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Toxic AGEs (TAGE) theory: a new concept 
for preventing the development of diseases 
related to lifestyle
Masayoshi Takeuchi*

Abstract 

Background:  The habitual excessive intake of sugar (i.e., sucrose and high-fructose corn syrup), which has been 
implicated in the onset of diabetes mellitus, induces excessive production of glyceraldehyde, a metabolite produced 
during glucose and fructose metabolism, in hepatocytes, neuronal cells, and cardiomyocytes.

Main text:  Toxic advanced glycation end-products (toxic AGEs, TAGE) are formed from reactions between glycer-
aldehyde and intracellular proteins, and their accumulation contributes to various cellular disorders. TAGE leakage 
from cells affects the surrounding cells and increases serum TAGE levels, promoting the onset and/or development 
of lifestyle-related diseases (LSRD). Therefore, serum TAGE levels have potential as a novel biomarker for predicting 
the onset and/or progression of LSRD, and minimizing the effects of TAGE might help to prevent the onset and/or 
progression of LSRD. Serum TAGE levels are closely related to LSRD associated with the excessive ingestion of sugar 
and/or dietary AGEs.

Conclusions:  The TAGE theory is also expected to open new perspectives for research into numerous other diseases.

Keywords:  Advanced glycation end-products (AGEs), Glyceraldehyde, Toxic AGEs (TAGE), Sucrose, High-fructose corn 
syrup (HFCS), Dietary AGEs, Lifestyle-related diseases (LSRD)
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Background
Research on protein glycation (the Maillard reaction) 
began with the discovery of melanoidin by Maillard in 
1912 [1]. The Maillard reaction was initially regarded as 
a browning reaction in the food chemistry field, and its 
effects on the taste of food have been studied. In 1968, 
hemoglobin A1c (HbA1c), an early glycation prod-
uct, was first detected in the human body [2], while 
advanced glycation end-products (AGEs) were discov-
ered by Cerami et  al. in the 1980s [3]. The receptor for 
AGEs (RAGE) was cloned by Neeper and Schmidt et al. 
in 1992 [4], and RAGE transgenic mice were produced 
by Yamamoto et  al. in 2001 [5]. AGE molecules, such 

as Nε-(carboxymethyl)lysine (CML) [6], pyrraline [7], 
and pentosidine [8], were subsequently identified, and 
the majority of anti-AGE antibodies used in 1996 were 
shown to recognize the CML structure [9]. Therefore, 
the concept that CML is the main structure of AGEs has 
spread worldwide.

However, research into various anti-AGE antibod-
ies by our group has demonstrated that AGE structures 
other than CML are more closely associated with clinical 
parameters [10]. We reported the concept of non-CML 
AGEs in 1999 [10], subsequently identified a non-CML 
AGE that exhibited strong cytotoxicity [11, 12], and pro-
posed the hypothesis that “toxic AGEs (TAGE)” contrib-
ute to lifestyle-related diseases (LSRD) in 2004 [13].

The significance of serum TAGE levels as a new bio-
marker that could aid the early diagnosis and preven-
tion of LSRD and evaluations of treatment efficacy are 
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described herein. Furthermore, whether limiting sugar 
and/or dietary AGE intake decreases the production or 
accumulation of TAGE, and hence, prevents the onset 
and/or progression of LSRD, is discussed.

AGE generation in the human body
The balanced intake of carbohydrates, proteins, lipids, 
vitamins, and minerals is necessary to maintain health. 
Glucose, a carbohydrate, cannot function properly 
unless it is present in the blood at appropriate lev-
els, and protein glycation occurs continuously in the 
human body. HbA1c, which is used in diagnostic tests 
for diabetes mellitus (DM), is one of the early glyca-
tion products generated by the reaction of glucose with 
hemoglobin in erythrocytes [2]. AGEs are generated 
under hyperglycemic conditions [14–17]. We reported 
that α-hydroxyaldehydes (glyceraldehyde [GA] and gly-
colaldehyde), dicarbonyl compounds (glyoxal [GO], 

methylglyoxal [MGO] and 3-deoxyglucosone [3-DG]), 
and also fructose contribute to protein glycation [10, 11, 
18, 19].

