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Abstract

metabolic syndrome.

Background: High dietary fat intake is a major risk factor for development of cardiovascular and metabolic
dysfunction including obesity, cardiomyopathy and hypertension.

Methods: The present study was designed to examine effect of high fat (HF) diet on cardio-vascular structure and
function in spontaneously hypertensive rats (SHR), fed HF diet for 15 weeks, a phenotype designed to mimic

Results: Development of metabolic syndrome like phenotype was confirmed using parameters, including body

weight, total cholesterol and blood pressure levels. High fat diet impaired vascular relaxation by acetylcholine and
exacerbated cardiac dysfunction in SHRs as evidenced by lower left ventricular function, and higher coronary
resistance (CR) as compared to controls (p < 0.05). The histological examination revealed significant myocardial and
peri-vascular fibrosis in hearts from SHRs on HF diet. This cardiac dysfunction was associated with increased levels
of inflammatory cytokines, COX-2, NOX-2, TxB2 expression and increase in superoxide (O,) levels in SHR fed a HF
diet (p < 0.05). HO-1 induction via cobalt-protoporphyrin (CoPP,3 mg/kg), in HF fed rats, not only improved cardiac
performance parameters, but also prevented myocardial and perivascular fibrosis. These effects of CoPP were
accompanied by enhanced levels of cardiac adiponectin levels, pAMPK, peNOS and iNOS expression; otherwise
significantly attenuated (p < 0.05) in HF fed SHRs. Prevention of such beneficial effects of CoPP by the concurrent
administration of the HO inhibitor stannic mesoporphyrin (SNMP) corroborates the role of HO system in mediating
such effects.

Conclusion: In conclusion, this novel study demonstrates that up-regulation of HO-1 improves cardiac and vascular
dysfunction by blunting oxidative stress, COX-2 levels and increasing adiponectin levels in hypertensive rats on HF

diet.
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Background

Obesity and hypertension are two major risk factors that
lead to increased incidence of cardiac diseases including
coronary artery disease, heart failure and cardiomyopa-
thy [1-3]. Blood pressure, which strongly correlates with
body mass index, is one of the most important determi-
nants of cardiovascular function [4]. In addition, obesity

* Correspondence: nader.abraham@utoledo.edu

t Contributed equally

’Department of Physiology and Pharmacology, College of Medicine,
University of Toledo, Toledo, Ohio, 43614, USA

Full list of author information is available at the end of the article

( BiolMed Central

also leads to abnormal cardiac function through
mechanisms that are independent of hypertension [5,6].
Metabolic syndrome is a clinico-pathological condition
which entails superimposition of these abnormalities
and is characterized by systemic inflammation and oxi-
dative stress [3,7] A combination of these risk factors
leads to disruption of metabolic homeostasis and may
further contribute towards progressive cardiovascular
dysfunction.

The heme-HO system, comprising of HO-1 (induci-
ble) and HO-2 (constitutive) isoforms, is one of the key
defense mechanisms against oxidative stress [8]. This
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effect of HO system is attributable, in large part, to the
antioxidant and anti-apoptotic properties of the heme
degradation products, bilirubin/biliverdin and carbon
monoxide (CO) [9]. Previous studies have shown that
upregulation of HO-1 exerts a cardio protective effect in
hypertensive rats [10-14] by reducing myocardial hyper-
trophy, oxidative stress and inflammation. Over expres-
sion of HO-1 is also known to cause adipose tissue
remodeling by increasing adiponectin in obese and non-
obese diabetic rats and mice [15-18] along with obesity
associated suppression of inflammatory cytokines. Adi-
ponectin is an adipose tissue-specific protein that has
been shown to have antiatherogenic, antihypertensive
and insulin-sensitizing properties [19-21]. An inverse
relationship exists between plasma adiponectin levels
and systolic blood pressure as well as vascular dysfunc-
tion in obese subjects and animals [19,22]. HO-1 func-
tions as a stress response/chaperone protein and
increases adiponectin levels which may cause activation
of AMPK-AKT signaling [23-25], which contributes to
improved NO bioavailability, vascular function, glucose
transport and fatty acid oxidation [26,27]. Thus, altera-
tions in the heme-HO system not only influence vascu-
lar function but also modulate metabolic and
cardiovascular processes which, in turn, are dependent
upon activation of adiponectin/ AMPK pathways.

