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Abstract

Background: Diabetes in pregnant women is associated with an increased risk of maternal and
neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be
divided into clinical diabetes and gestational diabetes. Experimental models are developed with the
purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect
humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the
development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving
perinatal development by preventing fetal growth restriction or macrosomia. Based on animal
models of diabetes during pregnancy previously reported in the medical literature, the present
study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and
mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and
fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and
perinatal results of clinical and gestational diabetes in humans.

Methods: On day 5 of life, 96 female Wistar rats were assigned to three experimental groups:
control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On
day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation
and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified
according to their birth weight.

Results: Severe and mild diabetic dams showed different glycemic responses during pregnancy,
impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with
fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild
diabetic mothers were not associated with an increased rate of macrosomic fetuses.

Conclusion: Experimental models of severe diabetes during pregnancy reproduced maternal and
fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand,
the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough
to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes.
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Background

Diabetes mellitus (DM) is a disease characterized by dis-
arrangements in carbohydrate, protein and lipid metabo-
lism caused by the complete or relative insufficiency of
insulin secretion and/or insulin action [1]. Diabetes in
pregnant women is associated with an increased risk of
maternal and neonatal morbidity and remains a signifi-
cant medical challenge. Diabetes during pregnancy may
be divided into clinical diabetes (women previously diag-
nosed with type 1 or type 2 diabetes) and gestational dia-
betes, defined as any glucose intolerance detected during
pregnancy that has evolved from a diagnosis associated
with the metabolic risk of type 2 diabetes to a clinical con-
dition associated with higher risks for maternal and peri-
natal morbidity [2]. Fortunately, the prognosis has
changed dramatically due to an increased clinical aware-
ness of the potential risks for the mother and the infant.

Experimental models are developed with the purpose of
enhancing understanding of the pathophysiological
mechanisms of diseases that affect humans. With regard
to diabetes in pregnancy, experimental findings from
models will lead to the development of treatment strate-
gies to maintain the closest to normal metabolic intrauter-
ine milieu, improving perinatal development by
preventing fetal growth restriction or macrosomia. The rat
(and the rabbit) is often used in reproductive toxicity
studies [3]. In general, the uncontrolled human type 1
DM clinical status during pregnancy is reproduced by
streptozotocin (STZ) administration (40 mg/kg) to rats
during adult life using the venous route [4-6]. In this
experimental model, rats present with severe diabetes,
with glycemia above 300 mg/dl, and the fetuses of dams
are classified as small fetuses for gestational age, character-
izing intrauterine growth restriction. Human type 2 DM
and gestational DM conditions are reproduced in animals
by administration of different doses of STZ in the neona-
tal period [7-16], before mating [17-20] or during preg-
nancy [21-30]. Adult animals present with glycemia
between 120 and 300 mg/dl, characterizing moderate or
mild diabetes [31-33]. Merzouk and colleagues [23-25]
and Soulimane-Mokhtari and colleagues [30] verified that
mildly hyperglycemic dams have fetuses that are large for
gestational age, classified as macrosomic.

Evidence in the literature indicates that neonatal rats
treated with STZ at birth exhibit altered insulin and glu-
cose tolerance tests [8,9,13] and plasmatic insulin
[11,15]. Based on the insulin action response and glucose
tolerance test, Triadou and colleagues [15] established an
experimental design that reproduces the development of
gestational diabetes in women. Several reports in the liter-
ature describe the effects of severe and mild diabetes on
pregnancy, fetal glycemia and development, but these
studies did not investigate correlations between maternal
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and fetal repercussions in these two different glycemic
ranges. Therefore, the present study aimed to compare the
impact of STZ-induced severe and mild diabetes on glyc-
emia and maternal reproductive and fetal outcomes of
Wistar rats to evaluate whether the animal model repro-
duces the maternal and perinatal results of clinical and
gestational diabetes in humans.

