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Abstract 

Background:  Recently, we reported signs of inflammation (raised IL-8, reduced miR-146a) and signs of vascular repair 
(raised HGF) in the serum of Ecuadorian patients with type 2 diabetes (T2D). In contrast, we found that the circulating 
monocytes lacked up-regulation of classical inflammatory genes (IL-1B, IL-6, and TNF) and there was even significant 
down-regulation of PTGS2. Notably, genes and a microRNA involved in adhesion, cell differentiation and morphology 
(CD9, DHRS3, PTPN7 and miR-34c-5p) were up-regulated in the T2D monocytes, suggesting a role of the anti-inflam‑
matory cells in adhesion, vascular repair and invasion.

Aim:  To determine the gene expression of the vascular repair factor HGF in the circulating monocytes of patients 
with T2D and to investigate the relationship between HGF and the expression of the other previously tested mono‑
cyte genes and the contribution to the raised serum level of HGF. In addition, we tested the level of 6 microRNAs, 
which were previously found abnormal in the circulating monocytes, in the serum of the patients.

Methods:  A gene and microRNA expression study in monocytes and serum of 64 Ecuadorian patients with T2D 
(37–85 years) and 44 non-diabetic controls (32–87 years).

Results:  The gene expression of HGF was significantly raised in the monocytes of the patients with T2D and associ‑
ated with the expression of genes involved in adhesion, cell differentiation and morphology. HGF gene expression did 
not correlate with the serum level of HGF. The monocyte expression of pro-inflammatory cytokine genes was also not 
associated with the serum levels of these cytokines. The level of miR-574-3p was significantly decreased in the serum 
of the patients with T2D, and correlated in expression with the decreased well-established inflammation-regulating 
miR-146a. The level of the microRNAs in serum did not correlate with their expression level in monocytes.

Conclusion:  In circulating monocytes of Ecuadorian T2D patients, the microRNA and gene expression of important 
inflammatory/chemotactic/motility/vascular repair factors differs from the expression in serum. While monocytes 
show a gene expression profile compatible with an anti-inflammatory state, serum shows a molecular profile compat‑
ible with an inflammatory state. Both compartments show molecular signs of vascular repair support, i.e. up-regulated 
HGF levels.
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Background
There is increasing evidence that monocytes, mac-
rophages and related cells are closely involved in the 
pathogenesis of the metabolic syndrome (MetS) and 
type 2 diabetes (T2D). Importantly, in obesity the num-
ber of macrophages increases from 10–15 % to 50–60 % 
of total adipose tissue cells [1, 2]. The increase in mac-
rophage number is accompanied by a hyper activation of 
the cells and leads to a raised secretion of pro-inflamma-
tory cytokines (TNF-α, IL-1β, IL-6, CCL-4, PAI-1) and 
chemokines (CCL2) causing a state of chronic low-grade 
inflammation [1, 3–7] and insulin resistance.

Important circulating precursors for the macrophages 
in the adipose tissue [8–10] are the blood-borne mono-
cytes. There is a relative paucity on the state of inflamma-
tory activation of circulating monocytes in patients with 
the MetS [11, 12] and T2D [13], but increases in pattern 
recognition receptors, oxidative stress and the machinery 
for the production of pro-inflammatory cytokines have 
all been described [14–16].

Contrary to this view, we recently reported that mono-
cytes of a group of 64 Ecuadorian patients with T2D were 
characterized by an anti-inflammatory set point rather 
than a pro-inflammatory set point when compared to 
monocytes of a group of 44 non-diabetic controls. We 
found a decrease in expression of a cluster of 11 mutu-
ally correlated core inflammatory cytokine/compound 
genes (IL-1B, IL-6, TNF, TNFAIP3, PTGS2, CCL20, 
CCL2, CCL4, PDE4B, DUSP2 and ATF3; reaching sig-
nificance for PTGS2) in the monocytes of patients with 
T2D [17]. However, the study on the monocytes of the 
patients with T2D also showed that there was up-regu-
lated gene expression for genes occurring in a cluster of 
mutually correlating genes, many of which are involved 
in adhesion, migration, cell differentiation and cell mor-
phological change [17]. A significant up-regulation as 
compared to non-diabetic controls was reached for the 
genes CD9, DHRS3 and PTPN7. Other important genes 
in this gene cluster were MAPK6, NAB2, STX1A, EMP-
1, CDC42, DHRS3, FABP5, BCL2A1, PTX3 and CXCL2. 
We interpreted these data as indicating that circulat-
ing monocytes in our group of patients with T2D were 
activated, not towards an inflammatory state, but to a 
state of enhanced adhesion, migration and further dif-
ferentiation into descendent cell types, most likely into 
monocyte-derived pro-angiogenic cells, instrumental 
in vascular repair. This view was further supported by 
our observation that the expression of miR-146a, a well-
known inflammation down-regulating microRNA, was 
not changed in the T2D monocytes, while a microRNA 
targeting genes involved in processes of cell morphology 
and shape change, i.e. miR-34c-5p, was up-regulated as 
compared to the group of non-diabetic controls [17].