Seven immunochemically distinct classes of AGEs (glu-
cose-derived AGEs [Glu-AGEs], fructose-derived AGEs 
[Fru-AGEs], glycolaldehyde-derived AGEs, GA-derived 
AGEs [Glycer-AGEs], MGO-derived AGEs, GO-derived 
AGEs, and 3-DG-derived AGEs) have been detected in 
sera from hemodialysis patients with diabetic nephrop-
athy (DN-HD) [10, 11, 18, 19]. Thus, Maillard reaction, 
sugar autoxidation, and sugar metabolic pathways (gly-
colysis/the polyol pathway/fructolysis) have been pro-
posed to be involved in AGE formation in  vivo (Fig.  1). 
Glycer-AGEs formed from GA, a trisaccharide (triose 
sugar) intermediate of fructose and glucose metabolism, 
exhibit strong cytotoxicity [12]; therefore, we proposed 
the novel concept of TAGE [13]. TAGE are generated 
from digested starch, the main component of rice, bread, 
and noodles, as well as metabolites of the sugar (sucrose 

Fig. 1  Alternative in vivo AGE generation routes. Reducing sugars, such as glucose, fructose, and glyceraldehyde, react non-enzymatically 
with the amino groups of proteins to form reversible Schiff bases and Amadori products/Heyns products. These early glycation products 
undergo further complex reactions, such as rearrangement, dehydration, and condensation, to become irreversibly cross-linked, heterogeneous 
fluorescent derivatives, termed AGEs. HbA1c: hemoglobin A1c; CML: Nε-(carboxymethyl)lysine; GO-AGEs: glyoxal-derived AGEs; Glycol-AGEs: 
glycolaldehyde-derived AGEs; Glu-AGEs: glucose-derived AGEs; 3-DG-AGEs: 3-deoxyglucosone-derived AGEs; MGO-AGEs: methylglyoxal-derived 
AGEs; Glycer-AGEs: glyceraldehyde-derived AGEs; TAGE: toxic AGEs; Fru-AGEs: fructose-derived AGEs; AR: aldose reductase; SDH: sorbitol 
dehydrogenase; FK: fructokinase; P-NH2: free amino residue of a protein
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and high-fructose corn syrup, HFCS) added to beverages 
and processed foods, and fluctuations in TAGE levels are 
closely related to dietary habits in humans (Fig. 1).

Concepts of non‑toxic AGEs and TAGE
It remains unclear why many types of AGEs are gener-
ated in the human body. Based on our research, in vivo 
AGE-generating reactions are physiologically significant 
because they induce post-translational protein modifi-
cations. Proteins, which are translated according to the 
genetic information in DNA, are responsible for vari-
ous physiological processes involving post-translational 
modification reactions. However, in the presence of 
“glycation/carbonyl stress” and increased production of 
aldehyde/carbonyl compounds in  vivo intracellular pro-
teins can non-enzymatically react with such compounds 
to produce various AGEs. The generation of non-toxic 
AGEs, such as CML, pentosidine, and pyrraline, which 
do not exert direct cytotoxic effects, is a biological 

defense mechanism, in which proteins actively trap alde-
hyde/carbonyl compounds with high chemical reactivity 
to detoxify them. Ahmed et al. [20], who first identified 
CML, reported that CML is generated through an avert-
ing path. Similarly, the process that is responsible for the 
generation of non-toxic AGEs might be involved in the 
detoxification of most end-products of glycation/car-
bonyl stress in the human body. However, TAGE have 
been implicated in the pathogenesis of DM and asso-
ciated vascular complications, as they bind to RAGE 
[21–23]. Interactions between extracellular TAGE and 
RAGE induce reactive oxygen species (ROS) generation 
in numerous types of cells [23]. TAGE have also recently 
been implicated in cardiovascular disease (CVD), non-
alcoholic fatty liver disease (NAFLD)/non-alcoholic 
steatohepatitis (NASH), arteriosclerosis, infertility, Alz-
heimer’s disease (AD), and cancer [21–31] (Fig. 2).

