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Abstract
Background In healthcare systems in general, access to diabetic retinopathy (DR) screening is limited. Artificial 
intelligence has the potential to increase care delivery. Therefore, we trained and evaluated the diagnostic accuracy of 
a machine learning algorithm for automated detection of DR.

Methods We included color fundus photographs from individuals from 4 databases (primary and specialized care 
settings), excluding uninterpretable images. The datasets consist of images from Brazilian patients, which differs from 
previous work. This modification allows for a more tailored application of the model to Brazilian patients, ensuring 
that the nuances and characteristics of this specific population are adequately captured. The sample was fractionated 
in training (70%) and testing (30%) samples. A convolutional neural network was trained for image classification. The 
reference test was the combined decision from three ophthalmologists. The sensitivity, specificity, and area under the 
ROC curve of the algorithm for detecting referable DR (moderate non-proliferative DR; severe non-proliferative DR; 
proliferative DR and/or clinically significant macular edema) were estimated.

Results A total of 15,816 images (4590 patients) were included. The overall prevalence of any degree of DR was 
26.5%. Compared with human evaluators (manual method of diagnosing DR performed by an ophthalmologist), the 
deep learning algorithm achieved an area under the ROC curve of 0.98 (95% CI 0.97–0.98), with a specificity of 94.6% 
(95% CI 93.8–95.3) and a sensitivity of 93.5% (95% CI 92.2–94.9) at the point of greatest efficiency to detect referable 
DR.

Conclusions A large database showed that this deep learning algorithm was accurate in detecting referable DR. 
This finding aids to universal healthcare systems like Brazil, optimizing screening processes and can serve as a tool for 
improving DR screening, making it more agile and expanding care access.
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Background
The prevalence of type 2 diabetes has been increasing 
steadily in recent years and, by 2021, about 537  million 
people are estimated to have this condition [1] and by 
2050, more than 1.31 billion (1.22–1.39) people are pro-
jected to have diabetes [2]. In Brazil, 12% of the popula-
tion is diagnosed with diabetes [1, 3], making it the 6th 
country with the highest number of adults with diabetes 
in the world [1]. Diabetes is associated with microvas-
cular and macrovascular complications, among which 
diabetic retinopathy (DR) stands out [4]. DR is the lead-
ing cause of blindness in working-age individuals, with 
a prevalence in people with diabetes of 22.2% world-
wide [5] and 36.3% in Brazil [6], which may contribute to 
reduced quality of life depending on the severity of the 
disease [7].

The retina is the deepest layer of texture covering the 
rear of the eye, recorded by color fundus photographs 
(CFPs) or fundoscopy. Vessel detection and segmenta-
tion are essential in DR diagnosis [8], since the initial 
changes are asymptomatic [9]. Although early diagno-
sis and therapy can prevent severe vision loss in 90% of 
cases, only a small part of these patients are screened at 
the recommended frequency [10]. In Brazil, a study with 
patients with type 2 diabetes showed that only 11.5% of 
individuals treated under the Family Health Program, 
14.9% treated in basic health units, and 35% in tertiary 
care had undergone fundoscopy in the last year [11]. On 
the other hand, another recently published study showed 
a screening rate of 63.9% in patients with type 1 diabetes 
[12]. The manual method of diagnosing DR is performed 
by an ophthalmologist who examines the human retinal 
fundus image. This manual process is very consuming in 
terms of the time and experience of an expert ophthal-
mologist, which makes developing an automated method 
to aid in the diagnosis of DR an essential and urgent need 
[13]. The lack of ophthalmologists to serve the number 
of patients who need to be screened is a limitation to this 
process [14].

Artificial intelligence is transforming ophthalmol-
ogy and has been leveraged for CFP to accomplish core 
tasks including segmentation, classification, prediction 
and seem to be an alternative to solve this problem [15, 
16], since the method has been tested on other popula-
tions and has shown good accuracy [17–20]. Combined 
with remote retinography, algorithm-based screening 
improves the process, selecting only higher-risk individu-
als to in person evaluation with an ophthalmologist [21, 
22]. The deep learning system developed by Abramoff 
et al. has obtained a US Food and Drug Administration 
approval for the diagnosis of DR. It was evaluated in a 
prospective, although observational setting, achieving 
87.2% sensitivity and 90.7% specificity [23].