The beneficial role of HO enzyme system in animal
models of obesity and hypertension are clearly defined
but paucity of evidence exists regarding similar effects
in co-morbid conditions such as hypertension and obe-
sity. In light of this evidence, the aim of this novel
study was to explore the potential effect of HO-1
induction in spontaneously hypertensive rats (SHR) fed
a high fat diet, a phenotype designed to mimic meta-
bolic syndrome. We tested our hypothesis by using a
well-described high fat regimen [28] that does not
cause atherosclerotic lesion formation in mice [29], to
address the effects of a known HO-1 inducer, cobalt
protoporphyrin (CoPP). To verify that the effects of
CoPP were due to an increase in HO-activity, we also
treated a group of SHR concurrently with stannous
mesoporphyrin (SnMP) to inhibit HO activity. Our
results show that obesity exacerbates myocardial and
vascular damage in SHRs, and HO-1 induction
improves heart function in parallel with increased adi-
ponectin levels and reduced expression of myocardial
pro-inflammatory enzymes such as COX-2 and iNOS.
Thus, HO-1 appears to play a critical role in the cellu-
lar defense against obesity-induced cardiovascular dys-
function in a hypertensive animal model fed a high fat
diet. These findings may have important clinical impli-
cations in the management of patients with metabolic
syndrome.
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Methods
Animal treatment
All animal studies were approved by the New York
Medical College Animal Care and Use Committee in
accordance with the National Institutes of Health
Guidelines for Care and Use of Laboratory Animals.
Fifty-eight seven-week-old male SHRs were purchased
from Charles River Laboratories and were divided into
four groups: A) SHR control, B) SHR-fat, C) SHR-fat
and CoPP treatment, D) SHR-fat and CoPP and SnMP
treatment. SHR rats were fed ad libitum either with a
normal diet (group A) containing 11% fat, 62% carbohy-
drate, and 27.0% protein total, 12.6 KJ/g or a high fat
diet (groups B, C, D) containing 58% fat from lard,
25.6% carbohydrate, and 16.4% protein yielding 23.4 KJ/
g (Bio-SERV, Frenchtown, NJ) for 15 weeks [28,30]. The
diet used is distinct from the so-called “Western” or
“atherosclerotic” diet which contains, in addition to high
fat, cholesterol and bile acids. While the high fat diet
used in the present study results in obesity, it does not
cause atherosclerotic lesion formation in mice [29].
After 4 weeks of high fat diet, cobalt protoporphyrin
(CoPP), an inducer of HO-1, was administered intraperi-
toneally once a week (3 mg/kg) for 11 weeks to SHR
rats maintained on a high fat diet. Some of the SHR
treated with CoPP were concurrently treated with tin
mesoporphyrin IX dichloride (SnMP), to inhibit HO
activity, which was administered intraperitoneally three
times a week (20 mg/kg) [11] to ascertain that any
effects of CoPP treatment were related to increased HO
activity. The untreated SHR rats maintained on the high
fat diet were administered the vehicle for CoPP and
SnMP once a week and 3 times a week respectively (0.1
mM sodium citrate buffer pH 7.8) for 11 weeks.

Rats were weighed every 7 days and systolic blood
pressure was determined weekly by the tail-cuff method.

After a 6-hour fast, rats were anesthetized with
sodium pentobarbital (65 mg/kg, i.p.) and blood was
obtained from a tail vein for glucose measurement using
a glucometer (Lifescan Inc., Miligitas, CA). Blood sam-
ples were then collected and stored as previously
described [15].

Isolated Heart Preparation

Three days after the last CoPP (or vehicle) injection, rats
were anaesthetized with pentobarbital, i.p., and hepari-
nized via the left femoral vein (250 units/kg). The heart
was rapidly excised, placed in cold perfusion medium
and weighed. The isolated hearts were attached to the
Langerdorff apparatus and retrogradely perfused (at 37°
C) using constant perfusion pressure of 80 cm H,O,
then perfusion pressure was decreased to 20 mmHg for
30 min, and then pressure was increased back to 80
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mmHg for the remaining 30 min (reperfusion) [29]. The
perfusion medium consisted of oxygenated Krebs-Hen-
seleit buffer [31,32]. For measurement of ventricular sys-
tolic and end diastolic pressure (EDP), latex balloons
were inserted into the left ventricle of the heart through
the mitral valve and connected to a Harvard pressure
transducer. In each experiment EDP was set at 10
mmHg and kept stable during the first 10 minutes of
perfusion. Coronary perfusion pressure (CPP) was moni-
tored by a second pressure transducer connected to the
aortic cannula. Left ventricular developed pressure
(LVDevP), EDP, dP/dTmax and dP/dTmin were all
derived or calculated from the continuous monitoring of
the LV pressure signal. In all experiments, coronary flow
was continuously monitored by collecting the cardiac
effluent. Coronary resistance (CR) was defined as input
pressure divided by coronary flow per gram of myocar-
dial tissue (mmHgxminxg/mL). At the end of each
experiment, hearts were collected, half were used for
histology examination and half of them were rapidly fro-
zen in liquid nitrogen and stored at -80°C.