In the serum of the patients with T2D in whom we 
performed the monocyte studies, we found clear signs of 
inflammation [18]. Although there were no increases in 
the levels of classical cytokines, such as of IL-1β, IL-6 and 
TNF-α, there was an increase in the level of serum IL-8, 
and also the level of miR-146a was significantly down-
regulated. HGF was increased in the serum of the cases 
with T2D too [18]. Since HGF is an important vascular 
repair factor [19–22] and an anti-inflammatory agent [23, 
24], and monocyte-derived angiogenic cells are charac-
terized by the expression of HGF [25], we hypothesized 
that there was an enhanced monocyte-linked endothelial 
repair mechanism going on in our patients with T2D.

In the present study, we therefore tested the hypothesis 
that HGF is increased in the circulating anti-inflamma-
tory monocytes of patients with T2D and we deter-
mined the gene expression level of HGF (and the HGF-R, 
cMET) in the monocytes of our patients with T2D and 
investigated whether HGF belonged to the cluster of 
typical inflammatory compound genes or to the clusters 
of typical adhesion, migration and differentiation genes. 
In addition, we compared the monocyte gene expres-
sion levels of HGF to the serum HGF levels to investigate 
whether the circulating monocytes could be the main 
producers of this vascular repair factor in serum.

In addition, we measured the serum level of miR-
34c-5p, the microRNA up-regulated in the monocytes of 
patients with T2D and playing a role in cell shape pro-
cesses, to see whether this microRNA was also raised 
in the serum of the patients. Finally, we determined the 
serum level of the other 5 microRNAs (miR-122, miR-
138, miR-410, miR-574-3p and miR-92), which we had 
previously reported as abnormally expressed in the 
monocytes of patients with T2D in a finding study [17].

Patients, materials and methods
Subjects
A total of 64 subjects diagnosed with diabetes type 2, 
according to the criteria of The Expert Committee on 
the diagnosis and classification of Diabetes Mellitus [26]. 
Patients were recruited in four medical centers of Quito, 
Ecuador (Eugenio Espejo Hospital, Club de Leones Sur, 
Fundación Oftalmológica del Valle and Fundación de la 
Psoriasis) from 2009 until 2012. For demographic and 
clinical details see Table 1. At the same time, 44 healthy 
controls with similar ethnical and social background, 
neither suffering from T2D nor other important medical 
disorders (including acute infection) served as controls. 
Controls had to be over 30 years of age, considering the 
age dependency of T2D [27], and preferably of the same 
gender as the patients.

Patients and controls with other immune disorders, 
other serious medical illnesses, recent infections (last 
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2  weeks), obvious vascular complications such as dia-
betic foot and ulcers, fever, pregnancy/postpartum, 
use of statins and LADA patients (patients positive 
for GAD-65 Abs) were excluded. The Medical Ethical 
Review Committee of the Ecuadorian Corporation of 
Biotechnology Quito, Ecuador and the Ethic Committee 
of the Central University of Quito approved the study. 
Written informed consent was obtained of all subjects 
participating in the study. The Ecuadorian Ministry 
of Health (MSP) gave the permit to export and pro-
cess the samples in Erasmus MC, Rotterdam, and The 
Netherlands.

Blood collection and preparation
In the morning fasting venous blood was collected. Ten 
mL were collected in a clotting tube and processed within 
4  h. Serum was frozen and stored at minus 80  °C for 
approximately 24 months before testing. Thirty milliliters 
were collected in tubes containing sodium-heparin for 
immune cell preparation. From the heparinized blood, 
peripheral blood mononuclear cell (PBMC) suspensions 
were prepared in the afternoon by low-density gradi-
ent centrifugation, as previously described in detail [28] 
within 8 h to avoid activation of the monocytes. PBMCs 
were frozen in 10 % dimethylsulfoxide and stored in liq-
uid nitrogen. This enabled us to test patient and control 
serum and immune cells in the same series of experi-
ments later.

Isolation of monocytes
CD14-positive (CD14+) monocytes were isolated from 
frozen PBMCs by a magnetic cell sorting system (MACS; 
Miltenyi Biotec, Auburn, CA, USA). The purity of mono-
cytes was >95 % (determined by morphological screening 
after Trypan Blue staining and flow cytometric analysis). 
As previously reported; the positive vs. negative selection 
of immune cells did not influence gene expression pro-
files [29].

Table 1  Shows sample sizes, distributions of  age, gender, 
comorbidities, HbA1c/hyperglycemia, BMI, hepatic profile, 
lipid profile, and medication use of the patient and control 
groups