More recently, we demonstrated that intracellular 
TAGE formation and accumulation induced not only 

Fig. 2  The TAGE theory of LSRD. Among the various types of AGE structures generated in vivo, TAGE, but not non-toxic AGEs, such as CML, CEL, 
pentosidine, and pyrraline, appear to play an important role in the pathophysiological processes associated with LSRD. We postulate that non-toxic 
AGE structures may be physiologically relevant for preventing the potentially damaging consequences of the advanced glycation process. CEL: 
Nε-(carboxyethyl)lysine; MG-H1: methylglyoxal-hydroimidazolone; MOLD: methylglyoxyl-derived lysine dimer; GOLD: glyoxyl-derived lysine dimer
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neuronal cell damage [32], but also hepatocellular dam-
age [33–35] and pancreatic ductal epithelial cell damage 
[36], cardiomyocyte pulsation arrest and cell death [37], 
and myoblast cell death [38]. Therefore, TAGE are accu-
mulate in cells, cause cell damage, and leak extracellularly 
into the blood, thereby increasing TAGE levels in circu-
lating fluids.

Cytotoxicity of TAGE in the liver
According to the clinical practice guidelines for NAFLD/
NASH, overeating and a lack of exercise cause non-
alcoholic fatty liver (NAFL) and insulin resistance (IR), 
and various factors then contribute to the progression 
of NASH, resulting in fibrosis and potentially cirrho-
sis, liver failure, and hepatocellular carcinoma (HCC) 
[39, 40]. Our group focused on the TAGE-RAGE axis. 
We reported that the addition of TAGE to hepatocytes 
increased IR and C-reactive protein (an inflammatory 
marker) levels [41, 42], while the expression levels of 
fibrotic markers, such as collagen type Iα2, transform-
ing growth factor-β1 (TGF-β1) and monocyte chemoat-
tractant protein-1 (MCP-1), were upregulated in hepatic 
stellate cells (HSC) [43]. We recently revealed that hepat-
ocytes underwent necrosis and TAGE formation induced 
by caspase 3, which is involved in cell death [31, 34]. As 
a result, TAGE leaked out of the cells, affecting the sur-
rounding hepatocytes and HSC through RAGE.

Thus, we examined the potential of TAGE leakage 
from damaged hepatocytes into the blood as a diagnos-
tic marker. Serum TAGE levels were determined using 
a competitive enzyme-linked immunosorbent assay 
(ELISA) method, involving an anti-TAGE-specific anti-
body developed by our group [11, 44, 45]. The epitope 
recognized by the anti-TAGE antibody is different from 
the previously reported GA-derived AGE structures; 
i.e., 3-hydroxy-5-hydroxymethyl-pyridinium compound 
(GLAP) [46] and triosidine [47]. We found that there 
were differences between the anti-TAGE antibody and 
the antibodies against well-defined AGEs as well as the 
antibodies against AGEs formed from reducing sugar/
carbonyl molecules with unknown structures [Interna-
tional patent application for anti-TAGE antibody: PCT/
JP2019/34,195].

Serum TAGE levels in NAFLD/NASH
NASH
NAFLD ranges from NAFL to NASH and is one of the 
most common causes of hepatic disease throughout the 
world. We assessed the serum AGE levels (TAGE, CML, 
and Glu-AGEs) in 66 patients that had been diagnosed 
with histologically verified NASH without any evi-
dence of liver cirrhosis, 10 patients with NAFL, and 30 
healthy controls [48]. The NASH patients (9.8 ± 3.7 U/

mL) exhibited greater TAGE accumulation in both tissue 
and serum than the NAFL patients (7.2 ± 2.3 U/mL) and 
healthy controls (7.0 ± 2.4 U/mL). There was a positive 
correlation between serum TAGE levels and the home-
ostatic model assessment of IR (HOMA-IR), and there 
was an inverse association between serum TAGE levels 
and adiponectin levels. TAGE were also detected in the 
hepatocytes of NASH patients, but negligible TAGE lev-
els were seen in NAFL patients, and no significant differ-
ences in CML or Glu-AGE levels were observed between 
these groups [48].