Assessment of Myocyte Cross-Sectional Area, Myocardial
Fibrosis and Collagen in Myocardial Tissue

Hearts were fixed in 10% buffered formalin, and
embedded in paraffin wax and sectioned to 5 um. For
measurement of the cross-sectional area, 100 cells (per
animal) from the left ventricular wall were randomly
chosen and analyzed in hematoxylin staining. The myo-
cyte cross-sectional area and myocardial fibrosis were
quantitatively analyzed with Image Pro-Plus 4.5.1 soft-
ware in digitalized microscopic images. Myocardial
fibrosis in the tissue sections was quantitatively analyzed
by morphometry in 2 ways: (1) on the perivascular
fibrosis, and (2) on myocardial tissue (total fibrosis
index). The collagen in myocardial tissue was visualized
by Sirius Red staining under polarization microscopy
and then quantified.

Assessment of Vascular Reactivity

The aorta was removed, cleaned of fat and loose con-
nective tissue, placed in cold Krebs-bicarbonate solution,
and sectioned into 3-mm-long rings. Vasorelaxation
responses of phenylephrine-constricted arteries to
cumulative increments in acetylcholine (10 to 107
mol/L) were examined in the presence of indomethacin
(10 umol/L) as described [33].

Western Blot Analysis of Cardiac Tissue for protein
expression

At the time of sacrifice, hearts were harvested, and
stored at -140°C. Frozen hearts were pulverized under
liquid nitrogen and placed in a homogenization buffer
prior to immunoblotting with antibodies against HO-1,
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and HO-2 (Stressgen Biotechnologies Corp., Victoria,
BC), COX-2, TX synthase, NOX-2, AKT, AMPK,
pAMPK(Thr172), pAKT and adiponectin (Cell Signaling
Technology, Inc., Beverly, MA) and eNOS, peNOS(ser-
ine 1177), and iNOS (Santa Cruz Biotechnology, Santa
Cruz, CA). Immunoblotting was performed in cardiac
tissue as previously described [15,33].

Measurement of HO activity

HO activity in heart tissue was assayed as described pre-
viously [15] using a technique in which bilirubin, the
end product of heme degradation, was extracted with
chloroform, and its concentration was determined spec-
trophotometrically (dual UV-visible beam spectrophot-
ometer Lambda 25; PerkinElmer Life and Analytical
Sciences, Waltham, MA) using the difference in absor-
bance at a wavelength from 460 to 530 nm, with an
extinction coefficient of 40 mM™ cm™.

Measurements of O, production and total cholesterol
levels

Total cholesterol was measured in serum using a choles-
terol Quantification Kit (Biovision, Mountainview, CA)
according to the manufacturer’s instructions. For the
detection of O,", homogenized hearts were placed in
plastic scintillation vials containing 5 pmol/I lucigenin in
a final volume of 1 ml of air-equilibrated Krebs solution
as described previously [15].

Plasma Adiponectin and inflammatory cytokines
Measurements

The high molecular weight (HMW) HMW form of adi-
ponectin, IL-6, TNF-a and TXB2 levels were deter-
mined using an ELISA assay (Pierce Biotechnology, Inc.,
Woburn, MA) as described previously [15].

Statistical Analysis

The data are presented as mean + standard error (SEM)
where n = 6/group for the results. For comparison
between treatment groups, the Null hypothesis was
tested by a single factor analysis of variance (ANOVA)
for multiple groups or unpaired ¢-test for two groups.
Statistical significance (p < 0.05) between the experi-
mental groups was determined by the Fisher method of
analysis for multiple comparisons.