Methods

Subjects

Wistar rats were obtained from Sio Paulo State University
(Unesp) Botucatu, Sio Paulo State, Brazil. They were
maintained in an experimental room under controlled
conditions of temperature (22 + 2°C), humidity (50 +
10%), and a 12-hour light/dark cycle. All experimental
procedures presented in this study were approved by the
local Committee of Ethics in Animal Experimentation,
which assures adherence to the standards established by
the Guide for the Care and Use of Laboratory Animals.

Experimental procedures

On day 5 of life, 64 female Wistar rats were randomly
assigned to three experimental groups: control (n = 16) -
rats that received citrate buffer solution (0.1 M, pH 6.5)
intraperitoneally on day 5 of life; severe diabetes (n = 50)
- rats that received STZ (SIGMA Chemical Company, St
Louis, MO, USA; 40 mg/kg intravenously) on day 75 of
life; and mild diabetes (n = 30) - rats that received STZ (70
mg/kg intraperitoneally) dissolved in citrate buffer solu-
tion on day 5 of life. At day 90 of life, the female rats were
mated and the morning on which sperm were found in
the vaginal smear was designated pregnancy day 0. Blood
samples were obtained from cut tail tips for glycemic
determination (glucose oxidase) using a typical glucome-
ter; values are expressed in milligrams per deciliter (mg/
dl). Inclusion criteria required glycemia levels on day 0 of
pregnancy of <120 mg/dl for the control group (n = 16),
>300 mg/dl for the severe diabetic group (n = 18), and
between 120 and 300 mg/dl for the mild diabetic group
(n = 6). Body weight, food intake and glycemia were eval-
uated on days 0, 7, 14 and 21 of pregnancy. On day 21 of
pregnancy, the dams were anesthetized with sodium
pentobarbital (Hypnol® 3%) and their uterine horns
exposed to count implantation and fetus numbers for
determination of pre- and post-implantation loss rates.
The fetuses were removed, weighed and classified accord-
ing to their birth weight as follows: large for pregnancy age
(LPA) if their birth weight was greater than 1.0 standard
deviation of the mean birth weight of the control dam
pups; small for pregnancy age (SPA) if their birth weight
was lower than 1.0 standard deviation of the mean birth
weight of the control dam pups; and appropriate for preg-
nancy age (APA) if their birth weight was included in + 1.0
standard deviation of the mean birth weight of the control
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dam pups [34]. Blood pool glycemia levels were deter-
mined from three newborns from each litter.

Statistical analysis

Results are presented as mean + standard error of mean.
The proportion test (Chi-square) was used for fetal weight
classification. Two-way analysis of variance (ANOVA) fol-
lowed by the Student-Newman-Keuls test was employed
to compare the data for maternal glycemia, food intake,
body weight during pregnancy, number of implantation
sites and number of live fetuses. Pre- and post-implanta-
tion loss rates were analyzed by Mann Whitney non-para-
metric test. Maternal and fetal glycemia correlation was
determined using Pearson correlation. The statistical sig-
nificance interval is considered as P < 0.05 for all data. All
statistical analyses were performed with Statistica software
(Statsoft, Tulsa, OK, USA).

Results

All 16 rats assigned to the control group were mated, had
a positive pregnancy diagnosis and were included in this
study. Only 18 of 50 rats administered STZ as adults
(severe diabetic rats) had a positive pregnancy diagnosis
and were included in this study following the inclusion
criteria for their experimental group. All 30 rats adminis-
tered streptozotocin as neonates were also mated, but
only 16 presented with a positive pregnancy diagnosis
and only 6 achieved the inclusion criteria. The rats that
did not reach inclusion criteria were used in another
study. There were no significant differences in the number
of implantation sites in the severe and mild diabetic
groups compared to the control group nor between the
severe and mild diabetic groups. A lower mean number of
live fetuses and a higher post-implantation loss rate were
observed in severe diabetic rats compared to the control
and mild diabetes groups (Table 1).