Training these algorithms with diverse populations and 
large datasets is important to avoid biases, since previous 
studies suggest that the contrast between the retinal fun-
dus and DR lesions can vary considerably between differ-
ent ethnicities [24, 25]. Also, reproducibility (in different 
populations) is central to increasing the confidence in the 
scientific findings [26]. In Brazil, few studies evaluated 
the use of artificial intelligence to diagnose DR [27, 28].

The aim of this study is to train and evaluate the diag-
nostic performance of an algorithm, compared to the 
gold standard (evaluation by an ophthalmologist), in DR 
screening, using a large dataset of CFPs of Brazilian sub-
jects, ensuring that the nuances and characteristics of 
this specific population are adequately captured.

Methods
Datasets
This study sample combined prospective and retrospec-
tive data from individuals from three public and aca-
demic institutions who applied for a CFP. A convenience 
sample with consecutive patients was used. Each dataset 
has individual characteristics, as follows:

  • Endocrinology Unit of a tertiary public hospital in 
Porto Alegre (HCPA – Hospital de Clínicas de Porto 
Alegre): data from 2019 to 2021 were collected in the 
specialized hospital ambulatory setting prospectively 
and included patients more than seven years-old. 
The camera used was Canon CR-2 (Canon Inc., 
Melville, NY, USA) and two images of the posterior 
segment of each eye - one centered on the macula 
and the other centered on the disc (45° field of view) 
- after mydriasis induced by tropicamide 1% eye 
drops were captured.

  • TeleOftalmo project from Rio Grande do Sul 
combines the state’s health authority and the Federal 
University telehealth initiative (TelessaúdeRS-
UFRGS) and provides remote ophthalmological care 
to primary care patients [29, 30]. Retrospective data 
from individuals older than eight years-old with and 
without diabetes were collected from seven cities 
between 2020 and 2021. The camera used was ZEISS 
Visucam (Oberkocjen, Germany) and after patients 
with diabetes underwent mydriasis with tropicamide 
1% eye drops, posterior segment images (30° photo 
centered on the disc and 45° photo centered on the 
macula) and photos of the nasal, temporal, superior, 
and inferior sector were captured.

  • Ophthalmology Unit of the specialized ambulatory 
service from Federal University of São Paulo 
(UNIFESP) provides retrospective data from patients 
older than 10 years with diabetes between 2010 and 
2020 [31]. The camera used was Canon CR-2 (Canon 
Inc., Melville, NY, USA) and Nikon NF-505 (Tokyo, 
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Japan) and an image of posterior segment of each eye 
centered on the macula with mydriasis induced by 
tropicamide 0.5% was captured.

At all three sites, the images were collected by a nurse 
technician or researcher who had been trained in the 
procedure.

The study protocol was approved by the institutional 
Research Ethics Committees (2019 − 0113) and con-
ducted in accordance with the Declaration of Helsinki. 
Data from all sets were de-identified and were in full 
compliance with the General Data Protection Law and 
local regulations.

The study is reported according to the Standards for 
Reporting of Diagnostic Accuracy Studies (STARD) [32] 
[see Additional file 1].

Grading
After anonymization, all images were assessed for quality 
by the ophthalmologists and the images with interference 
factors, such as overexposure, inadequate focus, insuf-
ficient lighting, and excessive artifacts, were discarded. 
In the tertiary hospital of Porto Alegre in 2019 and Tele-
Oftalmo, before the images were analyzed by the oph-
thalmologists, the EyeQ algorithm [33], which performs 
retinal image quality assessment, was used to select only 
images of sufficient quality.

The CFPs were classified into the following five catego-
ries: no retinopathy, mild non-proliferative retinopathy, 
moderate non-proliferative retinopathy, severe non-
proliferative retinopathy, and proliferative retinopathy 
or macular edema, according to the International Clini-
cal Diabetic Retinopathy (ICDR) scale [34]. There are 
many DR classifications applied in distinct countries and 
screening programs, with the ICDR scale as the most 
applied in open-access ophthalmological datasets [35].

The classification of DR was done by imaging. No infor-
mation other than eye images was available to the evalu-
ator. This classification was performed independently 
by two ophthalmologists (reference standard). Clini-
cal information and reference standard results were not 
available to the assessors of the reference standard. After 
grading, the images were divided into two groups, non-
referable DR (no DR; mild non-proliferative DR and no 
macular edema or clinically insignificant macular edema) 
and referable DR (moderate non-proliferative DR; severe 
non-proliferative DR; proliferative DR and/or clinically 
significant macular edema). The kappa value for agree-
ment between two ophthalmologists for referable DR and 
non-referable DR was 0.813 (near perfect). All disagree-
ments were adjudicated by a third grader.

