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Abstract

About 30% of patients with type 2 diabetes mellitus develop clinically overt nephropathy. Hyperglycemia is necessary,
but not sufficient, to cause the renal damage that leads to kidney failure. Diabetic nephropathy (DN) is a multifactorial
disorder that results from interaction between environmental and genetic factors. In the present article we will review
the role of the nitric oxide synthase (NOS) in the pathogenesis of DN.
Nitric oxide (NO) is a short-lived gaseous lipophilic molecule produced in almost all tissues, and it has three distinct
genes that encode three NOS isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS).
The correct function of the endothelium depends on NO, participating in hemostasis control, vascular tone regulation,
proliferation of vascular smooth muscle cells and blood pressure homeostasis, among other features. In the kidney, NO
plays many different roles, including control of renal and glomerular hemodynamics. The net effect of NO in the kidney
is to promote natriuresis and diuresis, along with renal adaptation to dietary salt intake.
The eNOS gene has been considered a potential candidate gene for DN susceptibility. Three polymorphisms have
been extensively researched: G894T missense mutation (rs1799983), a 27-bp repeat in intron 4, and the T786C single
nucleotide polymorphism (SNP) in the promoter (rs2070744). However, the potential link between eNOS gene variants
and the induction and progression of DN yielded contradictory results in the literature.
In conclusion, NOS seems to be involve in the development and progression of DN. Despite the discrepant results of
many studies, the eNOS gene is also a good candidate gene for DN.
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Introduction
About 30% of patients with type 2 diabetes mellitus develop
clinically overt nephropathy [1]. Thus it appears that in
humans hyperglycemia is necessary, but not sufficient, to
cause the renal damage that leads to kidney failure. The risk
is not linearly correlated to the duration of diabetes, with a
decline after an initial progressive incidence, likely due to
exhaustion of the subgroup of susceptible subjects [2,3].
Diabetic nephropathy (DN) is a multifactorial disorder

that results from interaction between environmental and
genetic factors. DN is histologically defined by thickening
of the glomerular basement membrane, increased fractional
mesangial volume, and podocyte abnormalities [2]. Hyper-
glycemia, hypertension and proteinuria are the main
insults that cause structural abnormalities in a diabetic
kidney [1,4-6].
The earliest known manifestation of diabetic kidney

disease is the presence of small amounts of albumin in
* Correspondence: brunodellamea@gmail.com
1Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Full list of author information is available at the end of the article

© 2014 Dellamea et al.; licensee BioMed Cent
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
the urine, known as microalbuminuria. So far it is still
unknown who will evolve to end-stage renal disease, and
the genetic factor is a matter for debate and further
study [7].
To better understand the pathogenesis of DN, nitric

oxide (NO) must be considered, and the study of the
polymorphism of genes involving it formation should be
addressed.
Nitric oxide system characterization
NO is a short-lived gaseous lipophilic molecule produced
in almost all tissues and organs, a free radical exerting
a variety of biological actions under both physiological
and pathological conditions. NO is a paracrine mediator
formed from its precursor L-arginine by a family of
NO synthases (NOSs) with stoichiometric production
of L-citruline. The NO system consists of three distinct
NO synthase (NOS) isoforms, encoded by three distinct
genes, including neuronal (nNOS or NOS-1), inducible
(iNOS or NOS-2) and endothelial (eNOS or NOS-3).
The gene encoding eNOS is located on chromosome 7
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(7q35-q36) and contains 26 exons with an entire length
of 21 kb [8-10].

