase in food con-
sumption, including compulsive behavior, and conse-
quently weight gain [8, 15]. Diets rich in salt, sugar and 
fat are known to have good palatability. The exposure to 
this type of diet interrupts the expression of clock-genes, 
modifying the day-night pattern of food intake, as well as 
changing dopamine signaling [15], which contributes to 
weight gain.

Caloric excess is essential for the development of obe-
sity [19]. In this sense, although high-fat diets have a high 
sacietogenic potential, which reduces food consumption, 
the consumption of a small amount is able to efficiently 
increase weight and body fat due to the high caloric 
intake [7].

The diet-offering method directly affects consump-
tion and the ability to induce obesity. Thus, it is likely 
that when the diet is offered according to the ad libitum 
or free access methods, food intake is stimulated [19]. 
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On the other side, although the pair-feeding method 
limits the amount of diet to which animals will have 
access to, there are cases in which pair-fed diets can 
achieve different weight gain outcomes, something that 
has been attributed to the differences in macronutrient 
composition [32]. In addition, the amount of calories 
available may be different between groups, which allow 
high-calorie (obesogenic) diets to have the expected 
effect when compared to normocaloric diets, regardless 
of whether they have different palatability and satiety.

The intervention time required for the develop-
ment of obesity varies widely, ranging from 8  days to 
27  weeks (Table  2). Obesity phenotype [3, 30, 33–35], 
as well as metabolic changes typical of obesity–such 
as increased glucose intolerance–, [30] becomes more 
apparent after a longer exposure to an obesogenic 
diet. According to Blancas-Velasquez et  al. [15], after 
3 weeks of intervention there is a change in the pattern 
of fat consumption, which indicates that interventions 
lasting over 3 weeks may generate better results for the 
induction of obesity. Matias et  al. [3] highlights that 
the seventh week was a turning point for the increase 
in weight gain; and Savetsky et  al. [34] discussed the 
importance of a long intervention period, from 10 to 
12  weeks, for the consolidation of the phenotypic and 
metabolic characteristics of obesity.

The consumption of a high-fat diet leads to changes 
in the composition of the intestinal microbiota [8], 
which is a classic parameter that usually accompanies 
the development of obesity [33, 36, 37]. The West-
ern pattern diet, rich in sugar, fat and ultra-processed 
foods leads to changes in intestinal permeability, which 
results in an increase in endotoxemia, insulin resist-
ance, steatosis and inflammation of the adipose tissue 
[38, 39], which results in obesity development [36, 38, 
39].

Furthermore, obesity associated intestinal dysbio-
sis is characterized by a low microbial diversity and an 
imbalance between the different microorganisms of the 
intestinal microbiota, with a large number of pathogenic 
bacteria [8, 36, 39]. In this scenario there is lower produc-
tion of short-chain fatty acids (SCFA, like acetate, propi-
onate and butyrate) which leads to less protection of the 
intestinal epithelium, since SCFA are related to occludin 
and zonulin, and also leads to a drop in the production 
of glucagon-like peptide-1 (GLP-1) resulting in decreased 
satiety and increased insulin resistance, inflammation 
and lipid accumulation [24, 38, 40, 41].

Dysbiosis can also stimulate an excessive production of 
acetate, which can also contribute to the occurrence of 
obesity. This scenario occurs since the increase in acetate 
stimulates the activation of the parasympathetic pathway, 
which increases the secretion of ghrelin stimulating both 

an increase in food consumption and a greater secretion 
of insulin [42].

Therefore, we understand that one of the key factors for 
the development of obesity through the consumption of a 
high-fat diet is the alteration of the intestinal microbiota, 
always aiming for a state of eubiosis, that is, a balance in 
gut microbiota composition [33, 43].

