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Abstract
Background: High intake of dietary fructose is accused of being responsible for the development of the insulin 
resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can 
promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a 
decreased biological response to normal levels of plasma insulin.

Methods: Oral glucose tolerance tests (OGTT) were carried out, homeostasis model assessment of insulin resistance 
(HOMA) was calculated, homocysteine (Hcy), lipid concentrations and markers of oxidative stress were measured in 
male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose 
diet (HFD), and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p.) route for 35 days.

Results: Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, 
hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy), lower total antioxidant capacity (TAC), 
lower paraoxonase (PON) activity, and higher nitric oxide metabolites (NOx) concentration, when compared to rats fed 
on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, 
triglycerides (TGs) by 22.5%, total cholesterol (T-Chol) by 11%, and low density lipoprotein cholesterol (LDL-C) by 21.4%. 
Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and 
control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition 
to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed 
HHcy in the current dosage and duration.

Conclusion: Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS), and 
that taurine has a protective role against the metabolic abnormalities induced by this diet model except for HHcy.

Introduction
Soft drink consumption has recently been linked with
increased risk for weight gain, type 2 diabetes mellitus
(T2DM) and other features of the MS [1]. Many studies
suggest that the mechanism by which sugar or high fruc-
tose corn syrup may induce MS is related to the fructose
content [2].

Concern has arisen because of the realization that fruc-
tose, at elevated concentrations, can promote metabolic

changes that are potentially deleterious. Among these
changes is IR which manifests as a decreased biological
response to normal levels of plasma insulin and is indi-
cated by impaired glucose tolerance, hyperglycemia and
hyperinsulinemia [3].

Metabolic dyslipidemia is the most common complica-
tion of IR and T2DM. It is believed to be exacerbated by
obesity, as well as numerous detrimental environmental
factors such as a high fat diet and sedentary lifestyle. The
dyslipidemia accompanying IR is characterized by dis-
tinct changes that significantly contribute to increased
risk of cardiovascular diseases (CVD) [4].
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In addition, elevated levels of glucose, insulin, advanced
glycation endproducts (AGEs), TGs and free fatty acids
(FFAs) in patients with IR and MS are reported to pro-
duce reactive oxygen species (ROS). ROS can in turn ele-
vate tension of redox stress, and cause damage of
pancreatic islets [5]. It can also shift the nitric oxide syn-
thase (NOS) reaction towards the production of per-
oxynitrite (ONOO-) rather than nitric oxide (NO), which
might contribute to the development of CVD [6].

Hyperhomocysteinemia is accused of being responsible
for elevating oxidative stress as a result of formation of
Hcy thiolactone, which leads to impairment of insulin
signaling and causes IR [7]. Case-control studies have
shown a significant association between plasma Hcy and
insulin levels in human and animal models [8,9]. How-
ever, it is still not clear whether HHcy induces IR or it is
actually hyperinsulinemia that causes elevated plasma
Hcy levels. The direction of the causality in this associa-
tion is still controversial. It was previously reported that
high concentrations of serum insulin are associated with
an increased risk of developing HHcy [10]. However,
other in vitro studies suggested that Hcy could exert dele-
terious effects on insulin secretion, resulting in IR [11].

Amino acids have been recognized as important signal-
ing mediators in different cellular functions. Taurine (2-
amino ethane sulphonic acid) is a conditionally essential
amino acid that is involved in many important biological
functions [12]. Taurine reduces the rate of apoptosis in
pancreatic islets and acts on DNA synthesis, preventing
abnormal development of the endocrine pancreas [13]. In
fetal rat islets, taurine increases glucose-stimulated insu-
lin secretion and enhances the action of some secret-
agogues, such as leucine or arginine [14]. Furthermore,
there is evidence indicating that taurine has hypoglyce-
mic properties due to the potentiation of the effects of
insulin [15]. Finally, taurine antioxidant properties pro-
tect pancreatic beta-cells against oxidative stress-induced
decrease in function observed in some pathophysiologi-
cal conditions [16]. These findings indicate that taurine is
involved in distinct central and peripheral processes nec-
essary for the control of glucose homeostasis. However,
the exact mechanisms by which the amino acid affects
blood glucose levels are still unknown [17].