HC T2D HC vs. T2D
p value

Group size n 44 64

Age mean (range) 53 (32–87) 61 (37–85) 0.00**

BMI mean (range) % 28.7 (23–42) 29.5 (22–49) 0.471

 Normal 18.2 % 16.1 %

 Overweight 45.5 % 40.3 %

 Obese 36.4 % 43.5 %

Gender

 Female n (%) 31 (70.5 %) 40 (62.5 %) NA

 Male n (%) 13 (29.5 %) 24 (37.5 %) NA

Glucose state

 Fasting glucose mg/dL, 
mean (range) %

88 (60.9–180.5) 146 (59–397) 0.00**

  Normal 88.6 % 45.3 %

  High 11.4 % 54.7 %

 HbA1C, mean (range) % 5.6 (3.9–6.9) 7.0 (3.2–12.5) 0.00**

  Normal 81.8 % 35.7 %

  High 18.25 % 62.5 %

Lipid profile

 Total cholesterol mg/dL, 
mean (range) %

237 (131–328) 237 (143–465) 0.99

  Normal 31.8 % 37.5 %

  High 68.2 % 62.5 %

 TG mean mg/dL, mean 
(range) %

194 (85–547) 205 (76–628) 0.56

  Normal 63.6 % 60.9 %

  High 36.4 % 39.1 %

 HDL mean mg/dL, mean 
(range) %

43 (27–87) 43 (17–85) 0.81

  Normal 54.5 % 57.8 %

  High 45.5 % 42.2 %

 LDL mg/dL, mean  
(range) %

158 (78–266) 158 (77–395) 0.95

  Normal 50 % 56.3 %

  High 50 % 43.8 %

Hepatic profile

 ASAT mean mg/dL,  
mean (range) %

41.3 (19–95) 33.3 (6.0–78) 0.01*

  Normal 48.7 % 70.8 %

  High 51.3 % 29.2 %

 ALAT mean mg/dL,  
mean (range) %

44.7 (10–135) 38.8 (7.0–131) 0.252

  Normal 47.4 % 64.6 %

  High 52.6 % 35.4 %

Medication

 Metformin 0 % 44.6 %

 Insulin 0 % 9.2 %

 Both medications 0 % 15.4 %

Table 1  continued

HC T2D HC vs. T2D
p value

 Any anti-diabetic medica‑
tion

100 % 30.8 %

 Statins (%) 0 % 0 %

Level of total cholesterol (TC) more than 200 mg/dL, triglycerides (TG) more 
than 200 mg/dL, high-density cholesterol fraction (HDL) <45 mg/dL in women, 
<40 mg/dL in men and low-density cholesterol fraction (LDL) more than 
130 mg/dL was used for the identification of abnormal values

Values in italics denote a significant difference between two groups

* p 0.01; ** p 0.001
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Real time quantitative PCR (qRT PCR) for monocytes
mRNA expression in monocytes via TaqMan array cards
For the previous report we had determined the expres-
sion of 24 mRNAs in the monocytes of the T2D cases and 
the non-diabetic controls. RNA had been isolated from 
monocytes using RNeasy columns (Qiagen, Hilden, Ger-
many), and both this method and quantitative RT-PCR 
has been described in detail elsewhere [30]. One micro-
gram of RNA was reverse-transcribed using the High 
Capacity cDNA kit (Applied Biosystems, Foster City, 
CA, USA). qPCR was performed using custom TaqMan 
Arrays, format 48 (Applied Biosystems), according to 
the manufacturer’s protocol and validated against the 
single RT-qPCR method. Per fill port, 400  ng of cDNA 
(converted from total RNA) was loaded. PCR amplifica-
tion was performed using an Applied Biosystems Prism 
7900HT sequence detection system with TaqMan Array 
block. Thermal cycler conditions were 2  min at 50  °C, 
10 min at 94.5  °C, and then 30 s at 97  °C, and 1 min at 
59.7 °C for 40 cycles. The expressions of ATF3, BCL2A1, 
CCL20, CCL2, CCL7, CD9, CDC42, CXCL2, DHRS3, 
DUSP2, EMP1, FABP5, HSPA1A/HSPA1B, IL-1B, IL-6, 
MAPK6, NAB2, PDE4B, PTGS2, PTPN7, PTX3, STX1A, 
TNF, and TNFAIP3 were determined using this card sys-
tem. The PCR amplification of the housekeeping gene 
ABL was performed for each sample to allow normaliza-
tion between the samples. We chose ABL as the house-
keeping gene because it has previously been shown that 
ABL was the most consistently expressed housekeeping 
gene in hematopoietic cells. The SDS software (ABI) was 
used to collect the data and the RQ Manager Program 
(ABI) was used to assign, check, and standardize CT 
values. The Data Assist software (ABI) was used to nor-
malize the data against ABL expression. For threshold 
cycles below 40, the corresponding mRNA was consid-
ered detected, higher cycle numbers were not included 
in calculations. Data were expressed as cycle threshold 
(CT) values corrected to ABL (ΔCT = CT gene X − CT 
housekeeping gene ABL), and as fold change values 
determined via the CT method (User Bulletin 2; Applied 
Biosystems) (ΔΔCt method, formula  2ΔΔCt) to linear 
transform the data and to avoid negative values. To cor-
rect for inter-assay variance we set the mean of the stud-
ied genes found in the healthy control groups in the same 
assay for each gene to 1, and the fold change (FC) values 
of the genes in patient monocytes were expressed relative 
to this set mean of 1 of the healthy controls for the given 
values.

Individual mRNA qRT–PCR assays for HGF, HGF‑R, resistin
For the current report we additionally determined in sin-
gle assays (not using the card system) the gene expres-
sion for HGF, the HGF-R (cMET), and resistin using the 

same cDNA used in the above described experiments (we 
measured resistin because resistin had also been found 
raised in the serum of the T2D cases, though just nor 
reaching significance, p = 0.07) [18]. TaqMan probes and 
consensus primers for HGF, HGF-R and resistin were 
provided by Applied Biosystems. PCR amplification of 
the housekeeping gene ABL was performed for each sam-
ple to allow normalization between the samples. Assays 
were carried out as described by the manufacturers in 
15 µL assays. The fold change values between different 
groups were determined from the normalized CT values 
as described above for the outcomes of the card assays.