Experimental animals
The animal species most commonly used for obesity 
induction through diet is mouse, with isogenic or inbred 
strains, such as C57BL/6, C57BL/6J, AKR/J, and A/J [7]. 
In the present study, most of the analyzed studies used 
C57BL/6J mice (Table 2). Those animals are more suscep-
tible to fat accumulation, gaining body weight and dis-
ruptions in glucose metabolism when fed an obesogenic 
diet [44]. Other strain used was the C57BL/6NCrl, which 
was developed for the study of lipoprotein and choles-
terol metabolism (The Jackson Laboratory©) [45, 46].

Rats are used in DIO studies (Table 2). Sprague–Daw-
ley rats are considered a good model for inducing obe-
sity through diet, since they have a behavior similar to 
humans with regard to excessive food consumption, 
which can cause weight gain and changes in lipid metab-
olism [22]; however, Wistar rats are more susceptible to 
the development of obesity through diet, since they usu-
ally consume a higher amount of high-fat diet than the 
Sprague–Dawley. Also, differences in lipid metabolism, 
as fatty acid uptake and lipogenesis, as well as the inter-
action between genes and diet, make Wistar rats more 
susceptible to DIO [19].

The age [1] and the sex [47] of the animals can interfere 
in the development of obesity. Krishna et al. [1] observed 
that DIO develops better in younger animals. Addition-
ally, when young, speed in weight gain is also greater 
because elderly animals can adapt metabolically to the 
increase in adiposity; also, less inflammation is observed 
in these animals, which causes less glycemic and hepatic 
alterations [1]. Mice aged 6 to 8 weeks can be considered 
young adult mice [15].

Young male mice have bigger weight gain than females; 
however, when they are middle-aged the opposite occurs, 
and female mice have bigger weight gain than males. 
Inflammatory genes—upregulated in juvenile males—
and hormonal parameters—estrogens can regulate 
inflammatory pathways in female—may justify the results 
found [47]. Gene expression in the arcuate nucleus—low 
in males—[48] and differences in metabolic program-
ming between males and females—related to the expres-
sion of genes in the endoplasmic reticulum and hepatic 
energy metabolism– also contribute to sex-specific 
weight gain [49].
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Male animals are commonly used in the study of obe-
sity; however, if the study aims to evaluate the brown 
adipose tissue, females should be used, since this tissue 
is more easily observed in this sex [50, 51]. However, as 
a limitation that currently exists, it is important to find 
a model that achieve a similar obesity degree in both, 
males and females, in order to study both sexes in the 
same experiment.

Main parameters used to assess the development 
of obesity
Food intake
Calorie overconsumption leads to an increase in body 
weight gain and abdominal fat accumulation [2, 10, 15, 
19]. These body alterations may lead to deactivation of 
liver and mesenteric genes responsible for beta-oxidation 
[25]. Besides, it can deregulate AMPK [2, 35] and SIRT1 
proteins in the mesenteric white adipose tissue and skel-
etal muscle [2]. Additionally, the increase in abdominal 
fat accumulation can raise blood leptin concentrations [3, 
15], leading to leptin resistance. Thus, both the increase 
in weight and body fat mass generate a cycle that feeds 
back on itself.

The taste and texture of diets influence the amount 
of food consumed. Diets rich in processed foods, with 
high levels of sodium, sugar and saturated fatty acids, are 
more palatable, which can lead to a higher weight gain in 
comparison with purified diets even when saturated fatty 
acids are added to them [52]. Additionally, DIO must 
contain a low concentration of fibers [25], since these 
nutrients are capable to induce satiety and increase the 
production of GLP-1 and SCFA, which stimulate a lower 
energy consumption [24].

Considering that a spontaneous caloric increase is dif-
ficult to achieve in rodents, even when flavored diets are 
offered [6], DIO must have a high caloric density [16, 30].

In an attempt to induce a voluntary hyperphagia, 
Blancas-Velazquez et  al. [15] provided extra calories 
to C57BL/6J mice through a 10% water-sugar solution 
(0.4  kcal/ml). With the sugar solution, the animals had 
free access to regular chow food, fat-rich pellets, and a 
bottle of tap water. In this way, the mice could eat what 
pleased them most, allowing hyperphagia and obesity 
induction [15]. The problem is that it is difficult to calcu-
late the amount of calories that each animal consumes.