Neural network model
The goal of the neural network was to produce a binary 
prediction for each image: non-referable and referable 
DR.

For initial access to the feasibility of using a machine 
learning algorithm (index test) as a screening tool, 10 
neural networks were trained. The codebase was inspired 
by Voets et al. [36] and the initial model was previously 
described by this study group [37]. The model used the 
Inception v3 architecture as a pre-trained model and was 
adapted and fine-tuned for our datasets. This approach 
leverages the knowledge encoded in the pre-trained 
model to solve a different but related problem more effi-
ciently than training a new model from scratch. The same 
neural network architecture was used as in the original 
study by Gulshan et al. [15] and its replication by Voets 
et al. [36]. This consistency allows for a direct compari-
son with previous studies, highlighting that the primary 
differences lie in the data used and the population stud-
ied. The network was initialized with weights from the 
ImageNet dataset for all layers [38], except for the fully 
connected layer on top, which received training. After 
loading the weights, the fully connected dense layer with 
two units was added using the Sigmoid activation func-
tion [39].

Adam optimizer [40]  was used for learning network 
weights during the training process. The initial value of 
the learning rate was 0.01 and the end value was 0.0037. 
The binary cross-entropy function was used as the loss 
function to estimate the logarithmic loss between the 
actual and predicted labels.

All images were processed in line with Voets [36], 
locating the center and radius of the eye fundus and 
resizing each image to 299 × 299 pixels, with the center of 
the fundus in the middle of the image. This resizing was 
done to match the default input size for the Inception V3 
model. While larger image dimensions could be used, 
this would significantly increase training time. This resiz-
ing is particularly relevant for high resolution images, 
as compressing them to 299 × 299 pixels may result in 
some loss of details. However, this trade-off is necessary 
to maintain compatibility with the pre-trained Incep-
tion V3 architecture and to ensure efficient training. 
The algorithm was trained on each set for 200 epochs 
with batch size of 8. The datasets of the tertiary hospi-
tal in Porto Alegre, UNIFESP, and TeleOftalmo were 
used. The model was trained with each dataset separately 
and with grouped datasets into a single set. Each dataset 
was divided into two subsets—training and testing—in a 
stratified 70%/30% ratio.

Clinical information and reference standard results 
were not available to the performers/readers of the index 
test.
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Statistical analysis
The distribution of demographic and clinical characteris-
tics was presented using mean ± standard deviation (SD) 
for continuous variables and by number and percentage 
for categorical data. For referable/non-referable DR clas-
sification, we reported the area under the receiver operat-
ing characteristic (ROC) curve, sensitivity and specificity. 
The sensitivity was calculated as the number of correctly 
predicted positive examples divided by the total number 
positive examples. The specificity was calculated as the 
number of correctly predicted negative examples divided 
by the total number negative examples. The performance 
of the algorithm in detecting referable/non-referable DR 
was measured by the area under the ROC curve gen-
erated by plotting sensitivity versus 1 minus specific-
ity. Based on the two operating points, 2 × 2 tables were 
developed to characterize the sensitivity and specificity of 
the algorithm in relation to the gold standard which was 
defined as the majority decision of the ophthalmologists’ 
readings. The 95% confidence intervals were calculated. 
Three operational cutoff points were used to evaluate the 
performance of the algorithm: with high specificity, with 
greater sensitivity and maximum gain point. We excluded 
from analysis uninterpretable images due to poor quality. 
We use mean-value imputation to address missing data 

(age) in baseline characteristics. This study used a con-
venience sample, with no sample calculation conducted. 
Statistical significance was set at P < .05.

Results
We used images of 5308 individuals and included 4590 
patients (15816 images) in the analysis after quality eval-
uation, of which 4191 (26.5%) were classified as referable. 
Figure 1 shows the flow of participants during the study.

Table  1 presents the characteristics of the gradable 
images by dataset and by grouped dataset. In grouped 
dataset, the median age was 60 (7–97) years, 9684 
(61.2%) were women and 4191 (26.5%) of the CFPs pre-
sented referable DR.

The set of images of the tertiary hospital in Porto Alegre 
in 2019 included 651 patients and 3626 CFPs [2522 fully 
gradable; 641 (25.4%) referable]. The set of the same hos-
pital in 2021 had 412 patients and 1857 CFPs [1555 fully 
gradable; 422 (27.1%) referable]. The TeleOftalmo set 
included 2993 patients and 47,299 CFPs [9160 fully grad-
able; 2578 (28.1%) referable], and the UNIFESP set had 
1252 patients and 2579 CFPs [2579 fully gradable; 550 
(21.3%) referable].

