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polymorphisms as the risk predictors of type 2 
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Abstract 

Type 2 diabetes mellitus (T2DM) is a complex polygenic metabolic disease characterized by elevated blood glucose. 
Multiple environmental and genetic factors can increase the risk of T2DM and its complications, and genetic polymor-
phisms are no exception. This review is mainly focused on the related genes involved in glucose metabolic, including 
G6PC2, GCK, GCKR and OCT3. In this review, we have summarized the results reported globally and found that the 
genetic variants of GCK and OCT3 genes is a risk factor for T2DM while G6PC2 and GCKR genes are controversial in dif-
ferent ethnic groups. Hopefully, this summary could possibly help researchers and physicians understand the mecha-
nism of T2DM so as to diagnose and even prevent T2DM at early time.
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Background
Diabetes is one of the major chronic disease threatening 
human health. There were 451  million people with dia-
betes worldwide up to 2017. And it was estimated that 
in 2045 the number of diabetes patients will increase to 
693 million [1]. In China, the estimated numbers of Type 
2 Diabetes Mellitus (T2DM) was 113.9  million, repre-
senting 11.6% of Chinese population [2]. T2DM is a life-
long disease characterized by hyperglycemia, showing 
with drinking more, eating more, peeing more and los-
ing weight. If the glucose is not efficiently controlled, the 
patients will have more chance to develop complications, 
such as nephropathy, peripheral neuropathy, diabetic 
retinopathy, amputation, vascular disease, heart disease 
and stroke. These complications ultimately decrease the 
quality of life, increase the economic burden of patients 
[3]. T2DM can be caused by various factors, including 
obesity, physical inactivity, family history, hypertension 

and age [4]. Apart from these, genetic factors are con-
siderable since many genes and their interactions play 
important roles in the development of T2DM [5], such as 
PRKAA2 [6], ABCA1 [7], FTO [8], FADS [9] and TCF7L2 
[10]. Therefore, finding and summarizing the gene vari-
ants among different ethnic groups will be helpful to 
understand the treatment, prevention and complications 
of T2DM.

Candidate genes for T2DM
People with family history of diabetes will have 2–4 times 
higher risk to develop T2DM than the unrelated individ-
uals [11]. With the development of pharmacogenomics, 
more and more genetic variants were reported to asso-
ciated with the susceptibility and treatment of T2DM. 
As we all know, single nucleotide polymorphism (SNP) 
is one of the main forms of genetic variation, which 
can affect the expression of glucose metabolism-related 
gene. Glucose metabolism-related gene is involved in 
glucose regulation (Fig.  1), thus affecting the suscepti-
bility of T2DM. In this review, we will focus on G6PC2, 
GCK, GCKR, and OCT3 genes and their association 
with the susceptibility of T2DM as shown in Table  1. 
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The products of these genes are related to the biochemi-
cal pathway leading to T2DM or higher blood glucose. 
The enzyme encoded by G6PC2 belong to the glucose-
6-phosphatase catalytic subunit family, which is involved 
in the terminal step in gluconeogenic and glycogenolytic 
pathways, allowing the release of glucose into the blood-
stream. The product of GCK is responsible for regulating 
glucose and the secretion of insulin. Products of GCKR 
inhibits glucokinase in liver and pancreatic islet cells by 
binding non-covalently to form an inactive complex with 
the enzyme. OCT3, also named SLC22A3, is critical for 
elimination and transportation of many endogenous 
small organic cations as well as a wide array of drugs and 
environmental toxins.