In this study, we investigate the effect of taurine on glu-
cose intolerance, lipid profile, Hcy level, TAC, PON activ-
ity, and NOx concentration in HFD-induced IR. To the
best of our knowledge, there was no previous focus on
the effect of taurine supplementation on HHcy in insulin
resistant rat model.

Materials and methods
Chemicals
Taurine (Oxford Chemical Company, India). Glucose and
Zinc Sulphate (El Nasr Co, Cairo, Egypt). Phenyl acetate,

Tris HCl buffer, sodium nitrite, vanadium (III) chloride,
sulfanilamide and N-(1-naphthyl) ethylendiamine dihy-
drochloride (Sigma Chemical Company, USA). Calcium
chloride (Fluka Chemical Company, USA).

Diet
The control diet for the rats contained 60% starch, 20.7%
casein, 0.3% methionine, 5% fat, 7.9% cellulose, 5% miner-
als and 1% vitamins mix. The fructose diet contained 60%
fructose instead of starch (Harlan-Teklad, TD. 89247,
Madison, WI, USA), while the remaining composition
was the same.

Animals
Thirty two male Wistar rats were used for the present
study after being procured from the animal house of El-
Nile Company for Pharmaceutical Products (Cairo,
Egypt). The animals were acclimatized for two weeks in
the animal house of Misr International University before
dietary manipulation. Two rats were housed per wire
floored cage in an air-conditioned room (22 ± 2°C) with
12 h light/dark cycle and had free access to standard labo-
ratory chow diet (El Nasr Co, Cairo, Egypt), and water ad
libitum. The protocol of the current study was approved
by the Department of Biochemistry Council, Faculty of
Pharmacy, Ain Shams University, which has an ethical
authority.

Experimental design
Animals weighed 170-190 g at the time of dietary manip-
ulation. They were randomly assigned into four groups of
eight each, as given below:

i. Control group (C): normal control rats, received 
control diet.
ii. Taurine group (C + T): taurine-treated normal rats, 
received taurine (300 mg/kg/day) via i.p. route [18], 
and control diet.
iii. Fructose-fed group (F): fructose-fed rats, received 
HFD.
iv. Fructose-fed + taurine group (F + T): taurine-
treated fructose-fed rats, received taurine (300 mg/
kg/day) via i.p. route, and HFD.

The animals were maintained in their respective groups
for 35 days. OGTT were carried out and animals' body
weights were measured at different intervals during the
feeding period. Fasting serum glucose, insulin, lipid pro-
file, TAC, PON, and NOx as well as plasma Hcy of all ani-
mals were measured at the last day (day 35) of the
experiment.

Oral glucose tolerance test (OGTT)
Twelve hours prior to days 0, 14, 28 and 35, rats were
fasted and were subject to OGTT. For this, a glucose
solution was introduced directly into the stomach of the
conscious rats through a fine gastric catheter at a dose of
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2 g/kg body weight [19]. Blood glucose levels were deter-
mined at 0 (before glucose administration), 30, 60, 90 and
120 min after glucose administration using an automated
glucometer (One Touch-Horizon, Johnson & Johnson
(Life Scan) blood glucose monitoring system, Almere,
Netherlands).

Sample collection
Blood samples were collected from retro-orbital plexus of
the eye after 35 days from 12-h fasted rats into two differ-
ent types of vacutainer tubes. The first contained EDTA
as anticoagulant for the assay of Hcy, while the second
was plain for serum preparation. The samples were cen-
trifuged at 3000 rpm for 10 min at 4°C using Centurion
centrifuge (K280R, UK). The plasma was then stored at -
20°C for the assay of Hcy, while the serum was aliquoted
and stored at -80°C for the assay of insulin, glucose, TGs,
T-Chol, high density lipoprotein cholesterol (HDL-C),
LDL-C, TAC, PON, and NOx. All assays were performed
within two months after sample collection.