Results

Effect of a high-fat diet on body weight and metabolic
response

Figure 1A shows the percent change in body weight
over its baseline values in the 4 groups. In untreated
SHR rats body weight increased 54% + 5.5 on a normal
diet over a period of 15 weeks, whereas in rats fed a
high fat diet body weight increased 79% + 3.7 (p < 0.05).
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Figure 1 Effect of a high fat diet and treatment with CoPP and CoPP + SnMP in SHR (n = 14 per group) on A) % of body weight gain.
*p < 001 vs. control, p < 0.05 vs. high fat B) Blood pressure, which was measured by tail cuff method. *p < 0.01 vs. control, #p < 0.01 vs. HF, tp
< 0.01 vs. HF+ CoPP. €) plasma total cholesterol levels. *p < 0.05 vs. control, #p < 0.05 vs HF, tp < 0.05 vs HF+CoPP.

The total body weight observed after 15 weeks of study
was 367 + 10.7 gms in SHR controls and 419 + 6.3 gms
in SHR rats fed a high fat diet (data not shown). We
also examined the effect of long-term CoPP treatment
on body weight gain in response to a high fat diet.
Weekly treatment with CoPP was started 4 weeks after
the initiation of the high fat diet and was well tolerated
by the SHR (n = 14/group); activity and grooming were
maintained during CoPP treatment. Rats fed a high fat
diet and concurrently exposed to CoPP, showed reduc-
tion in body weight as compared to SHR rats on high
fat diet, 68% + 2.4 (p < 0.05). A significant increase in
body weight was seen when animals fed a high fat diet
were exposed to CoPP + SnMP. The weight gain was
75% + 4.9 and was not significantly different from ani-
mals fed a high fat diet. The total body weight observed
after 15 weeks of study in rats fed a high fat diet and
concurrently exposed to CoPP was 386 + 9.7 gms and
was increased to 416 + 8.1 gms in SHR rats fed a high
fat diet and treated with CoPP and SnMP (data not
shown).

Systolic blood pressure was increased over the 15-
week period in SHR rats (Figure 1B; n = 6/group). The
systolic blood pressure was 175 + 11 mmHg in the SHR
control and was significantly increased in the rats fed a
high fat diet, 211 + 9 mmHg (p < 0.05). The elevation
in systolic pressure was attenuated by CoPP treatment
in SHR fed a high fat diet whereas SnMP treatment nul-
lified the antihypertensive effect of CoPP in SHR fed a
high-fat diet (Figure 1B). The mean blood glucose level
in the SHR rats maintained on a normal diet was 128 +
4 mg/dl, and was increased to 173 + 14 mg/dl by a high
fat diet (p < 0.05; n = 6/group) (data not shown). This
increase in blood glucose levels was significantly attenu-
ated by CoPP treatment in SHR rats fed a high fat diet
(137 £ 4.5 mg/dl) and this effect was reversed by treat-
ment with SnMP (180 + 7.8 mg/dl) (data not shown).

Plasma cholesterol levels remained elevated in SHRs
fed a high-fat diet as compared to their controls. Plasma
cholesterol levels were 0.55 + 0.11 in SHRs fed a normal
diet for 15 weeks, and levels were increased to 1.25 +
0.15 mg/dL by 15 weeks on the high-fat diet (P < 0.05)
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(Figure 1C). CoPP treatment prevented the increase in  administration of SnMP did not significantly reversed
cholesterol levels in SHR while concomitant treatment the effect of CoPP (Figure 2C).
with SnMP blocked the effect of CoPP.

Effect of high fat diet on CR and cardiac function during
Effect of high fat diet on cardiac parameters ischemia/reperfusion
The collagen III was higher in hearts of SHRs fed a high ~ Our results show that during low perfusion pressure (i.e.
fat diet (P < 0.05) when compared to untreated animals  ischemia), CR increased over baseline values in all
(Figure 2A). The perivascular fibrosis index was higher  groups, but CR in SHR mice was significantly higher
in SHRs fed a high fat diet than those animals fed a nor-  than in controls (p < 0.05)(Figure 3A). This phenom-
mal diet (P < 0.05) (Figure 2B). CoPP administration enon, defined as ‘paradoxical vasoconstriction’, has been
prevented the occurrence of these increases in animals  described previously by our group in both control and
fed a high fat diet on perivascular fibrosis while concur-  diabetic animals [34]. CoPP modulated coronary tone
rent administration of SnMP did not significantly  during the ischemic period significantly reducing vaso-
reversed the effect of CoPP(Figure 2B). The myocyte constriction. After 30 min of reperfusion, CR was still
cross-sectional area was increased by a high fat diet in  significantly increased over baseline values in high fat
SHRs. CoPP treatment prevented the increase in myo-  hearts (p < 0.05), while CR in High fat CoPP group
cyte cross-sectional area  while concurrent returned to baseline values (Figure 3A). The CoPP-