Figure  2 shows the performance of the algorithm in 
detecting referable DR for the gradable images of all sets. 

Fig.1 Standards for reporting of diagnostic accuracy studies (STARD) diagram for the algorithm output: referable diabetic retinopathy. DR: Diabetic Reti-
nopathy; HCPA: Hospital de Clínicas de Porto Alegre; UNIFESP: Federal University of São Paulo; CFPs: Color Fundus Photographs
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Using the operational cut-off point with high specific-
ity, the sensitivity was 90.8% (95% CI 89.2–92.4), and the 
specificity was 95.8% (95% CI 95.2–96.5). The point with 
the highest sensitivity, showing an output that would be 
used for a screening tool, had a sensitivity of 95.1% (95% 

CI 93.9–96.3) and specificity of 90.9% (95% CI 89.9–
91.8). The maximum gain point had a specificity of 94.6% 
(95% CI 93.8–95.3) and a sensitivity of 93.5% (95% CI 
92.2–94.9). Additional files 2–5 show the performance of 

Table 1 Baseline characteristics
Tertiary hospital 
in Porto Alegre 
2019

Tertiary hospital 
in Porto Alegre 
2021

TeleOftalmo UNIFESP All

Patients 651 412 2993 1252 5308
Total CFPs 3636 1857 47,299 2579 55,371
Included CFPs 2522 (69.3) 1555 (83.7) 9160 (19.3) 2579 (100) 15,816 

(28.5)
Age (years-old) among included images 56 (12–97) 56 (7–87) 60 (8–96) 64 (10–92) 60 (7–97)
Women among included images 1556 (61.7) 905 (58.2) 5655 (61.7) 1568 (60.8) 9684 (61.2)
Disease severity distribution classified by major-
ity decision of ophthalmologists (reference 
standard) in included CFPs
No DR 1573 (62.4) 975 (62.7) 5651 (61.7) 1922 (74.5) 10,121 

(63.9)
Mild non-proliferative DR 328 (13.0) 177 (11.4) 999 (10.9) 107 (4.1) 1611 (10.9)
Moderate non-proliferative DR 373 (14.8) 221 (14.2) 1993 (21.7) 181 (7.0) 2768 (17.5)
Severe non-proliferative DR 52 (2.0) 51 (3.3) 185 (2.0) 127 (4.9) 415 (2.6)
Proliferative DR 196 (7.8) 131 (8.4) 332 (3.6) 242 (9.4) 901 (5.7)
Clinically significant edema 153 (6.0) 119 (7.6) 965 (10.5) 275 (10.6) 1512 (9.5)
Referable DR 641 (25.4) 422 (27.1) 2578 (28.1) 550 (21.3) 4191 (26.5)
DR: diabetic retinopathy; CFPs: color fundus photographs; the data are presented as n or n (%)

Fig. 2 Performance of the algorithm in detecting referable diabetic retinopathy for the gradable images of all sets
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the algorithm in detecting referable DR for the gradable 
images in each set evaluated.

Table 2 presents the ROC curve, sensitivity, and speci-
ficity of each image set evaluated. The algorithm achieved 
an area under the ROC curve of 0.98 (0.97–0.98) in 
grouped dataset.

No significant adverse events occurred from perform-
ing the index test or the reference standard.

Discussion
The present results showed excellent accuracy, with 
similarly high sensitivity and specificity, suggesting that 
machine learning may be an alternative to improve the 
workflow of DR screening in other settings other than 
those already tested. Sensitivity in diagnosing a dis-
ease is the most important metric of a screening test, 
thus, a screening program requires high sensitivity val-
ues (> 80%) [41]. However, having both, high sensitiv-
ity and high specificity is the best of both worlds: our 
study showed a sensitivity of 95.1% at the high sensitiv-
ity point and 90.8% at the high specificity point. A pre-
vious study undertaken with Brazilian individuals for the 
clinical validation of an artificial intelligence algorithm, 
for example, had reached a high sensitivity (97.8%) but a 
lower specificity (61.4%) [28]. Another study also reached 
high sensitivity and specificity values, but with a differ-
ent methodology, as images obtained exclusively with a 
portable retinal camera were assessed [42]. The present 
study provides a comprehensive evaluation of the use of a 
machine learning algorithm for the detection of referable 
DR, making it the study in Brazil with the largest image 
set, the better results and with all parts of the training 
and validation processes performed on images of Brazil-
ian subjects published to date.