Individual microRNA qRT–PCR assays for monocytes
Total RNA was isolated from purified monocytes using 
RNeasy columns (Qiagen, Hilden, Germany) as described 
by the manufacturer’s manual. Purity and integrity of the 
RNA were assessed on the Agilent 2100 bioanalyzer with 
the RNA 6000 Nano LabChip® reagent set (Agilent Tech-
nologies, Santa Clara, CA, USA) and the RNA was then 
stored at −80  °C. Subsequently, specific stem-looped 
reverse transcription primers were used to obtain cDNA 
for mature microRNAs. The RNA was reverse tran-
scribed using the TaqMan® MicroRNA Reverse Tran-
scription Kit from Applied Biosystems, The Netherlands 
(ABI). PCR was performed using pre-designed TaqMan® 
microRNA assays and TaqMan® Universal Master Mix, 
NoAmpErase®UNG, with an ABI 7900 HT real-time 
PCR machine. RNU44 was used as reference microRNA. 
The PCR conditions were 2 min at 50 °C, 10 min at 95 °C, 
followed by 40 cycles of 15 s at 95 °C, and finally 1 min at 
60  °C. The Data Assist software (ABI) was used to nor-
malize the data to RNU44. Calculations of FC were as 
described above.

Serum cytokines
The levels of TNFα, IL-1β, IL-6, NGF, HGF, PAI, resis-
tin, CCL2 (MCP-1), adiponectin, leptin, IL-8, and MIP1β 
(CCL4) were measured by flow cytometry (BD LSR II 
Biosciences, CA, and EE.UU.) using a commercially avail-
able multi-analyte cytometric bead array system (Mil-
liplex® Map, USA). This multi-analyte assay panel was 
specifically designed for T2D studies by Millipore and 
is a relative economic assay using minimal quantities of 
serum (25 μL). The data were analyzed using a 5-param-
eter logistic method for calculating analyte concentra-
tions in samples (MAGPIX® with xPONENT software, 
Luminex, Austin, USA). Serum analyte levels below the 
detection limit of the assay (only found with one analyte, 
i.e. IL-1β in 45 % of the determinations) were considered 
as 0 pg/ml and included as such in the statistical analysis 
(if e.g. half maximal values of the detection limit had been 
used slightly higher values would have been obtained, but 
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significance levels had not changed for IL-1β). Lipid and 
hepatic profile was performed according to standard lab 
procedures in Quito-Ecuador (AMCOR laboratory) and 
validated in Erasmus MC.

Serum microRNA quantitative real‑time PCR (qPCR) 
in serum
Total RNA was isolated from serum using the same Qia-
gen miRNeasy kit as used for the monocytes. In order 
to correct for variations in RNA isolation derived, we 
spiked-in a non-human (C. elegans) synthetic miRNA 
cel-miR-39 miRNA Mimic (MSY000010) into the sample 
before nucleic acid isolation. Subsequently, specific stem-
looped reverse transcription primers were used to obtain 
cDNA for mature microRNAs. The RNA was reverse 
transcribed using the TaqMan® MicroRNA Reverse 
Transcription Kit from Applied Biosystems, The Neth-
erlands (ABI). PCR was performed using pre-designed 
TaqMan® microRNA assays and TaqMan® Universal 
Master Mix, NoAmpErase®UNG, with an ABI 7900 HT 
real-time PCR machine. The PCR conditions were 2 min 
at 50 °C, 10 min at 95 °C, followed by 40 cycles of 15 s at 
95 °C, and finally 1 min at 60 °C. The spiked-in syn-cel-
miR-39 goes through the entire RNA isolation process 
and serves as endogenous control for data normalization. 
The Data Assist software (ABI) was used to normalize the 
data to syn-cel-miR-39, further calculations of FC were as 
described above.

Data analysis
Statistical analysis was performed using the SPSS (IBM, 
Inc.) package for Windows. Data were tested for normal 
distribution using the Kolmogorov–Smirnov test. The 
Grubbs’ test for outlier detection was applied (http://
graphpad.com/support/faqid/1598/). Depending on the 
distribution pattern and the total number of subjects, 
parametric (normal distribution, independent t test) 
or nonparametric group comparison (Mann–Whitney 
U test) were applied. Correlations were determined by 
Spearman’s correlation coefficient. Levels of significance 
were set at p ≤  0.05 (two tailed). A dendrogram visual-
izing associations was constructed in SPSS using hierar-
chical cluster analysis of the serum cytokines, genes and 
microRNA expression using the between-groups linkage 
method. Graphs were designed with Illustrator CS6 for 
Windows.

Results
HGF is over expressed in monocytes of patients with T2D
Table  1 shows the demographic and clinical data of the 
Ecuadorian type 2 diabetic (T2D) patients and their con-
trols. It is important to note that we were not completely 
successful in matching the controls to the patients with 

regard to age. We therefore corrected all further data for 
age. It is also worthy to note that controls were equally 
overweight and obese as our patients and had the same 
abnormal lipid profiles as the patients. Furthermore 
patients had a better liver profile than the non-diabetic 
controls. With regard to medication 31  % were not on 
anti-diabetic medication (recently discovered patients), 
while 45  % used metformin and 9  % used insulin (15  % 
were on both medications). None of the patients and 
non-diabetic controls used statins, Table 2A and Fig. 1a 
shows that the HGF expression levels were significantly 
higher in the monocytes of the patients with T2D as 
compared to the non-diabetic controls [(fold change T2D 
vs non-diabetic controls) 1.17  ±  SEM 0.62, p  =  0.03, 
n = 59]. Controlling for age, gender, dyslipidemia or liver 
function via hierarchical clustering showed that these 
factors did not contribute to the association of monocyte 
HGF expression with disease. With regard to BMI both 
BMI and T2D were significantly correlated to monocyte 
HGF expression. There was a non-significant differ-
ence in monocyte HGF expression between patients on 
metformin (FC 1.21 ±  0.37, n =  23) and un-medicated 
patients (FC 1.09 ± 0.30, n = 8), although group numbers 
are too small for a valid statistical evaluation.