Biochemical measurements
The concentration of serum glucose was measured by the
enzymatic colorimetric GOD-POD procedure [20] using
Diamond Diagnostics kit (Germany). Insulin was deter-
mined using an enzyme linked immunosorbent assay
(ELISA) kit purchased from Linco research (USA) (Cat.#
EZRMI-13K). The IR was estimated using the HOMA
which is equal to: [fasting serum insulin (μU/ml) × fasting
serum glucose (mmol/l)/22.5] [21].

Serum TGs were estimated by GPO-POD enzymatic
method [22] using a Biocon kit (India). T-Chol and LDL-
C concentrations were determined utilizing enzymatic
colorimetric CHOD-PAP method [23,24] using Biocon
kits (India). HDL-C was determined by the same method
after the precipitation of very low density lipoprotein
cholesterol (VLDL-C) and LDL-C [25], and finally, the
atherogenic index (T-Chol/HDL-C) was calculated.

Plasma Hcy was assessed by a chemiluminescent tech-
nique using ARCHITECT i2000 immunoassay analyzer
(Abbott Diagnostics, Germany). Serum TAC was deter-
mined by an enzymatic colorimetric method [26], using
Biodiagnostic kit (Egypt). PON activity was determined
spectrophotometrically using phenyl acetate as substrate
[27]. Serum NOx levels were measured by Griess reaction
[28].

Statistical analysis
The results were expressed as means ± SEM. To deter-
mine the statistical significance of laboratory findings,
multiple comparisons were achieved using ANOVA fol-
lowed by Tukey test as post hoc test. The correlations
between PON and TAC were tested by Pearson's coeffi-

cient (r). P-value ≤ 0.05 was considered statistically signif-
icant.

Results
At day zero, there was no significant difference between
the body weights of the four study groups. After 35 days
of feeding, the HFD resulted in a significant increase in
the body weight of group F by 18.1% when compared to
group C, and by 15% when compared to group C + T.
Taurine was able to attenuate this effect as group F + T
was of a significantly less body weight than group F by
7.7% (Figure 1). Meanwhile, there was no significant dif-
ference in the water and food intakes among the four
study groups.

The analysis of the OGTT at the end of the feeding
period and the comparison between area under the curve
(AUC) of glycemia during 120 min from control and
experimental groups showed that fructose-fed rats devel-
oped glucose intolerance (Table 1, Figure 2). The AUC of
glucose during OGTT of group F was significantly ele-
vated by 8.9% when compared to group C. The AUC of
OGTT in group F + T was only elevated by 4% when
compared to group C, which was statistically insignifi-
cant. The AUC of OGTT in group F + T was significantly
lower than that of group F by 4.5%, showing improved
glucose tolerance (Figure 3).

The HOMA results of group F were 4.1 fold greater
than those of group C, and 3.9 fold greater than those of
group C + T. Group F + T showed a significant increase
when compared to groups C and C + T, but a significant
decrease when compared to group F (Table 2, Figure 4).

There was no significant change in serum TGs between
groups C and C + T. Meanwhile, there was a significant
increase in that of group F relative to groups C and C + T,
by 272% and 229.6%, respectively. The TGs level of group
F + T showed a significant increase by 188.3% and 155.5%
when compared to groups C and C + T, respectively,
although, it was statistically lower than group F by 22.5%
(Table 3).

There was no significant difference in serum T-Chol,
LDL-C, and HDL-C between groups C and C + T, while
there was a significant rise in all of them in group F rela-
tive to groups C and C + T. The atherogenic index of
group F was significantly higher than those of groups C
and C + T by 11% and 15.9%, respectively. Group F + T
showed significantly lower levels of T-Chol and LDL-C
when compared to group F, but they were still signifi-
cantly higher than groups C and C + T. On the other
hand, serum HDL-C concentrations of groups F and F +
T were not statistically different from each other, but
both were statistically higher than groups C and C + T.
The atherogenic index of group F was statistically higher
than those of groups C and C + T, while that of group F +
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T was statistically lower than that of group F but not sta-
tistically different from those of groups C and C + T
(Table 3).

