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Abstract

Background: Our purpose was to develop and test a predictive model of the acute glucose response to exercise in
individuals with type 2 diabetes.

Design and methods: Data from three previous exercise studies (56 subjects, 488 exercise sessions) were
combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator
(LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each
predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested
using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-
validation.

Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated
as the percentage of predictions within measurement error. Overall model utility was assessed as the number of
subjects with <1 model error after the third exercise session. Model accuracy across individuals was assessed
graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals’ attributes
with model error.

Results: Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin
Alc, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating,
its transformations, and hemoglobin ATc combined to account for 19.6% of the variance in glucose response.
Sulfonylurea status, age, and exercise session each accounted for <1.0% of the variance. In the development
dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts
only (likelihood ratio 34.5, p < 0.001). Cross-validated model accuracy was 83.3%.

In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial
exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had <1 model error after the third exercise session.
Model error varied across individuals and was weakly associated with within-subject variability in pre-exercise
glucose (Odds ratio 1.49, 95% Confidence interval 1.23-1.75).

Conclusions: The preliminary development and test of a predictive model of acute glucose response to exercise is
presented. Further work to improve this model is discussed.
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Introduction

Exercise has been widely recognized to ameliorate insulin
resistance and hyperglycemia in individuals with type 2
diabetes mellitus (T2DM) [1,2]. Studies that have examined
the acute effects of moderate exercise on blood glucose in
T2DM have generally demonstrated an immediate, lower-
ing effect of exercise on blood glucose levels [3-7].

To date, only one research group has attempted to de-
velop a predictive model of the acute blood glucose re-
sponse to exercise in individuals with T2DM [8]. Jeng
and colleagues examined the relationship of pre-exercise
blood glucose, exercise duration, percentage of Age Ad-
justed Maximum Heart Rate (% AAMHR), and sex on
blood glucose changes with treadmill walking [8]. They
reported that three of the four predictors (pre-exercise
blood glucose, exercise duration, and % AAMHR) were
significant. Their predictive model accounted for 37% of
the variance in glucose changes with exercise. In a separ-
ate study, similar results were found when individuals
performed arm exercise; however % AAMHR was not a
significant predictor in this case [9].

Our ultimate goal is to develop and validate a practic-
ally implementable predictive model of acute glucose re-
sponse to exercise. More specifically, we plan to develop
a model based on information that individuals with
T2DM should have available (e.g., latest hemoglobin
Alc), or that they could collect with tools at their dis-
posal (e.g., self-monitored blood glucose). Such a model
could be useful to individuals by serving educational and
motivational purposes, particularly if it were readily
available in their daily lives (e.g., embedded in a mobile
phone application). This project encompassed prelimin-
ary work toward that goal: We used data from prior tri-
als to identify significant predictors of blood glucose
change, and test potential mixed-effect model structures.
We then tested the resulting model in a second, pro-
spectively captured test dataset.

Research design and methods

Data for model development

We aggregated data from three prior diabetes and exer-
cise studies to determine the significant predictors and
to test potential model structures. These prior studies
were conducted in Virginia, USA [10]; Sao Paolo, Brazil
[11]; and Quebec, Canada [12]. The aggregated dataset
represents 56 individuals with T2DM performing 488
exercise sessions. All individuals were taking an oral dia-
betes medication and had complete data records for the
following variables: 1) pre-exercise blood glucose (mea-
sured no more than five minutes prior to the start of ex-
ercise); 2) post-exercise blood glucose (measured within
five minutes of exercise termination); 3) age; 4) sex;
5) hemoglobin Alc; 6) metformin status (dummy coded);
7) sulfonylurea status (dummy coded); 8) exercise session
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number; 9) minutes since last meal; 10) exercise dur-
ation; and 11) % of age adjusted maximum heart rate
(% AAMHR) during exercise. Additional file 1 includes
a table describing the three original datasets that were
combined to create the development dataset.