The expression levels of the HGF-R (cMET, FC 
1.34  ±  0.36 p  =  0.40, n  =  22) and of resistin (FC 
0.47 ± 0.07, p = 0.24, n = 59) were not different between 
the groups (Table 2A).

Figure  2 shows the heat map and cluster diagram for 
HGF and resistin with the previously determined genes 
and the previously determined microRNAs. As can be 
seen HGF and resistin co-clustered positively with each 
other and with many genes of the cluster of adhesion/
differentiation and shape change genes. Since HGF was 
significantly over expressed in the T2D monocytes, we 
focused on this compound. The association of HGF was 
significant at the p < 0.001 level with DHRS3 (r =  .498, 
p = 0.004, n = 32), CD9 (r =  .490, p = 0.004, n = 32), 
BCL2A1 (r = .503, p = 0.003, n = 32), Resistin (r = .532, 
p = 0.002, n = 32), HSPA1 (r = .525, p = 0.002, n = 32), 
but existed also at a lower level for MAPK6 (r =  .385, 
p  =  0.03, n  =  32) and STX1A (r  =  .419, p  =  0.024, 
n =  32). It is worthy to note that of these genes HGF, 
DHRS3 and CD9 were all three significantly higher 
expressed in the monocytes of cases with T2D as com-
pared to the non-diabetic controls (see [17]).

It is also worthy to note that HGF expression did signif-
icantly negatively correlate with the expression of many 
genes of the inflammatory cluster in the monocytes (such 
as CCL4, IL-6, TNF, IL1-β, ATF3, CXCL2 and CCL20), 
reaching significance for TNFAIP3(r = −.350, p = 0.05, 
n  =  32), supporting the concept that HGF is an anti-
inflammatory agent. With regard to clinical parameters 
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HGF expression in monocytes did positively correlate 
with the BMI (r = .327, p = 0.011, n = 59).

As reported previously, HGF was significantly raised 
in the serum of the patients with T2D as compared to 
the non-diabetic controls. Interestingly serum HGF 
correlated with monocyte DHRS3 gene expression 
(r =  .326, p =  0.008, n =  64), but not with monocyte 
HGF gene expression (r  =  .189, p  =  0.152, n  =  59). 
Neither was there a positive or negative correlation for 
resistin expression in the monocytes and in the serum 
(data not shown), nor for any of the pro-inflammatory 
compounds, such as IL-1B, TNF, IL-6 and CCL2 (data 
not shown). This makes it unlikely that monocytes are 
the prime source of HGF, resistin or pro-inflammatory 
compounds in serum.

Mir‑34c‑5p is unaltered, but miR‑574‑3p is significantly 
reduced in the serum of patients with T2D
For the previous report on cytokines in T2D serum [18], 
we had determined the expression of various cytokines, 
growth factors, miR-146a and miR-155 in the serum of 
the cases with T2D and the non-diabetic controls. We 
found IL-8, HGF and resistin (the latter at a significance 
level of p = 0.07) raised in the serum of the patients with 
T2D in comparison to the non-diabetic controls, while 
miR-146a was down-regulated (see also “Background”).

For the current report, we determined the microRNAs 
miR-34c-5p, miR-122, miR-138, miR-410, miR-574-3p 
and miR-92 in the serum of the patients with T2D and the 
non-diabetic controls, since we had also measured these 
microRNAs in the monocytes of the patients in the previ-
ously reported study on gene and microRNA expression 
in the monocytes. In that study, we reported that miR-
34c-5p was significantly up-regulated in the monocytes 
of the patients with T2D (see also “Background”).

Table  2B shows that in the current study the serum 
level of miR-34c-5p was not changed in the patients with 
T2D as compared to the non-diabetic controls. How-
ever, the serum level of microRNA miR-574-3p, was sig-
nificantly reduced in the T2D serum as compared to the 
non-diabetic controls (see also Fig.  1b). Controlling for 
age, gender, BMI and dyslipidemia via hierarchical clus-
tering showed that these factors did not contribute to 
the association of miR-574-3p with disease. With regard 
to medication there was a trend that particularly in the 
metformin-medicated group the miR-574 levels were 
reduced (FC 0.58 ±  0.35, n =  36 to non-diabetic con-
trols), while in the unmediated group FC were only 
slightly reduced as compared to non-diabetic controls 
(FC 0.92 ± 0.77, n = 14).

Figure  3 shows the heat map and cluster diagram of 
the measured microRNAs and cytokines/growth factors. 