Markers related to body weight and adiposity
Because of the absence of a specific marker and a con-
sensus, for both mice and rats, that defines the presence 
or absence of obesity, some studies have established 
their own parameters: the difference of 15% [53] or 20 g 
in body weight between test and control groups [54]; 

adiposity index determination [3]; creation of cutoff 
points [1]; and calculation of body mass index [55].

No article considered the distribution of body compo-
sition (calculated by DXA or EchoMRI) as a parameter 
for detecting obesity. However, the majority of studies 
consider the differences in total body weight gain as the 
main parameter to assess the outcome of the develop-
ment of obesity (Table 3).

When there is no significant difference in body weight 
gain, other parameters can be considered [3, 56, 57]. In 
this way, Matias et al. [3] did not observe differences in 
weight gain after the animals consumed a high-fat/high-
sugar diet, but there was a gain in total white adipose 
tissue, which indicates the occurrence of obesity. Also, 
Rocha-Rodrigues et  al. [57] reported an increase in vis-
ceral adipose fat compared to weight gain, as well as an 
increase in leptin concentration in animals fed a high-fat 
diet.

Visceral fat is the depot that surrounds the abdominal 
organs. It is more vascularized, innervated, inflamma-
tory, metabolically active and sensitive to lipolysis, which 
results in greater release of cytokines, fatty acids and tri-
glycerides. Therefore, in humans it is related to a higher 
mortality prediction when compared to subcutaneous 
adipose fat [58, 59]. In Wistar rats the consumption of a 
high-fat diet appears to lead to an increase in the number 
of fat cells (hyperplasia) in the subcutaneous adipose fat, 
whereas in the visceral adipose fat greater hypertrophy of 
the adipose tissue is observed [60].

Body fat accumulation depends on the connec-
tion between different metabolic pathways, as well as 
the interaction between genes and diet. Wistar rats, 
for example, have a differential expression of genes in 
the subcutaneous adipose tissue in comparison with 
Sprague–Dawley rats, which justifies the higher fat 
depots found in this breed [19]. The consumption of a 
high-fat diet leads to an increase in the uptake of fatty 
acids and lipogenesis [19, 33], resulting in adipocytes 
hyperplasia [2, 20, 61] and hypertrophy [2, 20, 28, 35, 61]. 
This increase in adipose tissue can cause tissue hypoxia, 
which can impair the production and release of obesity 
regulatory hormones, such as leptin, adiponectin and 
ghrelin, and exacerbate inflammation [57]. Additionally, 
body fat increase can cause muscular cell damage, since 
it enhances cell susceptibility to protein degradation 
and apoptosis [56]; therefore, DIO is able to cause the 
metabolic and morphological changes that characterize 
human obesity.

A low-grade inflammatory condition is often 
observed in obese animals [1, 2, 27, 28, 34, 35, 56]. This 
inflammatory status can be triggered by a high con-
sumption of saturated fatty acids, which can be found 
in high concentrations in obesogenic diets [27]. Diets 



Page 9 of 14de Moura e Dias et al. Diabetol Metab Syndr           (2021) 13:32 	

Table 3  Changes in markers related to body weight and adipose tissue depots

Article ID Weight gain Final body 
weight

Total 
adipose 
tissue/ Body 
fat

White 
adipose 
tissue

Mesenteric 
fat

Epididymal 
fat

Perirenal fat Brown 
adipose 
tissue

Lee index

Asokan et al. 
2018 [56]

– HF = Standard HF = Stand-
ard

– – – – – –

Bortolin et al. 
2018 [8]

HF = Control HF = Control – HF = Control – – – – –

WD > Control WD > Control – WD > Con-
trol

– – – – –

Heo et al. 
2018 [2]

HF > LF HF > LF – HF > LF HF > LF HF > LF HF > LF ○ HF = LF –

Hira et al. 
2018 [24]

(For 8 days 
and/or 
8 weeks)

HFSuc > Con-
trol

HFSuc > Con-
trol

– – – – – – –

Iñiguez et al. 
2018 [25]