Data for testing the model

The data used to test the model were collected between
December 2009 and November 2011 from participants
in a supervised community exercise group at the Univer-
sity of Utah. For this analysis, we included data from
participants taking an oral diabetes medication who had
complete records on the variables identified as signifi-
cant in the model development phase. While data on in-
dividuals’ baseline physical activity levels was not
available, program staff stated that, similar to the trials
data, the majority of participants reported in engaging in
little to no physical activity in the 12 months preceding
enrollment.

Since both datasets were de-identified and the data
collected from the diabetes exercise group at the Univer-
sity of Utah was routinely collected on all participants,
this study was approved with a waiver of informed con-
sent by the University of Utah Institutional Review
Board.

Assessment of model error in relation to accuracy of
glucose measurements

The glucometers used in both the retrospective dataset
for model development and the prospective dataset for
model testing are designed for individual self-
monitoring. These glucometers are required to meet
the International Organization for Standardization
(ISO) specification for measurement error: + 0.83 mmol/L
if blood glucose is less than 4.2 mmol/L and + 20% other-
wise [13]. Therefore, model error in this study was defined
as an error greater than the measurement error of these
devices.

Transformation of minutes since eating

Based on prior evidence suggesting that the glycemic
lowering effect of exercise is greater postprandially than
pre-prandially [14], a dummy variable was created for
the postprandial state (< 120 minutes since eating when
exercise began vs. >120 minutes).

We also performed a non-linear transformation of mi-
nutes since eating. The first component of this trans-
formation was intended to model the variation in
postprandial insulin levels [15]. The second component
of the transformation was intended to model the in-
creasing effect of counter-regulatory hormones as the
time since eating increased beyond 180 minutes. The ef-
fect of these hormones is to promote glycogenolysis and
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therefore a smaller decrease, or even an increase, in glu-
cose compared to postprandial exercise [4,16].

For the transformation, we first divided the minutes
since eating variable into two vectors. The first vector
was the range of minutes since eating <180. This was
multiplied by 7, sine transformed, and normalized from
0-1. The second vector was the range of minutes since
eating >180. This vector was normalized from 0 to 1 and
multiplied by —1. The two vectors were then recombined
(see Additional file 1 for graph displaying the transformed
variable in relation to the variable prior to transformation).

Determination of significant predictors

The following twelve variables were candidate predic-
tors: pre-exercise blood glucose, age, sex, hemoglobin
Alc, metformin status (dummy coded), sulfonylurea sta-
tus (dummy coded) exercise session number, minutes
since last meal (as a linear predictor), non-linear minutes
since meal, post-prandial state, exercise duration, and
percent of age adjusted maximum heart rate during ex-
ercise (% AAMHR).

For variable selection, we used a mixed-effects LASSO
(Least Absolute Shrinkage Selection Operator) proced-
ure. As with ordinary multivariable linear regression, the
LASSO minimizes the sums of squares, but does so con-
tingent upon the sum of the absolute values of the
model coefficients being less than a tuning parameter,
S. The result of this penalization is that some model
coefficients are constrained to zero while the absolute
value of other coefficients increase [17]. The mixed-
effect LASSO accounts for the repeated measures
within subjects, and the unbalanced structure of the
data (i.e., varying number of exercise sessions for indi-
vidual subjects).

Since our goal was to use the LASSO procedure to iden-
tify novel predictors, we “forced” the predictors previously
identified to be significant by Jeng at al. (pre-exercise glu-
cose, % AAMHR, and exercise duration) (8), into the
model by including them unpenalized in the LASSO. We
then systematically decreased the penalization constant, in
0.1 decrements beginning from a point at which only the
unpenalized predictors were included, to a value of 0 (no
penalization). From the set of potential models output by
the LASSO, we selected the model for which the Bayesian
Information Criterion (BIC) statistic was minimized.