Rats with severe diabetes had a higher food intake com-
pared to mild diabetic rats on days 14 to 21 of pregnancy,

Table I: Maternal reproductive outcomes of control, severe diabetic

http://www.dmsjournal.com/content/1/1/21

and compared to control rats on all days of pregnancy.
Mild diabetic rats had a higher food intake compared to
the control group only on day 0 of pregnancy (Figure 1A).
Both severe and mild diabetic rats had lower body weight
compared to the control group (Figure 1B).

During their entire pregnancy, control rats had normal
glycemic values (around 80 mg/dl). Glycemia remained
above 300 mg/dl in the severe diabetic rats and between
120 and 300 mg/dl in the mild diabetic rats. Both severe
and mild diabetic rats had higher glycemia levels through-
out pregnancy compared to the control group. When
compared to the mild diabetes group, severe diabetic
dams had higher glycemia levels prior to mating and dur-
ing pregnancy. Newborns from severe diabetic dams had
higher glycemia levels compared to newborns from both
the control and mild diabetic groups (Table 2). There was
a positive correlation (P < 0.05) between maternal and
fetal glycemia in all experimental groups.

In both the severe and mild diabetes groups, there was a
higher proportion of SPA fetuses and a reduced percent-
age of APA and LPA fetuses compared to the control
group. Severe diabetic rats also had higher SPA and lower
APA rates compared to mild diabetic rats. The proportions
of LPA fetuses from the severe and mild diabetes groups
were similar (Table 3).

Discussion

STZ is often used to induce DM in experimental animals
due to its toxic effects on pancreatic beta-cells [35,36]. Itis
a potent alkylating agent able to methylate DNA [37-39]
and although it is generally accepted that the cytotoxicity
produced by STZ depends on DNA alkylation [37,39],
several lines of evidence indicate that free radicals play an
essential role in its mechanism of DNA damage and cyto-
toxicity. The nitrosurea moiety of STZ is responsible for its
cellular toxicity, which is probably mediated through a
decrease in NAD levels and the production of intracellular

and mild diabetic rats

Variables Control Severe diabetes Mild diabetes
Number of rats used 16 50 30
Number of rats that achieved inclusion criteria 16 (100%) 18 (36%) 6 (20%)
Implantation number 159 199 70

Mean + SEM 11.67 +0.33 11.71 £0.39 11.67 +0.56
Live fetus number 153 115 66

Mean + SEM 11.50 £ 0.22 6.76 £ 1.152b 11.00 £ 0.37
Pre-implantation loss (%) 4.85% 8,44% 1,52%
Post-implantation loss (%) 1.28% 42,27% 4 5,24%

Rats were injected with citrate buffer solution (control), streptozotocin as adults (severe diabetes) and streptozotocin during the neonatal period
(mild diabetes). Values are presented as mean * standard deviation and proportions (%). 2P < 0.05 - statistically significant difference compared to
control group (Student Newman Keuls); bP < 0.05 - statistically significant difference compared to mild diabetes group (Student Newman Keuls); <P
< 0.05 - statistically significant difference compared to control group (Mann Whitney); 4P < 0.05 - statistically significant difference compared to mild

diabetes group (Mann Whitney). SEM, standard error of the mean.
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Effect of streptozotocin induced diabetes on food intake and body weight of rats during pregnancy. (A) Food
intake and (B) body weight on days 0, 7, 14 and 21 of pregnancy of rats injected with citrate buffer solution (control), strepto-
zotocin as adults (severe diabetes) and streptozotocin during the neonatal period (mild diabetes). Values are presented as
mean * standard error of mean. 2P < 0.05 - statistically significant difference compared to control group (Student Newman
Keuls); bP < 0.05 - statistically significant difference compared to the mild diabetes group (Student Newman Keuls).
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Table 2: Glycemia of control, severe diabetic and mild diabetic rats throughout pregnancy and of newborns

Control (n = 16)

Severe diabetes (n = 18)

Mild diabetes (n = 6)