We demonstrated that hydroxymethyl-glutaryl-CoA 
reductase inhibitor atorvastatin reduced the serum 
TAGE levels in 43 biopsy-proven NASH patients with 
dyslipidemia [49]. Following treatment with atorvasta-
tin for 6 months (at 10  mg/day), significant reductions 
in liver alanine aminotransferase and γ-glutamyl trans-
peptidase (γ-GTP) activity were seen in all patients. In 
addition, the patients’ plasma adiponectin levels were 
increased while their plasma tumor necrosis factor-α 
levels were decreased after the treatment. The patients’ 
serum TAGE levels decreased significantly during the 
treatment (before vs. after: 10.4 ± 3.8 vs. 5.9 ± 3.3 U/mL, 
respectively).

Conversely, the generation and accumulation of TAGE 
were detected in hepatocytes cultured under high-fruc-
tose conditions [50] and in the livers of rats reared on a 
high fructose and high fat diet [51] or with 10%-HFCS 
water [52]. Therefore, the habitual excessive intake of 
fructose (i.e., HFCS/sucrose/100% juices) was shown 
to support the formation/accumulation of TAGE in the 
human body.

Non‑B or non‑C (NBNC) HCC and rectal cancer
We previously showed that NBNC-HCC patients had sig-
nificantly higher serum TAGE levels (18.2 ± 5.4 U/mL) 
than NASH patients without HCC (10.4 ± 3.4 U/mL) and 
control subjects (7.0 ± 2.4 U/mL) [53]. Multiple regres-
sion analysis demonstrated that age and γ-GTP and high-
density lipoprotein cholesterol (inversely) levels were 
significantly and independently associated with TAGE 
levels.

The European Prospective Investigation into Can-
cer and Nutrition (EPIC), which was mainly conducted 
in Europe and the United States, revealed that the high 
serum TAGE group (median value: 10.3 ± 1.7 U/mL) 
was at higher risk of rectal cancer after 4  years (odds 
ratio (OR): 1.90; 95% confidence interval [CI] 1.14–3.19). 
Additionally, the risk of rectal cancer was even higher 
(OR: 2.70; 95%CI 1.29–5.62) in humans with a drink-
ing habit (median total alcohol intake of controls: males: 
18.1 g/day; females: 5.7 g/day) [54].
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Sucrose/HFCS and LSRD
Previous studies have shown that the long-term con-
sumption of high quantities of sugar also contributes to 
the onset and/or development of NASH, CVD, and AD; 
however, the responsible molecular mechanisms are yet 
to be discovered [55–60]. We demonstrated a strong 
correlation between TAGE levels and LSRD, and the 
habitual intake of high quantities of sugar-sweetened 
beverages (SSB) elevated hepatic GA levels. Increasing 
epidemiological and mechanistic evidence indicates that 
the effects of consuming high levels of sugar on human 
health cannot be explained by a simple increase in calo-
ries [61]. Sugar is known to be involved in the pathogen-
esis of metabolic syndrome-related diseases [62, 63], such 
as NAFLD/NASH, DM, and CVD, as well as the aging 
process, which is accelerated by glycation-related protein 
damage [14–17].

Sugar contents of commercial beverages
The American Heart Association recommended that 
most Americans should reduce their added sugar intake 
to ≤ 100  kcal-150  kcal/day (females: 25  g/day; males: 
37.5  g/day) [64]. However, these values are greatly 
exceeded in most regions, and thus, since sugar has 
the same harmful effects as alcohol, sugar intake needs 
to be regulated [65]. The 2015 World Health Organiza-
tion (WHO) guidelines recommended a reduction in the 
daily intake of added sugar to < 5% of total energy intake 
by adults and children (i.e., 25  g sugar for a 2000  kcal/
day diet) to obtain additional health benefits [66]. We 
examined the sugar contents of beverages and found 
that approximately 40% of the 885 types of commercially 
available beverages in Japan contained > 25 g sugar [67].

Restricting SSB consumption
A 500-ml bottle of a carbonated beverage, such as Coke, 
Sprite, or Fanta, contains 50–60 g of added sugar, which 
exceeds the recommended daily amount of added sugar. 
Therefore, the WHO recommended the taxing of SSB in 
October 2016 [68].