Glucose‑6‑phosphatase catalytic subunit 2 (G6PC2) 
gene
G6PC2 is part of the glucose-6-phosphatase catalytic 
subunit family, which can catalyze the hydrolysis of 
glucose-6-phosphate, allowing the release of glucose 
into the bloodstream. G6PC2 is located at 2q31.1 on 
human chromosome with 4 exons. This gene encodes a 
355 amino acid protein which is a negative regulator of 
basal glucose-stimulated insulin secretion. The deletion 

of G6PC2 in pancreatic islet beta cell was reported to 
reduce fasting blood glucose [24]. GWAS and mouse 
studies suggested that single nucleotide polymorphisms 
in G6PC2 gene were associated with variations in fast-
ing blood glucose (FBG) but not fasting plasma insulin 
[25]. A research in Science reported that SNP rs560887 
in G6PC2 gene was associated with FBG and pancreatic 
beta cell function but not associated with T2DM risk 
in three populations [26]. A study on Europeans shown 
that G6PC2 rs560887, rs2232316 and rs13431652 were 
potentially causative SNPs of elevated FBG level [27]. A 
low-frequency and rare exome chip found that G6PC2 
rs138726309 (H177Y), rs2232323 (Y207S), rs146779637 
(R283X) and rs2232326 (S324P) were associated with FG 
[28]. Further, various studies suggested that the polymor-
phisms and haplotypes in G6PC2 gene were associated 
with susceptibility of T2DM [29]. In Chinese population, 
Li et al. verified that the C allele of rs780094 and the GC 
genotype of rs492594 were significantly associated with 
the increased risk of T2DM. Also, this research found 
G6PC2 and GCKR haplotypes were associated with the 
susceptibility of T2DM [12]. Apart from this, another 
research also demonstrated the relationship between 
rs492594 and T2DM risk. G6PC2 rs16856187 was shown 
as the strongest evidence for the association with T2DM 
[13]. However, the results seem controversial in Chinese 
population. While another study found no significant 
association between rs16856187 and T2DM risk [12]. 
Maybe this discrepancy is the results of the interaction 
of gene-region or gene-environments. After all, China 
is a vast country with huge variation on geography. 
Rs2232328 and rs492594 were also reported to influence 
the susceptibility of T2DM in Arabian [14].

Glucokinase (GCK) gene
Glucokinase (GCK) can catalyze the phosphorylation of 
glucose to glucose-6-phosphate. In pancreatic β-cell, it 
plays a significant role in regulating glucose metabolism 
and insulin secretion [30]. Therefore, it is understandable 
that the mutation or polymorphism of GCK gene can 
cause pathoglycemia and diabetes mellitus. It is reported 
that mutation of GCK is associated with Chinese MODY 
(maturity onset diabetes of young type) [31]. The 
meta-analysis shown that the polymorphisms of GCK 
rs1799831 was associated with gestational diabetes mel-
litus (GDM) in Indian population [32]. Genetic polymor-
phism in GCK gene has been shown to be associated with 
the susceptibility of T2DM. 3’UTR SNP, chr7:44,184,184-
G/A in GCK was reported to influences the rate of oxi-
dation of carbohydrate, 24  h energy expenditure and 
diabetes risk in Pima Indians. Compared with individu-
als with A allele, individuals with G allele had lower rate 
of oxidation of lipid and higher 24 h energy expenditure 

Fig. 1  Glucose metabolism-related gene involving in glucose 
regulation. Glucose is taken up into the hepatic cell via glucose 
transporters 1 (GLUT1). In the process of glycogenolysis, liver 
glycogen is hydrolyzed and isomerized to glucose-6-phosphatase 
(G-6-P). Then glucose-6-phospatase catalytic subunit 2 (G6PC2) 
catalyzes the production of free glucose to maintain blood glucose 
balance, and this process is also the key step of gluconeogenesis. 
In the process of glucose activation, glucokinase (GCK) and 
glucokinase regulator (GCKR) is the key enzyme to regulate glucose 
phosphorylation, which followed by glycolysis and aerobic oxidation. 
At the same time, organic cation transporter 3 (OCT3) is a transporter 
of metformin, which involved in the regulation of HbA1c levels and 
glucose
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(by 520 kJ/day) [15]. SNP rs1276891 and chr7:44,184,184 
3′UTR in GCK were associated with T2DM in American 
Indian [15]. A case-control study in Netherlands revealed 
weak evidence for an association between rs1799884 
and T2DM [16]. In French, GCK rs1799884 was found 
to increase risk of T2DM [17]. A meta-analysis involved 
of 24 studies also reported that rs1799884 was associ-
ated with the susceptibility of T2DM and the regulation 
of impaired glucose. Further, this meta-analysis found 
significant increase of fasting plasma glucose level in 
rs1799884 A allele compared with G allele [33]. Another 
study in Moroccans shown significant association of 