Table 2  Expression level of (A) monocyte genes HGF, HGF-R and resistin and (B) serum microRNAs in non-diabetic con-
trols and patients with T2D

a  Group size, mean and SEM of HGF, HGF-R and resistin of monocytes. To avoid inter-assay variation, gene levels were expressed in fold change compared to 
non-diabetic controls, the average of the controls in each assay was set to one (1.00). Differences between groups were tested using independent T test. Levels of 
significance were set at p = 0.05 (two-tailed). The HGF expression was significantly higher in the monocytes of the patients with T2D as compared to the non-diabetic 
controls (p = 0.03)
b  This table shows group size, mean and SEM of the fold change values of tested serum microRNAs (reference microRNA sync-cel-mir-39) of the patients with T2D as 
compared to Non-diabetic controls. Differences between groups were tested using independent T test. Levels of significance were set at p = 0.05 (two-tailed). Serum 
level of miR-146-a (previously reported [18]) and miR-574-3p, was significantly reduced (p = 0.03) in the T2D sera as compared to the non-diabetic controls when 
controlling for age, gender, BMI and dyslipidemia

Non-diabetic controls T2D Non-diabetic cont vs. T2D

P value

N Mean SEM N Mean SEM T test

(A) Monocyte genesa

 HGF 27 1.00 0.49 32 1.17 0.62 0.03

 HGF-R 12 1.00 0.14 10 1.34 0.36 0.40

 Resistin 27 1.00 0.43 32 0.47 0.07 0.24

(B) Serum microRNAsb

 miR-122 40 1.00 0.15 56 0.86 0.23 0.64

 miR-138 13 1.00 0.24 22 0.87 0.17 0.66

 miR-146a 40 1.00 0.12 56 0.71 0.06 0.02

 miR-155 40 1.00 0.07 55 0.95 0.07 0.65

 miR-34c-5p 15 1.00 0.11 23 1.00 0.08 0.96

 miR-410 34 1.00 0.12 46 0.92 1.11 0.63

 miR-574-3p 37 1.00 0.13 53 0.69 0.07 0.03

 miR-576-3p 22 1.00 0.16 36 1.43 0.32 0.31
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Since miR-574-3p was found significantly reduced in the 
serum of the patients with T2D, we focused in particu-
lar on this microRNA. It is clear from Fig.  3 that there 
is a strong clustering and association of miR-574-3p 
with miR-146a (r =  0.744, p < 0.001, n =  88) and miR-
410 (r = 0.324, p = 0.03, n = 80), all microRNAs being 
decreased in the serum of the patients with T2D. The 
association of miR-574-3p with the other microRNAs 
and cytokines/growth factors in serum was not very 

strong, although there was an association with the serum 
CCL2 level (r = 0.337, p = 0.001, n = 89).

It is also important to note that correlations between 
the serum levels of the tested microRNAs and the expres-
sion levels of the same microRNAs in monocytes were 
not present (see Table 3).

Target prediction for miR‑574‑3p
Since the expression of miR-574-3p was significantly 
down-regulated in the serum of patients with T2D, we 
asked if there were in silico indications linking miR-
574-3p expression to processes of inflammation or 
cell adhesion/differentiation/shape change. We used 
miRecords as a resource for miRNA-target interactions 
integrating predicted miRNA targets produced by 11 
established miRNA target prediction programs (DIANA-
microT, MicroInspector, miRanda, MirTarget2, miTarget, 
NBmiRTar, PicTar, PITA, RNA22, RNAhybrid and Tar-
getScan/TargetScanS, available at http://www.mirecords.
bioled.org).

A minimal target gene prediction coverage of three 
algorithms was used to perform prediction analysis for 
miR-574-3p. Filtering to a minimum coverage of three 
algorithms resulted in 934 hits. Ingenuity pathway anal-
ysis (Ingenuity® Systems) was used for mapping of the 
predicted target genes to biological functions.

Interestingly, the top molecular and cellular function 
of the miR-574-3p predicted target genes was “cell mor-
phology” and “cellular assembly and organization”, while 
inflammation did not turn up in any of the predicted 
pathways (see Additional file 1: Ingenuity analysis).

Discussion
This study showed that the gene expression of the vas-
cular repair factor HGF was significantly raised in the 
monocytes of patients with T2D as compared to non-
diabetic controls. HGF belonged to the cluster of adhe-
sion, differentiation and shape change genes previously 
described as up-regulated in the T2D monocytes and 
correlated significantly to the expression of many genes in 
that cluster. The association of HGF with these differenti-
ation, adhesion and shape change genes is in accordance 
with a view that the T2D monocytes are differentiating 
into the elongated vascular support pro-angiogenic cells 
(CACs) [25], HGF is a marker of such cells and suggests 
that the monocytes in our Ecuadorian patients with T2D 
are instrumental in repairing the vessel walls damaged by 
T2D related processes.

The up-regulation of HGF in the T2D monocytes 
might have been instrumental too in the previously 
reported anti-inflammatory state of the monocytes (see 
[17]). Indeed there is ample literature on the anti-inflam-
matory effects of HGF. It has been shown that monocytes 