Nitric oxide system physiology
eNOS expression is regulated by transcription (changes
in the rate of eNOS gene transcription), stabilization (al-
terations in eNOS mRNA stability), and phosphorylation
[11]. The presence of these consensus sites is consistent
with evidence showing that levels of eNOS transcripts
are elevated by sheer stress, exercise and hypoxia [12].
Regulation of eNOS transcription by estrogens is still a
matter of debate. Both lipopolysaccharide and tumor
necrosis factor-α decrease eNOS gene expression by redu-
cing the stability of eNOS-mRNAs. The constitutively
expressed eNOS-mRNA is about 4052 nucleotides long
and has a half-life of 10–35 h. Therefore, synthesis of the
encoded proteins is likely to persist long after gene expres-
sion has been repressed [12]. Also, the activity of eNOS
and the production of NO are diminished in senescent
human endothelial cells [13].
The endothelium is a fundamental layer in the arterial

wall both for the local regulation of flow to critical organs
and for the protection of the vascular system from athero-
genic insults. The correct function depends on the NO
generation rate [14]. NO participates in regulatory func-
tions including control of hemostasis, fibrinolysis, platelet
and leukocyte interactions with the arterial wall, vascular
tone regulation, vascular smooth muscle cell proliferation
and blood pressure homeostasis. Disturbances in NO bio-
availability have been found to cause endothelial dysfunc-
tion, leading to increased susceptibility to atherosclerotic
lesion progression, hypertension, hypercholesterolemia,
diabetes mellitus, thrombosis and stroke [15,16].
Insulin increases NO production, leading to vasodila-

tation and increased blood perfusion, and it also has
anti-apoptotic and pro-survival effects on the ischemic/
reperfused heart. Impairment of the phosphatidylinositide
3-kinases (PI3K) – protein kinase B (AKT) – eNOS – NO
pathway as a manifestation of insulin resistance con-
tributes to endothelial dysfunction, predisposing the
endothelium to hyper-inflammatory and thrombotic states,
while endothelin-1 expression and mitogenic effects are
not affected [17]. Exercise, diet, cardiovascular drugs and
insulin sensitizers, such as angiotensin-converting enzyme
inhibitors, angiotensin receptor inhibitors, and the PPARg
agonists, modulate both metabolic and cardiovascular
effects of insulin simultaneously by regulating PI3K-AKT-
eNOS signaling [18].
Data from animal models have suggested that eNOS

null mice show a phenotype that resembles the human
metabolic syndrome phenotype [19]. The oxidative effects
of NO may play a role in insulin resistance and type 2
diabetes [20]. Two studies performed in a Spanish
population found a positive association between eNOS
polymorphisms and metabolic syndrome [21,22]. Another
study, in an Italian population found an association
with eNOS polymorphisms and insulin resistance [23].
Additionally, a positive association between G894T poly-
morphism and metabolic syndrome has been shown in
Chinese and Japanese populations [24,25]. An association
between G894TeNOS gene polymorphism and features
of the metabolic syndrome was demonstrated in a
southern Brazilian population, assuming a recessive
model of inheritance [26].

Nitric oxide system and kidney
NO must be considered in the pathogenesis of DN, since
it plays numerous physiological roles in the kidney, in-
cluding control of renal and glomerular hemodynamics,
by interfering at multiple and physiologically critical
steps of nephron function. NO dilates both the afferent
and the efferent arteriole; it may augment the glomerular
filtration rate (GFR) and influence renal sodium handling
along various tubule segments from the thick ascending
limb to the distal tubule and the collecting duct [27]. NO
is also responsible for mediation of pressure natriuresis,
maintenance of medullary perfusion, blunting of tubulo-
glomerular reabsorption, and modulation of renal sympa-
thetic nerve activity [27,28]. The net effect of NO on the
kidney is to promote natriuresis and diuresis, along with
renal adaptation do dietary salt intake [29,30].
High levels of nNOs are expressed in macula densa and

in minor intensity in specialized neurons within renal
arteries of the hilus, arcuate and interlobular arteries.
eNOs is strongly expressed in renal vascular endothe-
lium, although tubular expression of eNOS also occurs.
iNOS is weakly expressed in the kidney [27]. Changes
in NOS gene expression do not always correlate well
with measures of actual NO synthesis, because synthesis
of NO by nNOS and eNOS is highly dependent on both
adequate substrate and co-factor availability [31]. Changes
in requirements for NO synthesis in the kidney often
occur very fast, so regulation of total NOS expression
seems not to play an important role, and it makes it more
difficult to study molecular events in the regulation of
NOS in the kidney [27,31,32].
The overall production of NO is decreased in chronic