Plasma Hcy of groups F and F + T were not statistically
different from each other but they showed a significant
increase relative to groups C and C + T (Table 3).

Serum TAC and PON of group F were significantly
lower than those of groups C and C + T, meanwhile tau-
rine was able to abolish this effect in group F + T. Serum
TAC positively correlated with serum PON in groups F
(Figure 5) and F + T (Figure 6) at p < 0.05 (r = 0.753 and
0.773, respectively). Serum NOx of group F showed a sig-

Figure 1 Effect of HFD and taurine supplementation on weight gain at days 0 and 35 of feeding. Each value is expressed in grams. (a) Significant 
difference from control group, at P ≤ 0.05. (b) Significant difference from taurine group, at P ≤ 0.05. (c) Significant difference from fructose-fed group, 
at P ≤ 0.05. Using one way ANOVA followed by Tukey test as post hoc test.

Table 1: Effect of HFD and taurine supplementation on the AUC of the OGTT at days 0, 14, 28, and 35:

Day Group

Control Taurine Fructose-Fed Fructose-Fed + 
Taurine

AUC day Zero 0.85 ± 0.011 0.84 ± 0.009 0.84 ± 0.009 0.83 ± 0.017

AUC day 14 0.83 ± 0.013 0.82 ± 0.008 0.90 ± 0.015a,b 0.87 ± 0.009b

AUC day 28 0.83 ± 0.014 0.81 ± 0.007 0.90 ± 0.014a,b 0.87 ± 0.017b

AUC day 35 0.84 ± 0.012 0.84 ± 0.010 0.92 ± 0.07a,b 0.88 ± 0.005b,c

Values are expressed as mean ± S.E.M. Number of rats per group n = 8.
HFD, high fructose diet; AUC, area under the curve; OGTT, oral glucose tolerance test.
(a) Significant difference from control group (P ≤ 0.05).
(b) Significant difference from taurine group (P ≤ 0.05).
(c) Significant difference from fructose-fed group (P ≤ 0.05).
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nificant increase when compared to groups C and C + T,
an effect that was also abolished in the F + T group (Table
3).

Discussion
The MS is a cluster of cardiovascular risk factors which
include obesity, central obesity, atherogenic dyslipidemia
and IR [29]. Apart from its association with CVD and dia-
betes mellitus, it is a common soil for numerous other
clinical disorders [30].

Our work is comparable to that of Kannappan and
Aduradha [31], who were able to show that the HFD was
able to impair insulin sensitivity and glucose tolerance.
This was revealed by the significant elevation in AUC of
the OGTT of group F. Such a finding was confirmed by
the observed hyperglycemia, hyperinsulinemia and ele-
vated HOMA of the same group, and is matched with
those of Yadav et al. [32].

Increases in the fructose load to the liver, could elicit
rapid responses that ultimately influence hepatic gene
expression, glucose disposal, and insulin action. This may
be attributed to the fact that fructose metabolism
bypasses the regulatory step catalyzed by phosphofruc-
tokinase-1. Thus, fructose continuously enters the glyco-
lytic pathway resulting in hyperglycemia [33]. The extra

glucose released into the blood stimulates more insulin
secretion, leading to reduced insulin sensitivity [34].

Visceral adiposity is known to be increased by HFD
[35]. It is associated with IR as a result of the direct deliv-
ery of portal blood flow from visceral fat to the liver
releasing FFAs [36]. The greater lipolytic capacity of vis-
ceral than peripheral adipocytes releases more FFAs to
the portal circulation. Furthermore, when visceral adipo-
cytes enlarge, they become more insulin resistant than
smaller adipocytes [37]. Increased amounts of FFAs
directly affect insulin signaling, diminish glucose uptake
in muscle, and induce gluconeogenesis in the liver [38].