GCK rs1799884 polymorphism with T2DM [18]. In Japa-
nese, GCK rs4607517 was deemed to be associated with 
HbA1c level, but not associated with the susceptibility of 
T2DM [34].

Glucokinase regulator (GCKR) gene
GCKR, also known as GKRP, encodes a protein belong-
ing to the GCKR subfamily of the Sugar Isomerase family 
of proteins. The GCKR is mainly expressed in liver. is a 
regulatory protein that inhibits glycolysis, glycogen depo-
sition, and de novo lipogenesis by binding to the glucoki-
nase and impairing it [35]. The mutation or gene variants 

Table 1  Summarize of G6PC2, GCK, GCKR, and OCT3 gene polymorphism with T2DM in various ethnic groups

Gene Polymorphism Significance OR Case/Control Ethnicity References

G6PC2 rs492594
G > C

Y 0.57 538/538 Han Chinese [12]

rs492594
G > C

Y 1.14 1876/1800 Eastern Han Chinese [13]

rs492594
G > C

Y 1.70 185/377 RIYADH COHORT [14]

rs13387347 T > C Y 1.17 1876/1800 Eastern Han Chinese [13]

rs13387347 T > C N 538/538 Han Chinese [12]

rs16856187 A > C Y 1.19 1876/1800 Eastern Han Chinese [13]

rs16856187 A > C N 538/538 Han Chinese [12]

rs2232316 G > A N 1876/1800 Eastern Han Chinese [13]

rs2232328 C > G Y 1.64 185/377 RIYADH COHORT [14]

GCK rs4607517 T > C Y 1.20 853/3210 American Indians [15]

rs1476891 A > G Y 1.26 1658/1946 Pima Indians [15]

rs55714218 G>- Y 0.84 853/3210 American Indians [15]

rs1799884 G > A Y 1.12 2628/2041 Netherlands [16]

rs1799884 G > A Y 1.23 1244/3189 French [17]

rs1799884 G > A Y 1.24 1193/1055 Moroccans [18]

GCKR rs780094
G > A

Y 1.78 538/538 Han Chinese [12]

rs780094
G > A

Y 0.67 424/1884 Han Chinese [19]

rs780094
G > A

N 736/768 Northern Han Chinese [20]

rs780094
G > A

Y 0.71 488/398 Japanese [21]

rs780094
G > A

Y 1.22 1118/1161 Han Chinese [22]

rs1260326
C > T

Y 0.74 424/1884 Han Chinese [19]

rs1260326
C > T

N 538/538 Han Chinese [12]

rs2293572
C > G

N 538/538 Han Chinese [12]

rs3817588
A > G

Y 1.24 1118/1161 Han Chinese [22]

OCT3 rs3088442 G > A Y 0.02 150/152 Iran [23]

rs2292334 G > A Y 2.76 150/152 Iran [23]