A Total Myocardial Fibrosis B Perivascular Fibrosis
gl B[
£ €
S 8 x *
o % . ‘ $1.4
. c £
w > g 70 ; g 1.0
& g 60 508
: £ 50 L o6
— c 1) .
o 40 8
> 30 s 304
o : = LS 8
+ ol 3 20 T 9| 0.2
w5 o Ol >
=0 & & & ¢« X &
— ¢ &2 .& fa IR PR
o ¥R PR o= € L
oo c oy of X9
o= &S + 0
O c . x | TH
Z 2 =
I M coLLIl [J coLLI
c g
Myocyte Cross-sectional Area © 800 *
s 700
#
HE+ HF+CoPP 2 600
Control +SnMP 8NE 500
: - @ 5 400
S 300
g 200
s 100
3
= Control  HF HF+  HF+CoPP

CoPP +SnMP

Figure 2 Histology change of the heart. A) Total myocardial fibrosis. Transverse section of left ventricle stained with Sirius Red and observed
under light and polarized microscope. Whole collagen is red stained and indicated by arrows. Type | collagen is green-yellow, while Type |ll
collagen is orange-red. Bar. 50 um. *p < 0.01 vs. control, p < 0.05 vs. HF, T p < 0.05 vs HF+ CoPP B) Perivascular fibrosis. Transverse sections of
intramuscular arteries with perivascular fibrosis stained with Sirius Red and observed under light and polarized microscope. Bar. 100 um. *p <
0.01 vs. control, #p < 0.05 vsHF. C) Myocyte cross-sectional area. Left ventricular myocyte cross-sectional areas stained with hematoxylin. The
myocyte cross-sectional area and myocardial fibrosis were quantitatively analyzed with Image Pro-Plus 4.5.1 software in digitalized microscopic
images. For measurement of the cross-sectional area, 100 cells (per animal) from the left ventricular wall were randomly chosen and analyzed in
hematoxylin staining. Bar. 50 um. *p < 0.01 vs. control, #p < 0.05 vs. HF.
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Figure 3 Effect of a high fat diet, COPP and SnMP on coronary resistance and LV function. Isolated heart from control SHR rats after HF
diets, HF rats, HF+CoPP and HF+CoPP+SnMP were studied in Langerdorff configuration with a protocol of ischemia/reperfusion. Coronary
resistance (CR) (Figure 3A), left ventricular developed pressure (LVDevP) (Figure 3B), dP/dtmax(Figure 3C) and dP/dtmin (Figure 3D) in each stage
of ischemia/reperfusion, i.e. baseline (bas), low pressure perfusion (Low P i.e. ischemia) and high pressure i.e.reperfusion (Rep) in SHRs, The results
are means + SE, *p < 0.05 vs. control, # p < 0.05 vs. HF, tp < 0.05 vs. HF+ CoPP.
J

"normalization” of coronary tone at reperfusion in HF
hearts was mirrored by better overall cardiac function
during both low pressure ischemia and reperfusion
times. Indeed, LVDevP (Figure 3B), dP/dtmax (Figure
3C) and dP/dtmin (Figure 3D) were all significantly
improved compared to the untreated group (p < 0.05).

Effect of high fat diet on Vascular Reactivity and
superoxide levels

Aortic endothelial dilatory responses to acetylcholine (at
concentration of 10> and 10™* mmol/L respectively)
were significantly impaired in SHRs after 15 weeks of a
high-fat diet compared with those fed a normal diet (P
< 0.05) (Figure 4A). Endothelial function was improved
in SHRs as a result of the CoPP treatment (P < 0.05),
but exacerbated by SnMP (Figure 4A) indicating that it
is specifically the endothelial dilatory response that is

impaired by a high fat diet in this animal model. Cardiac
oxidative stress was increased as cortical superoxide
generation was greater in SHR fed a high fat diet com-
pared with rats fed a normal diet (Figure 4B where n =
6/group), (p < 0.05). CoPP treatment prevented the
increase in cardiac O,  generation in SHR maintained
on a high fat diet (p < 0.01), an effect abolished by con-
current administration of SnMP.