HF > Control – HF > Control – HF > Control HF > Control – – –

Kazeminasab 
et al. 2018 
[12]

HF > LF – – – – – – – –

Lee et al. 
2018 [27]

All HF > All LF All HF > All LF All HF > All 
LF

– All HF > All 
LF

All HF > All LF All HF > All 
LF

– –

Matias et al. 
2018 [3]

– HF > Control HF > Control – – – – – –

– HS = Control HS = Control – – – – – –

– HFHS = Con-
trol

HFHS > Con-
trol

– – – – – –

Miranda 
et al. 2018 
[19]

– HF SD = Con-
trol SD

HF 
SD = Con-
trol SD

– HF 
SD = Con-
trol SD

HF SD > Con-
trol SD

HF 
SD = Con-
trol SD

– –

– HF W > Con-
trol W

HF W > Con-
trol W

– HF W > Con-
trol W

HF W > Con-
trol W

HF W > Con-
trol W

– –

– HF > Control HF > Control – HF > Control HF > Control HF > Control – –

Rocha Rodri-
gues et al. 
2018 [57]

– HF = Standard – – – – – – HF = Standard

Son et al. 
2018 [21]

HF > Normal – HF > Normal – HF > Normal HF > Normal HF > Normal – –

Virto et al. 
2018 [62]

– HF > Control – – – – – – –

Wu et al. 
2018 [30]

– HF > Normal – – – – – – –

Yuan et al. 
2018 [35]

18 semanas

– HF = Normal – – – – – – –

Yuan et al. 
2018 
[35]          24 
semanas

– HF > Normal HF > Normal HF > Normal – HF > Normal HF > Normal – –

Aslani et al. 
2017 [63]

– HF > Normal HF > Normal – – – – – HF > Normal

Blancas-
Velazquez 
et al. 2017 
[15]

– HFHS > Con-
trol

– – – – – – –

Karimi et al. 
2017 [18]

12 semanas

– HF > Standard – – – – – – –
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Table 3  (continued)

Article ID Weight gain Final body 
weight

Total 
adipose 
tissue/ Body 
fat

White 
adipose 
tissue

Mesenteric 
fat

Epididymal 
fat

Perirenal fat Brown 
adipose 
tissue

Lee index

Karimi et al. 
2017 
[18]       27 
semanas

HF = Stand-
ard

HF > Standard HF > Stand-
ard

– – – – – –

Kim et al. 
2017 [33]

– HF > Standard – – – – – – –

Kus et al. 
2017 [68]

– HF > Control – – – – – – –

La Frano 
et al. 2017 
[26]

– HFHC > LFLC – – – HFHC > LFLC – – –

Pan et al. 
2017 [61]

HF > Normal HF > Normal – – HF > Normal – – – –

Picklo et al. 
2017 [10]

– HFO > LF HFO > LF – – HFO > LF – – –

– HFSat > LF HFSat > LF – – HFSat > LF – – –

Yang et al. 
2017 [22]

– HF > Control – – – – – – HF > Control

Choi et al. 
2016 [9]

HF > Normal HF > Normal HF > Normal – HF > Normal HF > Normal HF > Normal – –

Jambocus 
et al. 2016 
[17]

HSF > Normal – – – – – – – –

Krishna et al. 
2016 [1]

– HF > Standard HF > Stand-
ard

– – – – – –

Naidu et al. 
2016 [20]

– HF > Normal – – – – – – –

Zhao et al. 
2016 [64]

HF > Control HF > Control – – – HF > Control HF > Control – –

Huang et al. 
2015 [16]

HF > Normal HF > Normal – – – HF > Normal HF > Normal – –

Li et al. 2015 
[51]

– HF > Control – HF > Control – – – HF > Control –

Nam et al. 
2015 [28]

– HF > LF – – – HF > LF HF > LF – –

Rodríguez- 
Rodríguez 
et al. 2015 
[29]

– HF > Control – – – – – – –

Savetsky 
et al. 2015 
[34]