Determination of relative importance of predictors

Using the predictors that remained with non-zero coeffi-
cients after the LASSO, we applied the Lindemann
Merenda and Gold (LMQG) algorithm to estimate the
relative importance of each of the predictors. This algo-
rithm calculates the contributed proportion of variance
explained for each predictor averaged over orderings
among predictors [18]. Since this algorithm does not
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account for repeated measures within subjects, only data
from the first exercise session was used for this
estimation.

Rationale for mixed effects model

The data used in this analysis encompasses variation at
two levels: variation between subjects and variation
within subjects (repeated measures of blood glucose
levels from the same individual). We chose a mixed ef-
fects model because it can account for these two forms
of variability and improve the estimation of population
level (fixed) effects [19]. In addition the accuracy of these
models improves as the individual contributes more data,
supporting our goal of developing a practically useful
model [20].

Testing of model structure

We used a series of likelihood ratio tests to compare the
baseline mixed model (random intercepts only; grouped
by subject ID) to more complex models. These tests
were done sequentially, based on the relative importance
of predictors estimated by the LMG algorithm. Predic-
tors that vary within subjects were modeled as random
slopes (e.g. individual-specific coefficients for pre-exercise
glucose). Predictors that vary between individuals were
modeled as grouping factors for random intercepts
(e.g. individuals grouped within levels of hemoglobin
Alc). Within the Ilme package in R, random effects
are estimated as components of the full model using
the expectation—maximization algorithm [21].

Cross validation of model in development dataset

The resulting model was then tested in a leave one out
cross-validation using the development dataset. We cal-
culated model error as the percentage of predictions that
were within measurement error.

Testing of the model

To test the predictive accuracy of the model in the test
dataset, we iteratively partitioned the test data set into
training sets and test sets. For each subject and exercise
session, a training set was created, which included data
available prior to the exercise session of interest for that
particular subject, and all available data for all other sub-
jects. The model was constructed using this training set.
The predicted change in glucose was calculated based
on the subject and session of interest (test set) and com-
pared to the actual change in glucose. This approach
allowed the use of all of the data without creating a
biased estimate of predictive performance.

We assessed the model’s accuracy as the percentage of
predictions within measurement error. We calculated
model accuracy for all predictions and by prandial state.
To estimate the proportion of variance explained (R"2)
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by the model in the test dataset, we used a method re-
cently proposed by Nakagawa and Schielzeth [22]. This
method allows for independent estimation of the pro-
portion of variance explained in a mixed—effects model
by the fixed effects and also by the full model (combined
fixed and random effects). However, it does not allow for
estimation of R"2 in models with multiple levels of ran-
dom effects (e.g. random slopes within random inter-
cepts). Therefore, we used a model with only random
intercepts for these calculations.

We assessed the model’s practical utility by the num-
ber of individuals with <1 model error after the 3rd exer-
cise session. Finally, we assessed model error across
individuals graphically.

Post-hoc assessment of predictors of model error

Since our analysis pointed to significant inter-individual
variability in model performance, we conducted a post-
hoc analysis to see if we could determine a priori, whom
the model might work for. To this end, we created a
mixed-effects logistic regression model including variables
that were not accounted for in the predictive model. These
variables were: sex, metformin status, and the standard de-
viation of the individuals’ pre-exercise glucose and post-
exercise glucose levels in the exercise sessions prior to the
test set. The output of this model was the odds of a model
error. Odds>1 indicating a higher likelihood of model
error compared to individuals with average values for the
predictors in the model. Odds <1 indicating a decreased
likelihood of model error compared to individuals with
average values for the predictors in the model.

Software used

All analyses were performing using R, statistical comput-
ing software [23]. For the LASSO variable selection, we
used the Immlasso package [24]. To calculate the relative
importance of each predictor variable (i.e., the LMG algo-
rithm), we used the relaimpo package [18]. The mixed
effect predictive models were implemented using the Ime
function in the nlme package [25]. For the mixed effects
logistic regression model we used the Zelig package [26].