Effect of high fat diet on plasma adiponectin,
inflammatory cytokines and TxB2 Levels

Plasma IL-6 and TNF-a (Figure 5A and 5B) levels were
greater in SHR fed a high fat diet compared to rats fed
a normal diet (n = 6/group),(p < 0.05). Increasing HO-1
by CoPP administration significantly decreased plasma
cytokines and this effect was prevented by concurrent
SnMP treatment (p < 0.01, Figure 5A and 5B). Similar
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pattern was observed in plasma TxB2 levels as shown in
Figure 5C (n = 6/group), (p < 0.05). Plasma adiponectin
levels were lower in rats fed a high fat diet when com-
pared to control animals fed a normal diet (p < 0.05; n
= 6/group) (Figure 5D). This effect was reversed when
rats were treated with CoPP (p < 0.05). Indeed, in SHR
rats maintained on a high-fat diet and treated with
CoPP, plasma adiponectin levels were higher than those
in the respective control groups (p < 0.05). Concurrent
administration of SnMP with CoPP in the SHR fed a
high fat diet prevented the increase in adiponectin, so
that the levels of this protein were not different from
those in the untreated SHR.

Effect of high fat diet on Cardiac COX-2, TxA2 and NOX-2
Levels

Hearts isolated from SHRs fed a high fat diet showed a
significant increase in markers of oxidative stress com-
pared to animals fed a normal diet (p < 0.05, respec-
tively) (Figures 6A, B and 6C). Treatment with CoPP
resulted in a decrease in COX-2, TxA2 and NOX-2
expression in SHRs fed a high fat diet (p < 0.01 respec-
tively), an effect abolished by concurrent administration
of SnMP.

Effect of high fat diet on cardiac HO-1

First, we confirmed that CoPP treatment for 11 weeks
resulted in up-regulation of HO-1. HO-1 protein in the
hearts of SHR fed a high fat diet was significantly less
than that of the respective control group (Figure 7A

where n = 6/group) when the latter was fed a normal
diet (p < 0.05). Treatment with CoPP resulted in a sig-
nificant increase in HO-1 levels in SHR fed a high-fat
diet. Although SnMP treatment showed a significant
increase in HO-1 expression (Figure 7A), it is a potent
inhibitor of HO activity as shown previously [11,35] and
thus prevents heme degradation and inhibits formation
of CO and biliverdin. HO-2 levels were unaffected either
by high fat diet or by CoPP treatment (Figure 7A). Con-
sistent with protein expression, HO activity was signifi-
cantly decreased in obese SHR hearts compared to the
control group (Figure 7B). CoPP treatment significantly
increased HO activity in SHR fed a high fat diet, 1.45 +
0.20 nmol bilirubin/mg/hr compared to 0.39+0.09 nmol
bilirubin/mg/hr in untreated SHR fed a high fat diet (p
< 0.001). The concurrent administration of SnMP
resulted in significant decrease of HO activity as shown
in Figure 7B.

Effect of high fat diet on Cardiac adiponectin, pAMPK and
PAKT Expression

Cardiac adiponectin levels, normalized against -actin,
exhibited a similar pattern to plasma adiponectin levels.
Thus, feeding SHR a high fat diet for 15 weeks resulted
in a decrease in adiponectin compared to untreated
SHR (Figure 8; n = 6/group). Induction of HO-1 with
CoPP increased cardiac adiponectin levels in hyperten-
sive rats (p < 0.01) and the increase in SHR was pre-
vented and reversed to a decrease when the rats were,
also, treated with SnMP to inhibit HO activity (Figure
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8). A high fat diet resulted in significant decreases in
pAMPK and pAKT expression in hearts from SHR (p <
0.05; n = 6/group) (Figure 8). CoPP administration
caused a significant increase in the expression of pAKT
and pAMPK in the rats fed a high fat diet (p < 0.05)
compared to untreated rats fed a high fat diet. The
changes in expression of pAMPK and pAKT paralleled
those seen with HO-1 protein expression. In SHR main-
tained on a high fat diet and treated with CoPP, the
concurrent administration of SnMP prevented the
increase in pAKT and pAMPK; indeed, the expression
of both pAKT and pAMPK was reduced to levels lower
than those seen in SHR on the high fat diet alone (p <
0.01).