Prior mating 84.33 £ 0.76
Day 0 78.17 £ 3.89
Day 7 77.67 £ 3.68
Day 14 77.17 £ 5.85
Day 21 79.83 £ 6.65
Newborns 68.25 + 7.94

343.56 + 14,362
351.78 + 12.792b
294.11 £ 11.012b
327.44 + 12702
32261 + 17.952b
464.33 £ 28.9520

177.12 + 45.53
186.67 + 26.042
177.67 £ 32.842
179.69 + 39.852
170.67 + 30.212
115.9 + 37.57

Glycemia (mean * standard error of mean) were taken prior to mating and on days 0, 7, 14 and 2| of pregnancy from rats injected with citrate
buffer solution (control), streptozotocin as adults (severe diabetes) and streptozotocin during the neonatal period (mild diabetes). Blood pool
glycemia was determined from three newborns from each litter. 2P < 0.05 - statistically significant difference compared to control group (Student

Newman Keuls);

bP < 0.05 - statistically significant difference compared to mild diabetes group (Student Newman Keuls).

free radicals. The deoxyglucose moiety of STZ facilitates its
transport across the cell membrane, in which the GLUT-2
glucose-transporter appears to play an essential role. The
insulin-producing beta-cells of the islets of Langerhans
not only express high levels of GLUT-2 transporters but
also have a relatively low NAD content, making them par-
ticularly vulnerable to STZ toxicity [40].

In the mild diabetes group, STZ treatment created a range
of damage to beta cells, leading to a variable range of insu-
lin insufficiency. Only 6 (20%) of the initial 30 rats had a
positive pregnancy diagnosis and presented with mild
diabetes on pregnancy day O according to the inclusion
criteria previously established (glycemia between 120 and
300 mg/dl). Although the success rate of this model may
appear low, models in which high doses of STZ are
administered in the neonatal period to achieve mild dia-
betes are well established [7-16]. However, these studies
do not mention how many animals achieved hyperglyc-
emia in adult life. STZ has a beta-cell specific toxicity that
produces severe and permanent diabetes when given to
adult rats. When given during the neonatal period, there
is a spontaneous recovery from the damage caused to the
beta-cells in the first 2 weeks of life. However, beta-cell
regeneration is incomplete and this reduced beta-cell
mass results in the appearance of a form of diabetes in
adult life that resembles DM type 2 in humans [9]. Indi-
vidual differences in STZ metabolism [41] and beta-cell

regeneration capacity [9] may explain why so many rats
that receive STZ do not present mild diabetes in adult life.

In the present study, rats with glycemia above 300 mg/dl
(severe diabetes) had higher food intake but reduced
body weight during pregnancy, both common features of
the severe diabetic state. The reduced body weight is a
consequence of metabolic alterations caused by hypergly-
cemia/hypoinsulinemia, such as asthenia, as described by
Damasceno and colleagues [4]. Rats injected neonatally
with STZ had mild diabetes (glycemia from 120 to 300
mg/dl) without a significant increase in food intake, but
reduced body weight, which can also be explained by met-
abolic alterations despite the lower glycemia compared to
the severely diabetic rats. Although maternal hypoin-
sulinemia/hyperglycemia has a major impact on fetal
weight, the reduced maternal body weight of mild dia-
betic rats, resulting from low weight gain during preg-
nancy, could be a cause of the low number of LPA fetuses
in this group.