– HF > Normal – – – – – – –

Wyatt et al. 
2015 [13]

(For 5 and 
7 weeks)

– HF > Control HF > Control – – – – – –

Zhang et al. 
2015 [23]

– HF > Normal – HF > Normal HF = Normal HF > Normal – – –

HF, High-fat diet; HFHC, High-fat high-cholesterol diet; HFHS, High-fat high-sugar diet; HFSat, High-fat saturated diet; HFSuc, High-fat high-sucrose diet; HFO, High-fat 
oleic diet; HS, High-sugar diet; LF, Low-fat diet; LFLC, Low-fat low-cholesterol diet; SD, Sprague–Dawley; W, Wistar; WD, Western diet; ○, Perirenal + Retroperitonial
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rich in saturated fats can elevate the production of 
inflammatory cytokines, such as TNF-α [1, 2, 28, 35, 
56] and IL-6 [56], as a consequence of the hypertrophy 
of the adipocytes [2, 35], leading to an infiltration of 
macrophages and dendritic cells in adipose tissue [1].

This inflammatory condition contributes to the devel-
opment of metabolic disorders [1, 35], such as diabetes 
[27]; to a decrease in lymphatic function and cutaneous 
hypersensitivity [34]; and to the occurrence of other dis-
eases, such as periodontitis [62] and respiratory aller-
gies [63]. Furthermore, the immune system can also 
be altered, with an improvement in this system when 
there is a modulation of the production of inflammatory 
cytokines [64].

The consumption of a high-fat diet can also reduce the 
brown adipose tissue, since it may inhibit the biosynthe-
sis of fatty acids and increase oxidative stress and cell 
apoptosis [51]; therefore, a high-fat diet can stimulate the 
development of white adipose tissue [2, 8–10, 16, 19, 21, 
23, 25–28, 35, 51, 61, 64] and suppress the development 
of the brown adipose tissue [51]. This is relevant since the 
brown adipose tissue, in humans, is negatively correlated 
with the body mass index and with central obesity mark-
ers which suggests that low levels of brown adipose tissue 
may be indicator of obesity and obesity-related diseases 
[65].

In addition, the increase in brown adipose tissue may 
be a strategy to fight obesity, since higher levels of brown 
adipose tissue indicate greater energy expenditure, with 
consequent weight loss [65, 66]. Therefore, low levels of 
brown adipose tissue can contribute to the perpetuation 
of obesity.

Glycemic markers
Higher values in blood glucose [8, 9, 16, 17, 20, 23, 27, 
29, 51] and insulin concentrations [1, 2, 8, 9, 16, 17, 20, 
23, 25–27, 29] as well as in HOMA (homeostatic model 
assessment) index [2, 8, 23–25, 27, 29, 57] have been 
observed in the groups that consumed an obesogenic 
diet. Similarly to obesity, for an effective induction of 
insulin resistance, a long period of intervention with DIO 
must occur [25]. In this sense, the absence of changes in 
these parameters in some studies can be justified by the 
short intervention period (Table 2).

Changes in the glycemic parameters occur because 
the insulin metabolism is unable to adapt to the dam-
age caused by the chronic excess of calories offered by 
the obesogenic diet, which gradually deteriorates insulin 
activity, leading to insulin resistance and subsequent type 
2 diabetes development [67]. Also, the obesogenic diet 
can induce fat (ectopic) accumulation in the pancreas, 
which stresses greatly beta cells, disrupting insulin pro-
duction [23, 27]. This accumulation in organs other than 

the adipose tissue, such as the liver, can also lead to insu-
lin resistance and hyperglycemia, since saturated fatty 
acids interfere in the activity of insulin receptor and glu-
cose transporters [23]. Additionally, the mitochondria of 
the brown adipose tissue are also affect by DIO impairing 
glucose metabolism [51].