Effect of high fat diet on Cardiac eNOS, peNOS and iNOS
Levels

Compared to animals fed a normal diet, SHR animals
fed a high fat diet exhibited lower levels of eNOS and
peNOS protein (p < 0.05) (Figure 8) CoPP administra-
tion produced an enhanced expression of eNOS and

peNOS protein (p < 0.05 compared to untreated ani-
mals) in SHRs fed a high fat diet (Figure 8). In contrast,
SnMP administration resulted in eNOS and peNOS pro-
tein in SHRs fed a high fat diet (Figure 8). Hearts iso-
lated from SHRs fed a high fat diet showed a significant
increase in iNOS expression compared to animals fed a
normal diet (p < 0.05, respectively) (Figures 8). Treat-
ment with CoPP resulted in a decrease in iNOS in
SHRs fed a high fat diet (p < 0.0, Figure 8). In contrast,
SnMP did not prevent the increase of iNOS expression
in SHRs fed a high fat diet (Figures 8).

Discussion

The results of the present study demonstrate that SHR
fed a high fat diet develop patho-physiological abnorm-
alities similar to that observed in metabolic syndrome.
This phenotype is characterized by increased levels of
body weight, blood cholesterol and blood pressure along
with an accelerated decline in cardiac function when
compared to SHR maintained on a normal diet. We,
also, demonstrated that cardiac HO-1 induction,
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accompanied by increased plasma and tissue adiponectin
levels, resulted in the improvement of cardiovascular
function as manifested by a decrease in blood pressure,
coronary resistance (CR), myocardial fibrosis; and
increase in left ventricular function and vascular relaxa-
tion, as compared to control. The upregulation of HO-1
was associated with a concomitant decrease in the levels
of 0,7, COX-2 and iNOS, markers of oxidative stress.
Furthermore, there was a decrease in cardiac remodel-
ing, and an increase in the expression of cardiac pAKT,
pAMPK and peNOS via induction of HO-1-adiponectin
axis. To the best of our knowledge, this is the first
report showing a protective effect of HO-adiponectin
axis in a co-morbid condition where a pre-existing car-
dio-vascular pathology is further aggravated by addition
of a HF diet.

High fat intake increased body weight, serum choles-
terol and blood pressure in SHR and these changes in
metabolic indices were associated with cardiovascular

dysfunction in these animals. Previous studies have
shown that HO-1 induction decreases obesity, reduces
levels of visceral and subcutaneous fat and normalizes
the metabolic profile in obese rats and mice
[15,17,36,37]. Also HO-1 overexpression is known to
improve cardiovascular dysfunction in hypertensive rats
[7,11]. In contrast, in the current study we induced a
metabolic syndrome-like phenotype in hypertensive ani-
mals. SHR demonstrate chronic hypertension, oxidative
stress and cardiac damage [38]. All of these parameters
were worsened by the addition of high fat diet, strength-
ening our hypothesis that obesity and the associated
metabolic abnormalities accelerate pathological pre-
existing cardiovascular changes. Reversal of these patho-
physiological abnormalities by HO-1-adiponectin induc-
tion corroborates the protective effects of the heme-oxy-
genase system in such a setting.

Metabolic syndrome-mediated increases in oxidative
stress contribute to cardiovascular dysfunction via
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endothelial cell sloughing and beta cell apoptosis [39].
Sustained increases in O, levels and cytokines, includ-
ing TNF-a and its receptor, lead to monocyte pheno-
type transition, myocytic apoptosis, and activation of
matrix metalloproteinase. This, in turn, modifies the
interstitial matrix, augmenting further ventricular
remodeling [40,41]. COX-2 is considered a pro-inflam-
matory enzyme as free radicals and prostaglandins
(PGs) are produced during its catalytic cycle [8]. It has
been shown in our previous reports that upregulation
of HO-1 decreases vasoconstrictors, such as cyclooxy-
genase (COX-2), PGs and thromboxane syntheses
(TxA2) levels [8,42] by regulating the cellular heme
levels and ROS. The heme-HO system is a stress
response system (reviewed in [8] that undergoes activa-
tion under conditions of increased oxidative stress
such as those presented here. Induction of HO-1
resulted in decreased cardiac levels of superoxide and
NOX-2 expression which may be due to a decrease in
the levels of NADPH oxidase [43], a heme-dependent
protein, and/or an increase in the levels of superoxide
dismutase EC-SOD [44]. Also in the present study,
increased cardiac iNOS expression and impaired vascu-
lar relaxation in rats fed a high-fat diet was reversed by
HO-1 induction which may involve the interplay of
one of the various mechanisms including, CO genera-
tion, HO-1-induced increase in eNOS expression and
increased NO bioavailability due to an increase in cel-
lular antioxidants [37,45-47].