Although taurine was unable to improve the fasting
hyperglycemia, it was able to attenuate the elevated AUC
of the OGTT, as well as the observed hyperinsulinemia,
and it greatly improved the elevated HOMA. It was spec-
ulated that in this diet-induced model, activation of ser-
ine kinases coupled with inhibition of tyrosine
phosphorylation of the insulin receptor could result in IR.
Changes in redox balance can activate certain stress-
induced serine kinases which can in turn decrease the
extent of tyrosine phosphorylation, and is consistent with
the attenuation of insulin action [39]. It was previously
described that taurine modulates the insulin signal trans-
duction pathways by inhibiting the cellular protein

Figure 2 Effect of HFD and taurine supplementation on OGTT at day 35 of the study. Values are expressed as means ± SEM of 8 animals.
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tyrosine phosphatase activity that negatively regulates
insulin signaling. Thus, taurine has the potential ability to
prolong as well as increase insulin signaling. It is also pos-
sible that taurine being an antioxidant, would make the
cells less susceptible to the consequence of stress-induced
activation of serine kinases [40].

The consumption of the HFD resulted in hypertriglyc-
eridemia, hypercholesterolemia, and increased levels of
both LDL-C and HDL-C. Fasting hypertriglyceridemia in
IR has largely been attributed to apoB-100 containing
TGs rich very low density lipoprotein (VLDL) overpro-
duction and secretion by the liver, with a lesser contribu-
tion to the impaired VLDL removal [41]. Fructose
consumption can promote hepatic lipogenesis because it
provides unregulated amounts of lipogenic substrates
acetyl-CoA and glycerol-3-phosphate [32]. Fructose can
also activate sterol regulatory element binding protein-1c
(SREBP-1c) independently of insulin, which then acti-
vates genes involved in de-novo lipogenesis [42]. SREBP-
1c over-expression was also reported to inhibit insulin

receptor substrate-2 expression, which might contribute
to a transitional switch from glycogen synthesis to lipo-
genesis [43]. High density lipoprotein (HDL) is the major
cholesterol lipoprotein carrier in rats [3], thus, the eleva-
tion of serum HDL-C could merely be a reflection to the
observed increased serum T-Chol.

Taurine can upregulate 7-α-hydroxylase, the rate-limit-
ing enzyme in bile acids production [44], and was shown
to increase its mRNA levels [45]. Taurine may also
decrease cholesterol levels through upregulation of
hepatic LDL receptor and/or through improving the
binding of LDL to them. Thus, it increases the LDL turn-
over in blood [46]. The ability of taurine to decrease the
T-Chol level could be the main contributor to the
reduced atherogenic index of group F + T.

The HHcy observed in the fructose-fed model of IR
may be attributed to the reduction in the specific activity
of two key enzymes of Hcy metabolism, namely, meth-
yltetrahydrofolate reductase and cystathionine β synthase
(CβS). Dicker-Brown et al. used cultured hepatocytes to

Figure 3 Effect of HFD and taurine supplementation on AUC of OGTT at day 35 of the study. Values are expressed as % of control group. (a) 
Significant difference from control group at day 35, at P ≤ 0.05. (b) Significant difference from taurine group at day 35, at P ≤ 0.05. (c) Significant dif-
ference from fructose-fed group at day 35, at P ≤ 0.05. Using one way ANOVA followed by Tukey test as post hoc test.
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show that chronic insulin addition was able to induce
HHcy that was due to Hcy being transformed to either
methionine or cysteine at a reduced rate [9].

Hyperhomocysteinemia could also be explained in light
of the observed hypertriglyceridemia which might specif-
ically promote lipid deposition in visceral adipose tissue
as commonly associated with IR [36]. N-nicotinamide
methyltransferase (NNMT) is a major methyltransferase
expressed in high amounts in human adipose tissue [47].
It converts nicotinamide into N-methyl nicotinamide at
the expense of S-adenosyl methionine as methyl-donat-
ing cofactor. The generated S-adenosyl homocysteine
could further be converted to Hcy [35]. Thus, the
observed HHcy in the fructose-fed rat model of the cur-
rent study could be attributed to the increased visceral
adiposity accompanying overconsumption of fructose.