Results
Tables 1 and 2 describe the categorical and continuous
predictors used in this study. Table 1 presents the cat-
egorical data used in the study as counts (percent). Dif-
ferences between the development and test datasets for
categorical variables were tested using Chi-square
tests. Table 2 presents the continuous variables as
mean (+ standard deviation, SD). Differences between
the development and test datasets for each continuous
variable were tested using Wilcoxon rank-sum tests.
The values of the categorical and continuous variables
in Tables 1 and 2 might be considered typical values of
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Table 1 Categorical descriptors of the individuals and
exercise sessions

Data used for Data used for Chi-square
Predictor  odel development  model testing Test
name Counts (percent) Counts (percent) (P value)
Sex 38 Males (67.8) 23 males (48.9) 0.08
Sulfonylurea 39 =VYes (69.6) 18 =VYes (38.3) <001
Metformin 34 =VYes (60.7) 44 =Yes (93.6) <0.01
Postprandial 392 postprandial 157 postprandial <0001

state (80.3) (36.0)

individuals with T2DM treated with oral medications,
and the ranges indicative of the heterogeneity in this
population.

Predictors selected

Table 3 presents the variables selected by the LASSO
procedure using the development dataset. The coeffi-
cients of the model for which the Bayesian information
criteria were minimized are presented in the second col-
umn. The proportion of the variance explained by each
predictor and the 95% confidence interval for that esti-
mate (as calculated by the LMG algorithm), are
presented in the third column. A large proportion of the
variation in glucose changes was explained by pre-
exercise glucose levels (30.6%), followed by minutes
since eating (modeled three different ways: as a linear
predictor, a non linear predictor, and a dichotomous
prandial state), which accounted for 16.0% of the vari-
ance on average. Hemoglobin Alc explained another
3.6% of the variance on average. The remaining five vari-
ables together explained 5.0% of variance on average.

Testing of model structure
Table 4 presents the results of the series of likelihood ra-
tio tests we conducted to test potential model structures.

Table 2 Continuous descriptors of the individuals and
exercise sessions

Data used for Data used Wilcoxon

Predictor name for model Rank-sum
model development R
testing test
Mean (£SD) Mean (£SD) (P value)
Age (years) 543 (7.9) 55.9(9.7) 0.58
HbA1c (%) 7.1 (1.8) 6.9 (1.1) 0.86
Pre-exercise
glucose (mmol/) 95 (33) 78 (2.7) <0.001
Exercise
duration (min) 44.7 (14.6) 349 (103) <0.001
Percent Age-Adjusted
Maximum Heart 725 (3.7) 75.5 (8.7) <0.001
Rate (% AAMHR)
Time since meal (min) 121.5 (138.5) 182.3 (99.9) <0.001
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Table 3 Parameter estimates from the LASSO and
estimated proportion of variance explained

Coefficient Proportion of variance

explained*
Variable
(Development (Bootstrap derived
dataset) 95% CI")
Pre-exercise glucose* —046 30.6 (13.6-45.2)
Minutes since eating 0.002 79 (3.2-17.2)
Non linear minutes
since eating -0.1 49 (26-10.3)
(range =1to 1)
Hemoglobin Alc 0.24 36 (1.7-133)
Postprandial status 12 32 (19-8.1)
Exercise duration® -0.024 1.7 (0.7-9.1)
Percentage of mixwmum 183 15 (03-110)
heart rate
Sulfonylurea -0.2 1.0 (0.2-6.2)
Age —0.004 0.8 (0.2-7.9)
Exercise session number -0.06 NA**

1. CI Confidence Interval* These variables were unpenalized in the LASSO
**Since the LMG algorithm does not account for repeated measures, only data
from the first exercise session was used and therefore the relative contribution
of this variable could not be assessed.

The addition of random slopes for the variable pre-
exercise glucose significantly improved the model fit
over a random intercepts-only model (Likelihood ratio
34.5, P <0.0001). The additions of other variables, as ei-
ther random slopes or intercepts, were not significant.