In the present study, a decrease in coronary vascular
reactivity manifested by coronary resistance, myocardial
fibrosis and cardiac function was found in SHRs fed a
high fat diet. The increase in expression of HO-1/adipo-
nectin reverses these deleterious effects with a resultant
improvement in energy metabolism and an amelioration
of the damaged endothelial and cardiac function seen in
SHRs fed a high fat diet. We studied coronary microvas-
cular reactivity and hemodynamics in the isolated,
empty, beating heart of SHRs fed a high fat diet. This
was prevented in CoPP-treated animals by SnMP sug-
gesting the seminal role of increased HO activity in
instigating the changes attributable to increased HO-I
expression. This finding highlights the role of the HO
system in the preservation of microvascular and cardiac
function.

Apart from effects on heme degradation products,
HO1 up-regulation was associated with increased car-
diac and plasma levels of adiponectin. This causality
between HO activity and adiponectin release was
strengthened by the inhibitory effects of SnMP on both
HO activity and adiponectin levels. It has been recently
shown that the beneficial effects of heme- HO system in
established cardiovascular-metabolic disorders is
mediated, at least in part, via its effect on adiponectin-
dependent pathways [15,48,49]. Results presented in the
current study support and advance our hypothesis that,
in addition to its antioxidant properties, the heme-oxy-
genase system enhances the adiponectin axis which, in
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from SHRs. Data are shown as mean band density normalized relative to B-actin or pAMPK/AMPK ratio or pAKT/AKT or p-eNOS/eNOS ratio. n =

turn, modulates multiple physiological processes and
may contribute towards HO-mediated attenuation of
cardiac dysfunction [17,18,50].

The HO-1-mediated increase in adiponectin was asso-
ciated with an increase in cardiac pAMPK-pAKT signal-
ing and cross-talk between AMPK and AKT levels
appear to correlate with HO-1 and adiponectin levels
[16,18,25,51]. This is of particular importance in the set-
ting of myocardial ischemia of SHR rats fed a high fat
diet due to the very-high-energy demands and low-
energy reserves of the heart. Amplifying signaling
through AMPK by HO-1 induction during early reperfu-
sion is beneficial to the injured myocardium due to the
ability of AMPK to promote ATP generation [52,53] and
to attenuate cardiomyocyte apoptosis [54]. An increase in
AMPK-AKT signaling is considered an important meta-
bolic response that is necessary for the attenuation of
ROS-mediated cardiac and endothelial dysfunction [55]
and both pAMPK and pAKT use eNOS as a substrate
and enhance the levels of peNOS [8,56,57]. The results of

this study support this link as induction of HO-1-adipo-
nectin axis, also, increased peNOS expression in the
heart of SHR. The seminal role of increased HO-1
expression and HO activity in cardiac protection is
further strengthened by the results obtained when SnMP
was concurrently administered with CoPP; the inhibition
of HO activity prevented the beneficial effects of HO-1
induction in obese SHR with regard to blood pressure,
adiponectin, pAKT and pAMPK. In summary, these
observations support the beneficially role of pharmaco-
genetic interventions targeted towards HO-1-adiponectin
axis in patients with metabolic syndrome. Such patients
often exhibit chronic energy imbalance along with a wide
array of cardiovascular abnormalities amenable to aggra-
vation by confounding factors such as diet induced obe-
sity. Restoration of metabolic homeostasis by activation
oh HO-1-adiponectin axis could not only improve the
energy profile but also attenuate associated cardiovascu-
lar patho-physiological alterations observed in the
patients with metabolic syndrome.
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Conclusion

In conclusion, the results of the present study demon-
strate that upregulation of HO-1 in association with
increased levels of adiponectin prevents vascular and
cardiac dysfunction in SHRs fed a high fat diet, a phe-
notype designed to mimic metabolic syndrome. The
pharmacological enhancement of HO-1 expression,
resulting in a phenotype resistant to injurious stimuli,
permits the heart to initiate a crucial and immediate
defense against the events associated with the meta-
bolic syndrome, thereby preventing the continued
deterioration in cardiac function associated with this
disease.
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