kidney disease (CKD), which contributes to cardiovascular
events and further progression of kidney damage. There
are many likely causes of NO deficiency in CKD, such as
limitations on substrate (L-Arginine) availability, increased
circulating levels of endogenous NOS inhibitors, in par-
ticular asymmetric dimethylarginine (ADMA). Reduced
renal cortex abundance of the nNOS protein correlates
with injury while increasing nNOS abundance may pro-
vide a compensatory, protective response [33].
In CKD, ongoing endothelial damage in the capillary

system of the renal medulla and accompanying vascular
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rarefaction are thought to be central processes toward
progressive kidney damage [34]. Reduced NO synthesis
by endothelial cells due to accumulation of inhibitors of
the eNOS, such as ADMA, has been pointed out as the
cause of accelerating progression. Also, erythropoietin
may have vasculoprotective effects on renal endothelium,
which may be critically dependent on the activation of
eNOS [35].

Nitric oxide system and diabetic nephropathy
Recently, endothelial dysfunction has been commonly
found in subjects with DN, and is considered the central
pathophysiologic denominator for all cardiovascular
complications of diabetes. In animal models of CKD
and arteriosclerosis, blocking endothelial NO leads to
an increase in microvascular disease, known to impair
renal autoregulation [36].
Endothelial dysfunction has also been shown to lead to

an uncoupling of the vascular endothelial growth factor
(VEGF)-nitric oxide axis resulting in enhanced proin-
flammatory and proliferative effects of VEGF [36,37].
VEGF is increased in glomeruli and tubules in response
to hyperglycemia. Whereas most studies have suggested
that VEGF may be beneficial in non-diabetic renal disease,
there is increasing evidence that VEGF may have a dele-
terious role in diabetic nephropathy. Endothelial dysfunc-
tion with NO deficiency may result in a loss of negative
regulatory activity in the VEGF pathway. Consequently,
VEGF may cause excessive endothelial cell proliferation,
pathological macrophage infiltration, and overactivation
of vascular smooth muscle cell, causing vascular injury
[38,39].
Endothelin-1 is inhibited by vasodilators like NO and

prostacyclins. Endothelin-1 acts in the kidney rising
vascular resistance, which leads to reduction in blood flux,
glomerular filtration rate and inhibition of salt and water
reabsorption. It also causes glomerular cellular prolifera-
tion and accumulation of extracellular matrix [17].
NOS could be involved in the development of chronic

diabetes complications through others pathways, such as
uncoupling protein 2 (UCP2). UCP2 is expressed in sev-
eral tissues, and protects against oxidative stress, in the
regulation of insulin secretion by beta cells, and in fatty
acid metabolism. Moreover, UCP2 preserves endothelial
function through increasing NO bioavailability secondary
to the inhibition of ROS production in the endothelium
[40]. UCP2 has a potential role for inflammation and
apoptosis regulation. These functions have major impli-
cations for cardiovascular and cerebrovascular chronic
complications of diabetes. In fact, some UCP2 polymor-
phisms have been associated with the presence of diabetic
chronic complications [41].
The metabolic abnormalities of diabetes cause mito-

chondrial superoxide overproduction in endothelial cells
of both large and small vessels, enhancing five major
pathways to diabetic complications: polyol pathway flux,
activation of protein kinase C isoforms, overactivity of
the hexosamine pathway, increased formation of advanced
glycation end products and increased expression of the
receptor for advanced glycation end products [38].
A broad spectrum of findings and issues has been