The high levels of Hcy could be metabolized into Hcy
thiolactone, a physiological substrate of PON protein.

Hcy thiolactone can cause HDL homocysteinylation [48]
and consequently decreases its PON activity as revealed
by the results of the current work. Under conditions of
high oxidative stress, PON may be inactivated by S-gluta-
thionylation, a redox regulatory mechanism character-
ized by the formation of a mixed disulfide between a
protein thiol (i.e. cysteine-284 of PON enzyme) and oxi-
dized glutathione [49]. The lower PON activity observed
in group F may also be due to the increased T-Chol that
increases the susceptibility of LDL to oxidation. This pro-
cess inactivates PON in an interaction between the lipid
peroxides and the sulfhydryl groups of the enzyme as pre-
viously shown by Bajnok et al. [50]. Systemic oxidative
stress is associated with IR, which manifests as decreased
TAC. This is possibly due to increased oxidative stress on
one hand and decreased activities of different antioxida-
tive enzymes on the other. Thus, the significant positive

Figure 4 Effect of fructose feeding and taurine supplementation on HOMA. Each value is expressed as % of control group. (a) Significant differ-
ence from control group, at P ≤ 0.05. (b) Significant difference from taurine group, at P ≤ 0.05. (c) Significant difference from fructose-fed group, at P 
≤ 0.05. Using one way ANOVA followed by Tukey test as post hoc test.
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Table 2: Effect of HFD and taurine supplementation on fasting serum glucose, serum insulin and HOMA:

Parameter Group

Control Taurine Fructose-Fed Fructose-Fed + 
Taurine

Glucose (mmol/l) 4.62 ± 0.28 4.09 ± 0.19 5.57 ± 0.25a,b 5.35 ± 0.23b

Insulin(μU/ml) 32.26 ± 4.76 38.24 ± 4.15 109.5 ± 7.37a,b 50.71 ± 4.45c

HOMA 6.68 ± 1.13 6.95 ± 0.79 27.24 ± 2.44a,b 11.9 ± 0.88c

Values are expressed as mean ± S.E.M. Number of rats per group n = 8.
HFD, high fructose diet; HOMA, homeostasis model assessment of insulin resistance.
(a) Significant difference from control group (P ≤ 0.05).
(b) Significant difference from taurine group (P ≤ 0.05).
(c) Significant difference from fructose-fed group (P ≤ 0.05).

Table 3: Effect of HFD and taurine supplementation on fasting serum lipids, TAC, PON, NOx and plasma Hcy:

Parameter Group

Control Taurine Fructose-Fed Fructose-Fed + 
Taurine

TGs (mg/dl) 70.47 ± 8.95 79.53 ± 7.94 262.16 ± 22.47a,b 203.17 ± 16.45a,b,c

T-Chol (mg/dl) 99.86 ± 2.21 93.32 ± 5.22 136.43 ± 1.92a,b 121.37 ± 2.59a,b,c

LDL-C (mg/dl) 29.30 ± 1.64 29.98 ± 3.22 57.27 ± 2.16a,b 45.04 ± 2.22a,b,c

HDL-C (mg/dl) 42.22 ± 1.20 41.35 ± 2.36 52.03 ± 1.40a,b 53.71 ± 1.79a,b

Atherogenic index 2.37 ± 0.03 2.27 ± 0.06 2.63 ± 0.06a,b 2.27 ± 0.07c

Hcy (μmol/l) 10.31 ± 0.65 11.02 ± 0.53 13.89 ± 0.48a,b 14.23 ± 0.62a,b

TAC (mmol/L) 3.05 ± 0.17 3.07 ± 0.11 2.44 ± 0.15a,b 3.11 ± 0.17c

PON (U/ml) 167.30 ± 9.08 160.92 ± 9.07 117.49 ±4.99a,b 148.51 ± 6.75c

NOx (μM) 21.70 ± 2 21.35 ± 1.66 41.97 ± 2.47a,b 26.82 ± 2.21c

Values are expressed as mean ± S.E.M. Number of animal per group n = 8.
HFD, high fructose diet; TGs, triglycerides; T-Chol, total cholesterol; LDL-C, low density lipoprotein cholesterol; HDL-C, high density 
lipoprotein cholesterol; TAC, total antioxidant capacity: PON, paraoxonase activity: NOx, nitric oxide metabolites: Hcy, homocysteine.
(a) Significant different from control group (P ≤ 0.05).
(b) Significant different from taurine group (P ≤ 0.05).
(c) Significant different from fructose-fed group (P ≤ 0.05).
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correlations revealed between TAC and PON activities of
groups F and F + T are convenient.

The significant reduction of TAC in group F could be
attributed to the fact that the high fructose delivery to the
liver may generate stress-activating molecules, such as
methylglyoxal and/or d-glyceraldehyde. These molecules
can serve as substrates for AGEs [51]. AGEs could acti-
vate NADPH oxidase in endothelial cells. Activation of
NADPH oxidase could also occur cause endothelial cells
lack CβS and Betaine:homocysteine methyltransferase.
Thus, Hcy depends on the methionine synthase pathway
for its elimination. HHcy may thus cause a deficiency of
folic acid with subsequent deficiency of tetrahydrobiope-
trin, and consequently, uncoupling of the endothelial
NOS reaction producing superoxide anion (O 2•-) as well
as ONOO- rather than NO [52]. Hcy was also shown to
reduce the expression of glutathione peroxidase and the
secretion and expression of extracellular superoxide dis-
mutase [53,54]. Thus, in addition to directly producing
ROS, Hcy also reduces the O 2•- anion scavenging capac-
ity leading to further elevation of oxidative stress.

Hyperhomocysteinemia could also promote ROS pro-
duction by increasing inducible NOS expression which

subsequently increases nitrotyrosine formation [55]. This
fact could explain the significant elevation of NOx
observed in group F. ROS could also reduce NO bioavail-
ability by inactivating it to ONOO-. In this respect, the
elevation of serum NOx might indeed reflect the
impaired NO bioavailability since ONOO-, as well as NO,
are metabolized into nitrites and nitrates [56]. Recently, it
has been shown that ONOO-, in the absence of known
nitrosative stress-protecting enzymes, could be degraded
by catalase enzyme into nitrate (70%) and nitrite (30%)
[57]. A finding that may aid in rationalizing the elevated
NOx concentration in this fructose-fed model.

Taurine is synthesized from cysteine, the precursor of
glutathione (GSH). Hence, taurine supplementation may
spare cysteine, thus increasing tissue levels of GSH,
restoring TAC as well as PON activity back to normal
[58]. In the present study, taurine supplementation was
also able to improve the elevated NOx which may have
been achieved through lowering inducible NOS gene
expression as previously reported by Hsu et al. [59], or
through scavenging O 2•- and NO, the precursors of
ONOO- under conditions of elevated oxidative stress
[60]. These results are matched with those of Yalçınkaya
et al. [61], who reported that taurine was not able to
improve the diet-induced HHcy, although it was able to
improve HHcy-induced ROS production. Thus, further
studies are required to define or not whether different
dosages and/or durations of taurine supplementation will
be able to improve the observed HHcy in this model of
IR.

Conclusion
Our study revealed that rats fed on a HFD develop IR as
manifested by hyperglycemia, hyperinsulinemia, and ele-
vated HOMA. They showed metabolic dyslipidemia as
well as HHcy. The HFD also resulted in decreased TAC,
decreased PON activity, and increased NOx production.
Our results demonstrate that taurine supplementation is
able to improve the glucose intolerance, the hyperinsu-
linemia and to guard against the drastic increase in
HOMA. Taurine is also able to improve dyslipidemia, and
to abolish the effect of the HFD on TAC, PON activity,
and NOx concentration. Meanwhile, it was not able to
attenuate the observed HHcy associated with the devel-
opment of IR in the current dose and duration.
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