We showed that in Goto-Kakizaki rats, a rodent DM 
model, serum TAGE levels were significantly decreased 
after 6 weeks’ treatment with nateglinide (a rapid-acting 
insulin secretagogue; 50  mg/kg, twice daily just before 
each meal) [69]. We also found that the serum TAGE lev-
els, but not the HbA1c or Glu-AGE levels, of DM patients 
were significantly decreased after 12 weeks’ treatment 
with acarbose (an α-glucosidase inhibitor, 150  mg/day) 
[70]. These findings indicated that the habitual excessive 
intake of carbohydrates promotes the generation/accu-
mulation of TAGE in the human body.

Dietary AGEs and LSRD
Two major types of AGEs, endogenous and exogenous 
AGEs, have been identified in humans [71, 72]. We 
observed elevated expression of RAGE and vascular 
endothelial growth factor (VEGF) in liver and acceler-
ated TAGE formation and accumulation in normal rats 
that were given AGE-rich beverages in their diet [73].

AGE contents of beverages and processed foods
We assessed the concentrations of various AGEs in 885 
types of beverages and 767 types of processed food that 
are frequently consumed in Japan. The levels of four 
AGEs (CML, Glu-AGEs, Fru-AGEs, and TAGE), which 
have been detected in the serum samples of non-DM 
and DM subjects, were determined employing compet-
itive ELISA involving specific immunopurified antibod-
ies [10, 11, 18, 19]. The assays showed that Glu-AGEs 
and Fru-AGEs, but not CML or TAGE, were present in 
considerable concentrations in the beverages and pro-
cessed foods. Glu-AGEs, Fru-AGEs, CML, and TAGE 
were detected at levels of ≥ 85%, 2–12%, < 3%, and trace 
amounts, respectively, in the beverages and at levels of 
≥ 82%, 5–15%, < 3%, and trace amounts, respectively, in 
the processed foods [74].

Restricting AGE consumption
In humans, roughly 10% of dietary AGEs (measured as 
the levels of CML in serum and urine after the ingestion 
of an AGE-containing meal) are taken into the body; 
one-third is eliminated by urinary excretion within 
48  h of intake, and two-thirds are retained within the 
body [75]. We found that the serum Glu-AGE levels 
of healthy subjects and DN-HD ranged from 10 to 20 
and from 30 to 50 U/mL, respectively. Three months’ 
treatment with the oral charcoal-based drug Kreme-
zin (6 g/day) significantly decreased the serum levels of 
Glu-AGEs (44.1 ± 10.8 vs. 27.6 ± 6.0 U/mL) and TAGE 
(13.2 ± 4.4 vs. 6.2 ± 0.9 U/mL) in non-DM patients 
with chronic renal failure (CRF), whereas these lev-
els remained unchanged in age- and renal function-
matched CRF patients who did not receive Kremezin 
[76]. In addition, the Kremezin-treated patients had 
significantly lower serum mRNA levels of RAGE and 
MCP-1 and exhibited significantly lower vascular cell 
adhesion molecule-1 (VCAM-1) expression on their 
endothelial cells (EC) [76].

Therefore, restricting the intake of SSB/processed 
food-derived sugars and dietary AGEs represents a 
novel strategy for suppressing the generation and accu-
mulation of TAGE and preventing LSRD.
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Intracellular TAGE generation and accumulation
Using a neuronal culture system, we confirmed that 
TAGE are strongly neurotoxic [12, 77]. In addition, 
while an anti-TAGE antibody suppressed the neuro-
toxic effects of serum AGEs from DN-HD, no such 
effects were seen with antibodies against other AGEs or 
CML [12, 77]. In AD brains, TAGE were mostly found 
in the cytosol of neuronal cells in the hippocampus and 
parahippocampal gyrus, but TAGE were not present in 
senile plaques or astrocytes [78]. We also showed that 
intracellular TAGE production reduced amyloid β lev-
els and increased total tau and p-tauT181 levels in the 
culture media and the intracellular levels of AD bio-
markers (i.e., total tau, p-tauT181, VEGF, and TGF-β) 
in human neuroblastoma SH-SY5Y cells [32].