Severe diabetic rats had glycemia levels above 300 mg/dl
throughout pregnancy. This result was expected and is in
agreement with other studies previously performed in our
laboratory [4-6], reproducing the hyperglycemia that
some women with uncontrolled clinical diabetes present
during pregnancy. The mild diabetic rats maintained their
glycemia between 120 and 300 mg/dl during pregnancy.
STZ administration in the neonatal period caused mild

Table 3: Fetal weight classification of offspring born to control, severe diabetic and mild diabetic rats

Variable/groups Control Severe diabetes Mild diabetes
SPA 46/192 (24%) 112/129 (87%)>® 39/65 (60%)>
APA 99/192 (52%) 14/129 (11%)> b 22/65 (34%)>
LPA 47/192 (24%) 3/129 (2%)2 4/65 (6%)>

Fetal weight classification is defined as small for pregnancy age (SPA), appropriate for pregnancy age (APA) or large for pregnancy age (LPA). The
offspring were born to rats injected with citrate buffer solution (control), streptozotocin as adults (severe diabetes) or streptozotocin during the
neonatal period (mild diabetes). Values are number/total (percent). 2P < 0.05 - statistically significant difference compared to control group (Chi-
square test); bP < 0.05 - statistically significant difference compared to mild diabetes group (Chi-square test).
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hyperglycemia during pregnancy, which has also been
reported by Triadou and colleagues [15], Capobianco and
colleagues [10] and Kiss [42], reproducing the hyperglyc-
emia that some women with gestational diabetes present
during pregnancy.

In our study, the lower number of live fetuses and the high
post-implantation loss rate in the severe diabetes group
are characteristic of a hyperglycemic (glycemia above 300
mg/dl) intrauterine milieu, and are in agreement with
other studies [6,43]. In the present study, the high glyc-
emic levels did not prevent embryo implantation but did
impair development, leading to fetal death, as confirmed
by the low number of live fetuses. Our results also show
that rats with severe diabetes had newborns with intrau-
terine growth restriction. This can be explained by fetal
beta-cell collapse, which eventually leads to fetal hypoin-
sulinemia that causes the growth restriction [19,44,45].

There is evidence that the hyperglycemic intrauterine
milieu of a mildly diabetic mother stimulates the fetal
endocrine pancreas to hyperinsulinemia and accelerated
anabolism, resulting in fetal and neonatal macrosomia.
Many reports in the literature indicate that animal models
in which STZ is injected during the neonatal period are
compatible with human gestational diabetes conditions,
with the presence of macrosomic fetuses [23-25,30] that
are intolerant to glucose [44,46]. In contrast, our results
show that the mild diabetic dams did not have an
increased percentage of newborns classified as LPA. Simi-
larly, Kervran and colleagues [19] also did not obtain
macrosomic fetuses when studying the offspring of rats
with mild hyperglycemia during pregnancy, and suggest
that the differences between the clinical findings in
humans and the experimental results using rats are due to
the short pregnancy time in the rat and differences in the
percentages of adipose tissue in rat fetuses (1%) and
human offspring (16%) and the greater weight gain in the
human species.

The offspring of the mild diabetic dams did not have
impaired glycemia compared to the control group. How-
ever, the offspring of the severe diabetic dams showed
higher glycemia levels compared to both the control and
mild diabetes groups. Many clinical and experimental
studies have shown that offspring that developed in an
intrauterine milieu that has been modified by hyperglyc-
emia show intolerance to glucose [44,46]. In the present
study, offspring were not submitted to the glucose toler-
ance test, so there is no evidence that they are intolerant
to glucose, but their glycemia levels correlate positively
with those of their mothers. Kervran and colleagues [19]
also observed a positive correlation between maternal and
fetal glycemia levels in both severe and mild diabetic
dams.

http://www.dmsjournal.com/content/1/1/21

Conclusion

STZ-induced severe and mild diabetic dams showed dif-
ferent glycemic responses during pregnancy, although
both adversely affected fetal glycemia and weight, con-
firming that maternal glycemia is directly associated with
fetal development. Newborn from severe diabetic moth-
ers presented intrauterine growth restriction, but mild dia-
betic mothers did not have an increased percentage of LPA
fetuses. The experimental model of severe diabetes during
pregnancy reproduced maternal and fetal outcomes of
women with uncontrolled clinical diabetes. On the other
hand, the mild diabetes model caused mild hyperglyc-
emia during pregnancy, although it was not enough to
reproduce the increased rate of macrosomic fetuses seen
in women with gestational diabetes.
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