Cross validated model error: development dataset

In cross-validation testing, the model predicted a change
in glucose with exercise within measurement error for
83.3% of predictions in the development dataset. Model
error varied by prandial state: for sessions where the

Table 4 Tests of potential model structure using
Likelihood ratio tests

Variable L|keI|hood Significance
ratio (P value)
Pre-exercise glucose 345 0.0001**
Minutes since eating 43 0.23
Non linear minutes
since eating 42 0.25
(range =1to 1)
Hemoglobin Alc 0.04 0.99
Postprandial status 15 0.68
Exercise duration 14 0.71
Percentage of maximum 095 097
heart rate
Sulfonylurea 0.12 0.99
Age 0.1 0.99
Exercise session number 3.6 031
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individual was postprandial, the accuracy was 82.4%.
Conversely, for exercise sessions during which the indi-
vidual was pre-prandial, model accuracy was 87.8%.

Testing the model

Model structure: test dataset

The model we tested using the test dataset implemented
the predictors and model structure determined using the
development dataset but did not use the estimated coeffi-
cients from that model. We chose this approach for two
reasons. First, our planned implementation of the model
will involve refitting the model as individuals contribute
more data; therefore we simulated this situation in testing
the model. Second, the two datasets differed significantly
across multiple predictors (Tables 1 and 2); using the coef-
ficients from the model fit in the development dataset
would have unnecessarily compromised model accuracy
in the test dataset.

Predicted vs. actual glucose change

Figure 1 presents model predictions vs. actual glucose
change in the test dataset. This figure suggests that
model errors are distributed relatively uniformly across
the range of outcomes. Overall the model predicted ex-
ercise related change in glucose levels with 80.2% accur-
acy. Similar to the results in the development dataset,
model accuracy differed based on individual’s prandial
state, with pre-prandial (83.6%) predictions being more
accurate than postprandial predictions (74.5%).

The proportion of variance explained (R*2) by the
model in the test dataset was assessed for the fixed ef-
fects alone, and for full the model. The fixed-effects
components of the model accounted for 66.8% of the
variance in change in glucose levels, while the full model
(fixed effects and random intercepts) accounted for
74.7% of the variance.

In our assessment of overall model utility, 31/47 sub-
jects had <1 model error after the third exercise session.
For the remaining 16 individuals, the number of model
errors after the third exercise session ranged between
two and five additional errors.

Model error by subject

Figure 2 presents model error by subject for the test
dataset. In this plot, each box represents an individual.
Subjects are ordered by their median absolute error so
that boxes on the left are those for whom the model per-
forms well and boxes on the right are those for whom
the model performs poorly (Figure 2). From this plot it
is evident that model errors are not uniformly distrib-
uted and the model performs better for some individuals
over others.
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Figure 1 Predicted glucose change vs. actual glucose change for exercise sessions performed in pre-prandial and postprandial states
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Predictors of model error

To investigate the heterogeneity in model accuracy
across subjects evident in Figure 2, we used a mixed ef-
fect logistic regression to examine the relationship be-
tween individual attributes and model error. In this
model, the within-subject standard deviation in pre-
exercise glucose levels was the only variable which was
associated with model error (Odds ratio =1.49, 95%
Confidence Interval = 1.23-1.74, P =0.003). To assess the
practical significance of this finding, we recreated the
boxplot of model error by individuals and ordered the
individuals by their within-subject standard deviation in
pre-exercise glucose. This plot is included in the
Additional file 1 and suggests that variability in pre-
exercise glucose is not practically useful to discriminate
individuals for whom the model predicts accurately from
those for whom the model is inaccurate.

Discussion

In this study, we used exercise trials data to identify novel
predictors of acute glucose response to exercise, examine
the relative importance of selected predictors, and test po-
tential model structures. We then used prospectively
obtained data to evaluate the predictive accuracy of the
developed model. Finally, we assessed the association be-
tween model error and individuals’ attributes.