We revealed that intracellular TAGE generation/accu-
mulation damages neurons, hepatocytes, pancreatic 
ductal epithelial cells, cardiomyocytes, and myoblast cells 
[32–38]. The TAGE precursor GA is generated in these 
cells, particularly hepatocytes, via three pathways [79]: 
(i) Glucose is metabolized glycolytically to GA-3-phos-
phate, before being non-enzymatically dephosphoryl-
ated and degraded to GA; (ii) fructose is metabolized to 
GA via a pathway involving fructokinase and aldolase B 
(fructolysis); and (iii) in hyperglycemic conditions glu-
cose is metabolized to fructose via the polyol pathway, 
which regulates aldose reductase and sorbitol dehydroge-
nase, and the resultant fructose is metabolized to GA via 
fructolysis.

The liver plays a major role in carbohydrate homeosta-
sis, controlling glucose levels by synthesizing and degrad-
ing glycogen and making glucose via gluconeogenesis 
[80]. The liver is also generally assumed to be the primary 
site of dietary fructose metabolism, and fructose pro-
motes hepatic lipid accumulation via GA. Western foods 
that are rich in solid fats, fatty meals, full-fat dairy prod-
ucts, and highly processed foods tend to be the richest 
dietary sources of AGEs [81]. The thermal treatment of 
foods might increase their digestibility, nutritional value, 
and shelf-life. On the other hand, the AGE-modification 
of essential amino acids, particularly that of lysine, might 
reduce the nutritional value of proteins since cross-linked 
proteins are less digestible [82].

The habitual intake of large amounts of sugar and 
dietary AGEs [67, 74], which is characteristic of the 
modern diet, disturbs the metabolic system in hepato-
cytes; induces excessive GA production, which leads to 
TAGE being generated from intracellular proteins; and 
upregulates RAGE expression. Therefore, the accumu-
lation of TAGE in cells leads to cell damage, which can 
allow TAGE to escape into the blood, thereby increasing 
circulating TAGE levels. Interactions between extracel-
lular TAGE and RAGE alter intracellular signaling, gene 

expression, and the release of pro-inflammatory mol-
ecules and also induce ROS production in several cell 
types [23, 29], any of which could lead to the pathological 
alterations seen in LSRD (Fig. 3).

TAGE levels reflect the effects of not only blood glu-
cose but also fructose and dietary AGEs, which are not 
reflected by blood glucose levels. Therefore, suppressing 
the effects of TAGE represents a novel strategy for pre-
venting LSRD.

Serum TAGE levels and LSRD
Serum TAGE levels could be useful as a new biomarker 
for diagnosing LSRD early or evaluating the effectiveness 
of measures to prevent/treat the onset and/or develop-
ment of LSRD, regardless of the presence/absence of DM.

Infertility
AGEs accumulate in DM patients and play an important 
role in the pathogenesis of the condition. Polycystic ovary 
syndrome, which is similar to DM, and aging are com-
mon causes of infertility. The associations between the 
serum TAGE concentration and the number of collected 
oocytes or rates of pregnancy were studied in people 
suffering from infertility. Both of these factors decrease 
with age, and even younger women with elevated serum 
TAGE levels (> 7.24 U/mL) experience reduced ongo-
ing pregnancy rates [44]. Moreover, in women who are 
treated with assisted reproductive technologies (ART), 
correlations between serum TAGE levels and follicle 
development, fertilization, embryo development, and 
pregnancy were observed in poor responders, which sug-
gested that TAGE accumulation is a valuable marker of 
fertility status that is not dependent on age or day-3 folli-
cle-stimulating hormone levels [44].

In non-pregnant poor responders who were given sit-
agliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, and 
underwent ART, ovarian dysfunction was ameliorated, 
and ongoing pregnancy rates increased significantly, in 
those patients whose serum TAGE levels were decreased 
by the sitagliptin. Pregnancy rates, both ongoing and 
clinical, were considerably higher in the sitagliptin-
treated patients (20% and 14%, respectively) than in the 
controls (2.3% and 0%, respectively) [unpublished data]. 
Therefore, TAGE levels might be a valuable indicator that 
could aid the early diagnosis of ovarian dysfunction. In 
addition, reducing TAGE accumulation might be a novel 
therapeutic approach against poor ovarian responses.