amassed concerning the pathophysiology of the renal
NO system in diabetes. Severe diabetes with profound
insulinopenia can be viewed as a state of generalized NO
deficiency. Available evidence suggests that diabetes
triggers mechanisms that at the same time enhance and
suppress NO bioavailability in the kidney [20,42]. It has
been hypothesized that during the early phases of ne-
phropathy, the balance between these two opposing forces
is shifted toward increased NO [20,43,44]. This plays a
role in the development of characteristic hemodynamic
changes and may contribute to consequent structural
alterations in glomeruli. The enhanced NO production
may contribute to hyperfiltration and microalbuminuria
that characterizes early diabetic nephropathy [42]. Both
eNOS and nNO synthase can contribute to the altered
NO production, particularly the first. As the duration
of exposure to the diabetic milieu increases, factors that
suppress NO bioavailability eventually prevail [20,44].
Increasing accumulations of advanced glycation end
products may be one of the culprits in this process,
leading to severe proteinuria, declining renal function,
and hypertension [42]. In addition, this balance is con-
tinuously modified by actual metabolic control and the
degree of insulinopenia [44].
Progression of early stages of DN to end-stage kidney

disease is manifested by the gradual, inexorable scarring
of the renal glomerulus followed by a similar fibrosing
process in the tubulointerstitial region. Diabetic glom-
erular fibrosis is caused by accumulation of extracellular
matrix proteins in the mesangial interstitial space resulting
in fibrosis manifested by either diffuse or nodular changes
[45]. The use of daidzein (caveolin inhibitor), hemin
(hemoxygenase activator) or NO substrate in rats sig-
nificantly decreases the renal cortical collagen content as
compared to diabetic rats, presenting significant improve-
ment in BUN, serum creatinine, proteinuria, urinary out-
put, kidney weight/ body weight, renal cortical collagen
content and nitrite/nitrate levels [46,47]. Although there
is some controversy, most reports suggest higher levels
of NO production early in diabetes but reduced levels
in progressive DN [45,48].
The eNOS gene has been considerate as a potential

candidate gene to DN susceptibility. Over the last few
years, several polymorphisms of the eNOS gene have been
identified, and their association with various diseases
has been explored. Three polymorphisms have been
extensively subject of research in efforts to identify
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genetic predisposition to chronic diabetes mellitus micro-
vascular complications. These polymorphisms of interest
in DN are the G missense mutation (rs1799983), a 27-bp
repeat in intron 4, and the T786C single nucleotide poly-
morphism (SNP) in the promoter (rs2070744) [49-53].
However, not all studies support this association [54-56].
A recent meta-analysis [57], which analyzed these poly-
morphisms in the progression of DN, showed that G894T
is significantly associated with DN, mainly in the allele
contrast genetic model. However, in this meta-analysis
patients with DN were compared to healthy subjects
used as controls. Therefore, one cannot be sure if the
polymorphisms were associated with DN or diabetes
mellitus itself. In another meta-analysis [58], that com-
pared diabetic patients without nephropathy (controls)
to diabetic patients with nephropathy (cases), these
polymorphisms were associated with increased risk for
DN, supporting the involvement of the eNOS gene in
the pathogenesis of DN.
The potential link between eNOS gene variants and the

induction and progression of DN yielded contradictory
results, exemplified by the association of the cited poly-
morphisms with ESRD and DN by some [49,51-54,59-69],
but not by all studies [54-56,70]. G894T was linked to
increased risk of macroalbuminuria and progression from
microalbuminuria to macroalbuminuria, with declining
glomerular filtration rate as serum creatinine value rises
progressively, culminating in ESRD [66,67], independent
of other risk factors.
These polymorphisms seem to change eNOS expression

and to be associated with different levels of eNOS that
make these associations clinically plausible. Intron 4 of
eNOS contains a variable number of 27-pb consensus
sequence repeats with the b allele having five repeats
and the a allele having four repeats. A single nucleotide
polymorphism affecting transcription of the eNOS pro-
moter T786C reduces its activity to less than the half [71].
Plasma concentrations of NO metabolites are reduced
in carriers of the “a” allele in intron 4 (intron with four
repeats). The T786C SNP is strongly linked to the in-
tron 4 polymorphism and functional studies reveal that
the T786C mutation reduces eNOS gene promoter
activity [50].
In conclusion, NOS seems to be involved in the devel-

opment and progression of DN. Despite the discrepant
results of many studies, the eNOS gene is also a good
candidate gene for DN.
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