This work led to interesting results. Apart from the
known predictors of acute glucose change with exercise
(i.e., pre-exercise glucose, % AAMHR and exercise dur-
ation), we identified minutes since eating, hemoglobin
Alc, age, sulfonylurea status, and exercise session num-
ber as additional novel predictors. Our results regarding
the relative importance of these predictors may attest to
their practical significance. For example, minutes since
eating and hemoglobin Alc together accounted for
19.2% of the variance on average, suggesting that these
are important predictors that should be included in fu-
ture models. Conversely sulfonylurea status, age, and ex-
ercise session number each accounted for 1.0% or less of
the variance in glucose change, indicating that although
they are statistically significant, their practical utility as
predictors may be limited. The heterogeneity of model
error across individuals led us to an important question:
do we know whom the model might work for? We
attempted to address this question by assessing the rela-
tionship between individual attributes and model error.
We found a statistically significant, but practically weak,
association between intra-individual pre-exercise glycemic
variability and model error. Therefore in this study we
could not a priori determine whom the model might work
for. Potential explanations for this between-subject vari-
ability in model accuracy include differences between indi-
viduals in exposures (e.g. medication regimens), and
genetics [27] that were unaccounted for by this study.

Page 7 of 9

Implementation of a model such as the one developed
and tested in this study will require an information system
that captures patient generated data (e.g. self monitored
glucose), integrates it with clinical data (e.g. HbAlc, medi-
cations) and uses the data to generate a personalized pre-
diction. With this in mind, after further development of
this model we intend to implement it within a mobile-
accessible integrated personal health record. The model
output will be presented as a change in a simulated glu-
cose curve [28] and this interactive simulation will be
presented in a manner that would both educate and mo-
tivate the user [29]. Users will be given the opportunity to
"play" with different exercise routines, observe the pre-
dicted effects on glycemia, and plan their own activity to
meet their goals.

Strengths

This study had several strengths. First, we used data
from a geographically diverse sample of individuals and
rigorous statistical methodologies to identify predictor
variables, and assess their relative importance. We be-
lieve these methods minimize the likelihood that our
identified predictors and model structure are anomalous
findings. Second, the model was tested in a separate,
prospectively collected dataset to establish its predictive
accuracy and practical utility. While the model was less
accurate than we might have hoped for, these results
provide a benchmark for future iterations of the model.
Finally, the relationship between model error and indi-
viduals” attributes was investigated to address the ques-
tion of whom the model might work for. This enabled
us to identify limitations of the model and develop re-
search questions for future work.

Limitations

This study has limitations that we plan to address in fu-
ture work. Measurement of glucose was performed with
a glucometer intended for individuals’ self-monitoring.
Our overarching goal was to develop a model that could
be used by individuals with diabetes, who rely on self-
monitored glucometer values to evaluate changes in glu-
cose levels in their daily lives. Given this contingency,
our methods were appropriate, however, it would be
preferable to assess model accuracy using a more strin-
gent reference standard. A second limitation was the
limited nature of the dataset used for model develop-
ment. For example, the model did not differentiate re-
sistance vs. aerobic exercise and did not include data on
the content of the subjects’ latest meal. We hypothesize
that inclusion of these variables may improve the accur-
acy of future versions of the model. A final problem was
that the data used in this study was observational and
therefore not balanced across prandial states or exercise
intensities. As a result we were not able to fully assess
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the role of prandial state and exercise intensity as pre-
dictors. In future work we plan to address these limita-
tions by experimentally manipulating and balancing
predictors within individuals and using a more accurate
blood glucose measurement method.

In summary, we developed and validated a model to
predict acute exercise induced changes in blood glucose
levels in individuals with type 2 diabetes. We are encour-
aged by these preliminary results and encouraged that
with further work a model based on this work might be
useful in clinical practice and in individuals’ self-
management of their disease. We believe the method
and approach used in this study generalize to the area of
personalized healthcare interventions.

Additional file

Additional file 1: Includes: 1) a graphic of the non-linear transformation
of minutes since eating. 2) descriptions of the three datasets aggregated
to create the development dataset. 3) an analysis of model error by
participant sorted by intra-individual glycemic variability.
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