Page 4 of 6Li et al. Diabetol Metab Syndr           (2020) 12:97 

of GCKR was reported to be associated with several clini-
cal manifestation, such as T2DM [36], nonalcoholic fatty 
liver disease (NAFLD) [37], familial combined hyper-
lipidemia (FCHL) [38], coronary artery disease, ischemic 
stroke [39], gout [40] and chronic kidney disease [41]. A 
number of studies have shown the significant association 
of GCKR polymorphism with T2DM in different ethnic 
groups. In Han Chinese population, GCKR rs780094 A 
allele was reported to be associated with decrease risk of 
T2DM and obesity. Gene-gene interaction was found to 
influence fasting glucose between GCKR rs780094 and 
GCK rs1799884. The influence of GCKR rs1260326 poly-
morphism on T2DM was also verified in this study [19]. 
The same results that rs780094 associated with T2DM 
in Chinese population was also reported by Li et al. [12]
and Gao et  al. [22]. In Japanese, the results of multiple 
regression analysis shown that rs780094 was a marker 
of T2DM susceptibility [21]. In contrast, some studies 
have also shown no association between GCKR rs780094 
and T2DM [20]. Apart from T2DM, polymorphisms of 
GCKR was also a susceptibility gene of gestational dia-
betes. Some studies reported that GCKR rs780094 was 
associated with the susceptibility of gestational diabetes 
in Malaysian population [42] and Brazilian [43].

Organic cation transporter 3 (OCT3) gene
OCT3, also known as SLC22A3, located at 6q25.3 on 
human chromosome with 15 exons. OCT3 is a polyspe-
cific organic cation transporter mainly expressed in the 
liver, kidney and intestine. OCT3 is contributed to trans-
fer many endogenous small molecules, drugs and envi-
ronmental toxins [44]. Therefore, mutations and variants 
in OCT3 will influence the development of various dis-
ease and the efficacy of multiple drugs. SNPs in OCT3 
have been shown to be related to diverse conditions, 
including lipoprotein(a) concentration, cardiovascular 
disease [44], colorectal cancer [45], metformin phar-
macokinetics, esophageal cancer [46], pancreatic can-
cer [47], and T2DM [23]. In Iranian, OCT3 rs3088442 
G > A was reported to be a protective factor of T2DM, 
while rs2292334 to be a risk factor of T2DM [23]. As 
a drug transporter, there were more studies reported 
the relationship between polymorphisms of OCT3 and 
metformin. Wang et  al. hold the view that the absolute 
bioavailability of metformin in oct3+/+ mice was sig-
nificantly increased compared with the oct3-/- mice [48]. 
Another study reported that OCT3 played an important 
role in the absorption and elimination of metformin in 
mice [49]. In Korea, OCT3 haplotype was reported to 
influence the pharmacokinetics of metformin [50]. And 
OCT3 was responsible for metformin accumulation and 
secretion in salivary glands [51]. In T2DM patients, the 
mean reduction in HbA1c levels was higher in patients 

with OCT3 rs2292334 A allele than in those with the 
homozygous G allele [52]. In Pakistani population, the 
A allele of OCT3 rs3088442 was a protective factor and 
associated with clinical efficacy of metformin [53].

Conclusions
With the development of living standard, the incidence 
of diabetes is increasing rapidly around the world. This 
urges us to identify the high-risk individuals at an early 
stage so as to prevent or put off the development of dia-
betes. As we all known, diabetes is a disease resulted 
from many factors and their interactions, including 
environment, eating habits, lifestyle, ethnicity, and fam-
ily history. Apart from these, genetic factors also play an 
important role in the occurrence of diabetes. And genetic 
factors also interact with environment to induce the indi-
viduals to diabetes. This is the reason why a susceptibility 
gene might show different phenotype in different popula-
tions or regions. Various studies have reported the asso-
ciation between genetic variants and the susceptibility of 
T2DM. In this manuscript, we summarized the results on 
the association of G6PC2, GCK, GCKR and OCT3 genes 
with T2DM from various global studies. And hope this 
review could possibly give a better perspective to help 
researchers understanding the pathogenesis of T2DM. 
Results verify the polymorphisms of GCK and OCT3 
genes have potential effect on T2DM whereas the rela-
tionship between G6PC2, GCKR and T2DM susceptibil-
ity is controversial in different studies. The difference in 
ethnicity and environment may account for this discrep-
ancy. Nevertheless, further research that investigate their 
role in T2DM is required in more and larger groups glob-
ally. Only in this way we can understand the biological 
and molecular mechanism of T2DM thoroughly, and we 
can find out more precise biomarker to identify at-risk 
patients in early stage.
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