CVD
Endothelial progenitor cells (EPC) contribute to the 
maintenance of endothelial structure and function, and 
thus, promote vascular repair and angiogenesis. Even 
among healthy subjects with normal blood test values, 
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reductions in the number and activity of vascular EPC 
were observed in a group with high serum TAGE lev-
els. High serum TAGE levels (> 9.20 ± 1.85 U/mL) were 
found to be independently associated with a reduced 
number and decreased migratory activity of circulating 
EPC in otherwise healthy volunteers (34.6 ± 6.9  years 
old, 40 males and 8 females) [83], suggesting that TAGE 
impair EC repair. In healthy volunteers (53.7 ± 7.2 years 
old, 15 males and 15 females) that were administered col-
lagen tripeptide (2.4 g/day for 6 months), which inhibits 
TAGE formation, the cardiac-ankle vascular index, an 
index of blood vessel stiffness, decreased with the serum 
TAGE level (9.95 ± 2.96 vs. 9.25 ± 2.82 U/mL) [84]. Thus, 
there is a possibility that serum TAGE levels are useful 
as a novel biomarker not only of vascular damage, but 
also for predicting future cardiovascular events. Fur-
ther longitudinal studies are needed to clarify whether 
reducing the TAGE burden using AGE inhibitors and/

or restricting the consumption of sugars/dietary AGEs 
could protect against CVD in non-DM/DM patients.

We also demonstrated that: (i) serum TAGE levels, 
but not those of HbA1c or CML, were independently 
related to vascular inflammation, as demonstrated by 
[18F] fluorodeoxyglucose-positron emission tomography, 
in outpatients [45]; (ii) among pre-DM patients, circu-
lating TAGE levels were significantly higher in the high 
mean amplitude of glycemic excursions (MAGE) group 
than in the low MAGE group [85]; and (iii) an association 
between elevated baseline TAGE levels and plaque pro-
gression in the assessment of pitavastatin and atorvasta-
tin was found in an acute coronary syndrome trial (The 
JAPAN-ACS Sub-study) [86].

Non‑DM/DM
DM patients were reported to have higher serum 
TAGE levels than healthy controls [87, 88]. We also 

Fig. 3  In vivo TAGE generation routes. The chronic intake of excessive amounts of SSB/processed foods increases the cellular levels of the sugar 
metabolite GA, which induces TAGE generation from intracellular proteins. Consequently, TAGE accumulate in cells, causing cell damage, and 
leak into the blood, increasing circulating TAGE levels. The TAGE-RAGE axis produces ROS, which appear to upregulate RAGE expression and 
TAGE generation. AR: aldose reductase; SDH: sorbitol dehydrogenase; FK: fructokinase; ALD B: aldolase B; GAPDH: glyceraldehyde-3-phosphate 
dehydrogenase; ER: endoplasmic reticulum; LSRD: lifestyle-related diseases; P-NH2: free amino residue of a protein
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demonstrated that serum TAGE levels, but not those of 
HbA1c, CML, or Glu-AGEs, were related to thrombo-
genic marker [89, 90], low-density lipoprotein cholesterol 
[91], serum pigment epithelium-derived factor [92], and 
DPP-4 [93] levels in the general population. Furthermore, 
we found that circulating TAGE levels were indepen-
dently correlated with the HOMA-IR index in control 
subjects without DM [94]. In addition, serum TAGE 
levels were found to be (i) associated with visceral and 
subcutaneous adipose tissue inflammation and reduced 
adiponectin levels in outpatients [48, 95]; (ii) elevated 
in chronic kidney disease (CKD) and DM and corre-
lated with the levels of inflammatory biomarkers, such 

as MCP-1 [88], the soluble form of VCAM-1 [96], and 
asymmetric dimethylarginine [97, 98]; and (iii) correlated 
with the soluble RAGE level, which might reflect RAGE 
expression in tissues, in non-DM/DM subjects [87, 88, 
99–102], suggesting that the serum TAGE level is a useful 
marker of TAGE-RAGE axis activation.