Fig. 1  a, b Expression level of monocyte HGF and serum miR-574-3p 
in ecuadorian non-diabetic controls and T2D patients. a show mean 
and standard deviation of the fold change values of HGF (reference 
gene ABL) in the monocytes of the T2D patients as compared to non-
diabetic controls. b show mean and standard deviation of the fold 
change values of miR-574-3p (reference microRNA sync-cel-mir39) in 
the serum of the T2D patients as compared to non-diabetic controls. 
Differences between groups were tested using independent T test. 
Levels of significance were set at p = 0.05 (two tailed)

http://www.mirecords.bioled.org
http://www.mirecords.bioled.org
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treated with HGF produce high levels of IL-10, a potent 
immune suppressing cytokine. Mechanistically, HGF 
modulated IL-10 production in monocytes through the 
ERK1/2 pathway [23]. With regard to dendritic cells 
(DC), Molnarfi et  al. reported that DC differentiated in 
the presence of HGF adopt a pro-tolerogenic phenotype 
with increased ability to generate regulatory T cells [24], 
while with regard to endothelial cells Jeong-Ki Min et al. 
showed that HGF suppresses vascular endothelial growth 
factor (VEGF)–induced inflammation by inhibiting the 
nuclear factor kappa B (NFκB) pathway [30]. In support 
of this anti-inflammatory action of HGF, we found a neg-
ative correlation of intra-monocyte HGF expression with 
the cluster of inflammatory genes, reaching statistical 
significance for TNFAIP3 (A20, a molecule induced by 
TNFα signaling, [31]) expression.

We reported previously that HGF was raised in the 
serum of the Ecuadorian patients with T2D; however, 
we did not find a correlation of the serum HGF with the 
expression of the HGF gene in the monocytes. This sug-
gests that the circulating HGF is not primarily produced 
by the circulating monocytes, but originates from other 

sources. This notion also applies to the other tested 
cytokines and growth factors in the serum of the patients 
with T2D, for which we could also not find a correlation 
with intra-monocyte gene expression. Within the serum, 
the level of HGF correlated with the levels of TNF-α, IL-8 
and resistin. Since it is generally thought that these pro-
inflammatory compounds and insulin-resistance induc-
ing substances originate from the adipose tissue and the 
liver [2, 4, 32, 33], we assume that also HGF in the serum 
of the patients with T2D primarily stems from these 
sources. There is ample literature on the production of 
HGF by adipose tissue and the liver [32, 34–37].

Although HGF might originate from sources other 
than the circulating monocytes, it is nevertheless possible 
that HGF in the serum could have affected the function 
of the circulating monocytes in patients with T2D, since 
the current study shows that monocytes of patients with 
T2D do express the HGF receptor, though not differently 
from monocytes of the non-diabetic controls. Interest-
ingly, the level of HGF in serum did not correlate with a 
reduced inflammatory gene expression in the monocytes, 
as we found for the intra-monocyte expressed HGF. This 

Fig. 2  Hierarchical cluster analysis of the tested genes and microRNAs of the monocytes of type 2 diabetic patients and controls. The figure show 
the heat map and cluster diagram for HGF and resistin with the previously determined genes and the previously determined microRNAs. HGF and 
resistin co-clustered positively with each other and with many genes of the cluster of adhesion/differentiation and shape change genes
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suggests that the monocyte-endogenously-produced 
HGF is more important in the down-regulation of the 
inflammatory state of the monocytes in the patients with 
T2D than the serum-borne HGF. The level of circulating 
HGF did correlate positively to the DHRS3 expression in 
the monocytes, suggesting that serum-borne HGF might 
influence the proliferation and differentiation potential of 
circulating monocytes to pro-angiogenic cells in patients 
with T2D.

Furthermore, we found that the level of miR-574-3p 
was significantly reduced in the serum of patients with 
T2D, similar to miR-146a, of which we reported a down-
regulation in the serum of the patients with T2D at an 
earlier occasion [18]. In the cluster analysis and in cor-
relation studies there was a strong association between 
the serum level of miR-574-3p and miR-146a, miR-410 
and miR-155. This suggests an association of serum 
miR-574-3p (and also serum miR-410) with inflamma-
tory processes, since miR-146a and miR-155 are impor-
tant inflammation-regulating microRNAs [38–41]. This 
notion is further supported by a positive correlation 

Fig. 3  Hierarchical cluster analysis of the tested cytokines and microRNAs of the serum of type 2 diabetic patients and controls. Figure shows that 
there is a strong clustering association of miR-574-3p with miR-146a and miR-410. The association of miR-574-3p with other microRNAs in serum 
was not strong. The unique association of miR-574-3p with cytokines/growth factors was with the serum CCL2 level

Table 3  Correlations between expression levels of microR-
NAs tested in monocytes and in serum

This table shows that correlations between the serum expression levels of the 
tested microRNAs and the expression levels of the same microRNAs tested in 
monocytes were not present

Correlation

Monocyte/serum

miRNA 138 Correlation coefficient 0.105

Sig. (2-tailed) 0.560

miRNA 146-a Correlation coefficient 0.030

Sig. (2-tailed) 0.788

miRNA 155 Correlation coefficient 0.070

Sig. (2-tailed) 0.758

miRNA 34c=5p Correlation coefficient −0.187

Sig. (2-tailed) 0.371

miRNA 410 Correlation coefficient 0.108

Sig. (2-tailed) 0.358

miRNA 574-3p Correlation coefficient 0.113

Sig. (2-tailed) 0.305

miRNA 576-3p Correlation coefficient −0.066

Sig. (2-tailed) 0.669
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between the serum level of miR-574-3p and the level of 
CCL2 in serum.