Serum lipid profile
Triglycerides are the main component of adipose tis-
sue; therefore, high serum concentrations of this lipid 
may ​​indicate the presence of metabolic changes [21]. 
Likewise, serum concentration of cholesterol is also 
an important parameter for the assessment of obesity, 
since the greater the availability of serum cholesterol, the 
greater the deposition of fatty acids into the adipose tis-
sue and the liver [33].

In this way, some of the evaluated studies noticed an 
increase in the serum concentration of triglycerides [1, 2, 
9, 16, 17, 21–23, 25, 35, 51, 61, 63] and cholesterol [2, 9, 
16, 23, 27, 29, 35, 51, 61, 63] in the groups fed with DIO. 
This change seems to be especially related to saturated 
fatty acid-rich [27] obesogenic diets (Table 2). Addition-
ally, diets with high concentration of long-chain fatty 
acids can also alter the serum lipid profile, since, after 
hydrolysis, these fatty acids can be used for the synthesis 
of new triacylglycerol molecules [27].

Liver health
Liver health, measured through hepatic triglycerides, 
can be impaired by the development of obesity. Hepatic 
steatosis happens because the excess of fat present in the 
body is stored in this organ causing intracytoplasmatic 
accumulation of triglycerides. This ectopic accumulation 
occurs as a consequence of the downregulation of AMPK 
[35, 61] and upregulation of SREBP-1c [61], which gener-
ates lipogenesis, and increases the synthesis of fatty acids 
by the liver [23]. Furthermore, beta-oxidation is down-
regulated, which increases the hepatic lipid stocks [16, 
23, 25]. Thus, the reduction in this parameter is positive 
for the treatment of obesity, with the expression of lipo-
genic genes conditioned [21].

As the amount of stored fat increases, the liver starts 
to suffer oxidative damage [16] and, as a result of hepato-
cyte lysis, the serum concentrations of the enzymes ala-
nine aminotransferase and aspartate aminotransferase 
increase [16, 21, 68]. Thus, the increase in the concentra-
tions of both aminotransferases can be associated with 
the increase in liver weight as well as to hepatic steatosis 
[25]. In this context, it has been described that high-fat 
diet (71% of kcal fat) induces similar degree and pattern 
of steatosis and liver triglyceride content in male Wistar 
and Sprague–Dawley rats, being males more susceptible 
than females [69].
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Conclusions
In the present study, we included studies that used 
Sprague–Dawley and Wistar rats, as well as C57BL-/-6 
mice, because these are the main models used for DIO. 
This strategy can be considered a limitation of the study, 
since other rodent models may also be prone to diet-
induced obesity; however, they are not widely used. In 
fact, the biggest difficulty to find an effective model for 
DIO is the lack of standardization among obesity-induc-
ing protocols. Different times of intervention, diets, types 
of fat and carbohydrates, animal strains, and sex, among 
others, are used in the studies, which makes it difficult to 
compare the results and to better evaluate and determine 
the best way to induce obesity in an animal model.

Among the animal obesity models, those that develop 
a phenotype more similar to human physiopathology are 
those induced by dietary challenge; in this context, bet-
ter results are obtained through high-fat diets with high 
concentrations of saturated fatty acids, since these diets 
directly affects the metabolism, are palatable and have a 
high caloric density, which stimulates weight and body 
fat gain.

To choose an animal model for a study of diet-induced 
obesity, it should be considered that rats and mice 
respond differently to this type of diet; in addition, strain, 
sex and age, affect the response to the obesogenic diet, 
with young animals and males being more sensitive to 
obesity-related comorbidities.

The markers used to assess the development of obe-
sity include body weight and fat (total, subcutaneous and 
visceral) gain, but other parameters related to inflam-
mation, hormone concentration, blood glycemia, lipid 
profile, and liver health are often desired. It is suggested 
that these markers should be used together, since the 
presence of more than one of these markers reinforces 
the determination of obesity. Changes in the release of 
inflammatory cytokines are used to justify the symptoms 
found, not being a determining parameter for the induc-
tion of obesity. As there are no cutoff points for any of 
these parameters in animals, researchers should always 
conduct their studies with a non-obese control group so 
that the results can be compared.
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