Artificial intelligence by machine learning has become 
a tool that helps in reading and analyzing images [43]. 
Many groups around the world had previously studied 
the automated and semi-automated evaluation of DR [18, 
28, 44–48]. DR screening is a challenge in many coun-
tries [49, 50], including Brazil, which is a continent-sized 
country with screening rates far below the ideal [14, 15]. 
The development of an algorithm with images of the Bra-
zilian population can greatly increase the scope of DR 
screening, allowing only patients with changes in the 

initial examination to be referred to an ophthalmologist, 
reducing the number of referrals, so that a greater num-
ber of patients have access to specialized services, when 
necessary. This process, compared with human classifica-
tion, can reduce screening costs when deployed as semi-
autonomous screening [21, 49, 50]. In countries with 
structured DR screening programs, medium-term results 
showed a reduction in amaurosis in the population with 
diabetes [11].

Our study presented values close to studies performed 
with other populations, with a sensitivity of 95.1% and 
specificity of 90.9% at the high sensitivity point. The 
meta-analysis conducted by Wu et al. [51] showed robust 
performance in detecting different categories of DR, with 
a pooled sensitivity of 93–97% and a pooled specificity of 
90–98%.

When evaluated individually, the sets of the tertiary 
hospital in Porto Alegre in 2019 and 2021 and UNIFESP 
presented lower specificity in the performance of the 
algorithm compared with TeleOftalmo, probably because 
the TeleOftalmo set is larger and the algorithm may be 
better fitted to its population. Studies evaluating the per-
formance of deep learning have shown that the initial 
dataset for algorithm development should be large and 
have diverse training data in terms of patient demograph-
ics and ethnicity, image acquisition methods, and image 
quality [44], which is exactly what we did in the present 
study.

Our image set included populations from different 
Brazilian states, different regions of Rio Grande do Sul, 
and different types of cameras for performing CFP with 
different imaging characteristics, which was a strength 
of this study. These characteristics increase the external 
validity of our results and qualify them for future use in 
screening strategies for this important complication of 
diabetes at the national level.

This study has limitations. First, the ophthalmolo-
gists classified macular edema considering the presence 
of hard exudates, microaneurysms, or hemorrhage in 
the macular region, and studies have shown that optical 
coherence tomography can detect earlier changes in the 
vascular and retinal morphology, making it an important 
tool for the management and follow-up of retinal dis-
eases, such as macular edema [52, 53]. However, the high 

Table 2 Area under the ROC curve, sensitivity, and specificity of each image set evaluated
Tertiary hospital in 
Porto Alegre 2019

Tertiary hospital in 
Porto Alegre 2021

TeleOftalmo UNIFESP All

Area under the ROC curve, (95% 
CI)

0.92 (0.89–0.95) 0.95 (0.92–0.97) 0.98 (0.98–0.99) 0.94 (0.92–0.97) 0.98 
(0.97–0.98)

Sensitivity (%) (95% CI) 95.3 (92.4–98.3) 95.3 (91.7–99.0) 95.2 (93.7–96.7) 95.3 (92.0–98.5) 95.1 
(93.9–96.3)

Specificity (%) (95% CI) 56.7 (52.7–60.8) 72.4 (67.7–77.2) 92.6 (91.5–93.7) 80.5 (77.3–83.6) 90.9 
(89.9–91.9)

ROC: receiver operating characteristic; data are presented as percentage and confidence intervals (CIs)
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cost of this method (equipment and human workforce) 
makes its use unfeasible in a continental and low/mid-
dle-income country such as Brazil. Second, the clinical 
information of patients was limited, which hinders fur-
ther analysis of the population and its associations with 
the findings presented. Third, we included only images 
with good quality in the training and testing set. Evaluat-
ing the performance of the algorithm in a real-life study, 
without selecting good quality images, is necessary.

Conclusion
This study showed that deep machine learning algorithm 
is reproducible in a diverse population, with elevated sen-
sitivity and specificity for the detection of referable DR. 
This classification is useful in universal healthcare sys-
tems (such as the Brazilian example) as a tool to improve 
the screening flow of DR in the country. Further research 
is needed to determine the real-life applicability of the 
algorithm, its cost-effectiveness to assess whether it can 
improve the care of patients with diabetes, and the regu-
lation of its use on a large scale.
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