However, when we studied in silico the putative targets 
of miR-574-3p, ingenuity analysis of the putative targets 
did not indicate inflammation as an important path-
way, whereas cell morphology and cellular assembly and 
organization were clearly present. The literature on miR-
574-3p is in accord with this notion and shows functions 
of miR-574-3p mainly in the regulation of tumor cell 
pathology: MiR-574-3p is anti-proliferative, anti-invasive 
and anti-migratory in gastric and prostate cancer cells 
[42–44]. In these studies it was found that cullin-1 might 
be a target of miR-574-3p, and interestingly cullin-1 reg-
ulates inflammation via NFκB, thus giving an opening to 
a relationship with inflammation in connection with cel-
lular assembly and organization [44].

Our findings suggest a high pro-angiogenic potential 
of the circulating monocytes and the serum of Ecuado-
rian patients with T2D. It is important to note that Yang 
reported that down-regulation of miR-574-3p in pro-
angiogenic cells appeared to be a marker of senescence; 
senescent pro-angiogenic cells have lost their prolifera-
tive capacity and are changed in an inflammatory (oxida-
tive radicals) direction [45]. Hence, this might indicate 
that miR-574-3p is involved in the regulation of the anti-
inflammatory and pro-angiogenic state of the circulating 
monocytes of patients with T2D.

Perhaps the most striking observation in the present 
study is the absence of correlation between the serum 
and intracellular monocyte levels of cytokines, growth 
factors and microRNAs. This suggests that the dynam-
ics of the inflammation-related changes in the mono-
cyte intracellular compartment differ substantially from 
the dynamics of inflammation-related changes in the 
serum compartment of patients with T2D. With regard 
to microRNAs it is possible that these dynamics involve 
complex processes of micro-vesicle or apoptotic body 
release from immune, endothelial or other cells [46] and/
or binding to serum lipoproteins [47], illustrating the 
complexity of the biological activities of microRNAs in 
vascular and metabolic disease.

Collectively the data of the previous studies and the 
current study show that both the monocyte intracel-
lular compartment and the serum compartment of our 
patients with T2D have undergone inflammation-related 
changes. However, the monocyte compartment shows 
in general a reduction in gene expression of typical 
pro-inflammatory genes, while genes and microRNAs 
involved in cell adhesion, cell differentiation, growth and 
vascular repair, such as HGF and miR-34c-5p, are up-
regulated. The serum compartment, in contrast to the 
monocyte compartment, does show signs of high pro-
inflammatory activity, e.g. high levels of IL-8 and reduced 

levels of anti-inflammatory miR-146a and altered levels 
of miR-574-3p. The serum compartment also shows signs 
of higher activity of vascular repair and cellular growth 
induction, yet parameters do not correlate with the 
monocyte parameters of higher pro-angiogenic cell activ-
ity. Most likely different T2D related pathophysiological 
forces drive the activation and de-activation set points of 
the circulating monocyte and the serum compartment.

Limitations
Due to the paucity of material we have not been able 
to carry out all assays in all patients and thus for some 
microRNAs (such as e.g. 34c-5p and 576-3p) test num-
bers might have been too small to detect significant 
changes. The likelihood that we would have found a sig-
nificant difference for these microRNAs if we had been 
able to increase the sample size is possible. However 
when numbers for miR-574-3p, which we found statisti-
cally significant between the groups with n numbers of 53 
patients and 37 controls, were recalculated with reduced 
numbers equal to those for the miRs 34c-5p and 576-3p 
(with n numbers around half of those for 574-3p), near 
significant p levels between 0.05 and 0.10 were found. 
With none of the here tested microRNAs such near sig-
nificant p levels were found. Nevertheless it is clear that 
in future studies larger samples need to be tested to come 
to more solid conclusions.

Although we selected patients and controls on the basis 
of their diabetic state (glucose levels) to study diabetes as 
the major determinant for immune differences, we real-
ize that other determinants might have played equally 
important roles in the outcomes of our study, such as 
lipid state, liver function, BMI and medication. Correc-
tion for lipid state, BMI and liver function did not change 
our main findings regarding the higher expression of 
monocyte HGF and reduced serum miR-574-3p. With 
regard to metformin treatment, which has been shown to 
alter the immune state [48], post hoc analyses of our data 
found non-significant differences between metformin 
treated and not treated patients, in particular that the 
reduced serum miR-574-3p values were more clear in the 
metformin treated patients. However numbers in the test 
groups were too small for a valid statistical evaluation.

Although focus was on HGF in the here reported stud-
ies to evaluate the vessel repair quality of the circulating 
monocytes, other important analytes could have been 
studied as well, such as adiponectin and leptin. Levels of 
these adipokines are important in determining athero-
sclerosis [49] and should therefore be studied in future 
investigations on this subject. This is the more relevant 
since we found in preliminary unpublished studies that 
the adiponectin and leptin serum levels were different 
between Ecuadorian and Dutch T2D patients. Similar 
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observations on an altered leptin/adiponectin ratio have 
been done by Bribiescas et al. in studying Ache Amerin-
dians versus US individuals [50].

Conclusion
Despite the limitations of the here described study we 
conclude that in circulating monocytes of T2D Ecua-
dorian patients, the microRNA and gene expression of 
important inflammatory factors, chemotactic/motil-
ity factors and a vascular repair factor differs from the 
expression in serum. While monocytes show a gene 
expression profile compatible with an anti-inflammatory 
state, the serum shows a molecular profile of an inflam-
matory state, suggesting an intricate feedback network. 
Both compartments show molecular signs of vascular 
repair support, i.e. up-regulated HGF levels.
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