We observed that the circulating TAGE levels in DM 
patients significantly decreased (11.9 ± 3.0 vs. 8.2 ± 0.8 
U/mL) after 12 weeks’ acarbose treatment [70]. We also 
reported that a DPP-4 inhibitor [103], sulfonyl urea [104], 
and insulin [105] significantly reduced serum TAGE 
levels, and these reductions were found to be related to 
decreased levels of biomarkers of organ damage in DM 

Fig. 4  Conclusions/perspectives. a TAGE are a novel target for preventing the onset and/or progression of LSRD. b The onset and progression of 
LSRD are associated with habitual excessive intake of sugars/dietary AGEs. c Suppressing the generation/accumulation of TAGE may prevent the 
onset and/or progression of LSRD. The following strategies are recommended: (i) avoid habitual excessive intake of unhealthy beverages and/or 
food; (ii) increase the habitual intake of Japanese foods that suppress the generation/accumulation of TAGE; and (iii) adopt a vegetables-first and/or 
carbohydrates-last eating order to reduce rapid increases in blood sugar levels. The maintenance of dietary habits, as described above, represents 
a novel strategy for achieving a healthy and long life by suppressing the generation/accumulation of TAGE in the body, which contributes to the 
prevention of LSRD. AD: Alzheimer’s diseases; CKD: chronic kidney disease; CVD: cardiovascular disease; DM: diabetes mellitus; HFCS: high-fructose 
corn syrup; LSRD: lifestyle-related diseases; NASH: nonalcoholic steatohepatitis; RAGE: receptor for AGEs; ROS: reactive oxygen species; SSB: 
sugar-sweetened beverages; TAGE: toxic AGEs
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and CKD patients. Moreover, we demonstrated that ator-
vastatin reduced the serum TAGE levels of DM/non-DM 
CKD/acute myocardial infarction patients [106–108].

Serum TAGE levels might be useful for identifying 
high-risk patients and provide valuable information for 
making treatment-related decisions.

Conclusions and perspectives
The production and accumulation of TAGE in the human 
body, which are promoted by modern dietary habits, 
have important health implications. Even in healthy sub-
jects with normal blood test values, high serum TAGE 
levels predict the onset and/or development of various 
LSRD. Therefore, the serum TAGE level might be a use-
ful biomarker for aiding the prevention/early diagnosis of 
LSRD or evaluating the efficacy of treatments for LSRD 
(Fig. 4a, b).

Collectively, these findings indicate the importance of 
suppressing the formation and accumulation of TAGE 
in the human body by reducing the habitual excessive 
intake of sugar/dietary AGEs, as a novel way of prevent-
ing LSRD (Fig. 4c, upper). Western foods that are rich 
in solid fats, fatty meats, full-fat dairy products, and 
highly processed foods (mainly grilled, fried, deep fat 
fried, and roasted dishes) tend to be the richest dietary 
sources of AGEs [81]. On the other hand, the Japanese 
diet includes many low-fat foods, such as rice, seaweed, 
mushrooms, soy-based foods; i.e., tofu, and vegetables 
(especially root vegetables that are rich in insoluble/
indigestible dietary fiber), and meals with low dietary 
AGE levels (mainly boiled and steamed dishes) [74].

The accumulation of TAGE in the kidneys might 
contribute to the progressive alteration of the renal 
architecture and the loss of renal function, such as 
mesangial cell and podocyte damage, in patients and 
rodents via various mechanisms [23]. Regularly con-
suming Japanese foods with low AGE levels and large 
amounts of insoluble dietary fiber, which absorbs and 
removes dietary AGEs, suppresses TAGE accumula-
tion. The protective renal effects of Kremezin are con-
sidered to be due to its TAGE-lowering effects, which 
are based on the inhibition of dietary AGE absorption 
[76]. Therefore, the inhibition of sugar digestion and/or 
dietary AGE absorption by insoluble dietary fiber is a 
potentially useful novel strategy for preventing LSRD, 
such as CVD, DM, and CKD.

A vegetables-first [109, 110] and carbohydrates-last 
meal sequence [111, 112], followed by physical activity 
to promote the utilization of glucose have been recom-
mended to prevent postprandial hyperglycemia. The 
consumption of vegetable or meat/fish dishes before 
carbohydrate dishes has also been shown to markedly 
improve postprandial glucose excursion in individuals 

with type-2 DM and healthy volunteers [109–112] 
(Fig. 4c, lower).

In addition to maintaining healthy dietary habits, 
suppressing the production and accumulation of TAGE 
in the body will help to prevent LSRD. The TAGE 
theory is also expected to open new perspectives for 
research into numerous other diseases.
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