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Abstract 

Background Dipeptidyl peptidase 4 (DPP-4) plays a crucial role in breaking down various substrates. It 
also has effects on the insulin signaling pathway, contributing to insulin resistance, and involvement in inflammatory 
processes like obesity and type 2 diabetes mellitus. Emerging effects of DPP-4 on bone metabolism include an inverse 
relationship between DPP-4 activity levels and bone mineral density, along with an increased risk of fractures.

Main body The influence of DPP-4 on bone metabolism occurs through two axes. The entero-endocrine-osseous 
axis involves gastrointestinal substrates for DPP-4, including glucose-dependent insulinotropic polypeptide (GIP) 
and glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). Studies suggest that supraphysiological doses of exogenous 
GLP-2 has a significant inhibitory effect on bone resorption, however the specific mechanism by which GLP-2 influ-
ences bone metabolism remains unknown. Of these, GIP stands out for its role in bone formation. Other gastrointes-
tinal DPP-4 substrates are pancreatic peptide YY and neuropeptide Y—both bind to the same receptors and appear 
to increase bone resorption and decrease bone formation. Adipokines (e.g., leptin and adiponectin) are regulated 
by DPP-4 and may influence bone remodeling and energy metabolism in a paracrine manner. The pancreatic-endo-
crine-osseous axis involves a potential link between DPP-4, bone, and energy metabolism through the receptor acti-
vator of nuclear factor kappa B ligand (RANKL), which induces DPP-4 expression in osteoclasts, leading to decreased 
GLP-1 levels and increased blood glucose levels. Inhibitors of DPP-4 participate in the pancreatic-endocrine-osseous 
axis by increasing endogenous GLP-1. In addition to their glycemic effects, DPP-4 inhibitors have the potential 
to decrease bone resorption, increase bone formation, and reduce the incidence of osteoporosis and fractures. Still, 
many questions on the interactions between DPP-4 and bone remain unanswered, particularly regarding the effects 
of DPP-4 inhibition on the skeleton of older individuals.

Conclusion The elucidation of the intricate interactions and impact of DPP-4 on bone is paramount for a proper 
understanding of the body’s mechanisms in regulating bone homeostasis and responses to internal stimuli. This 
understanding bears significant implications in the investigation of conditions like osteoporosis, in which disruptions 
to these signaling pathways occur. Further research is essential to uncover the full extent of DPP-4’s effects on bone 
metabolism and energy regulation, paving the way for novel therapeutic interventions targeting these pathways, 
particularly in older individuals.
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Introduction
Dipeptidyl peptidase 4 (DPP-4) is a serine peptidase 
found in the form of a surface protein anchored to the 
cell membrane or soluble in plasma. This enzyme has 
been increasingly recognized for its multifaceted role 
in various physiological processes, extending beyond its 
initially known functions in insulin signaling, inflamma-
tion, and energy metabolism [1]. Various cells in the bone 
microenvironment secrete DPP-4, including osteoclasts, 
bone marrow adipose tissue, and immune cells [2]. The 
association of DPP-4 with osteoclasts suggests a stimu-
latory action of this enzyme on bone resorption [3, 4], 
potentially affecting bone mineral density (BMD) and 
fracture risk and identifying DPP-4 activity as a potential 
marker of altered bone metabolism [5–10]. In fact, stud-
ies have revealed an inverse correlation between DPP-4 
activity levels and BMD, suggesting a likely role of DPP-4 
in bone homeostasis [5–8, 10]. Additionally, individuals 
with increased DPP-4 activity may have an elevated risk 
of fractures, implicating DPP-4 in skeletal fragility [5, 7, 
10]. These findings highlight the importance of under-
standing the intricate interplay between DPP-4, bone 
metabolism, and systemic health [9, 11–19].

Recently, DPP-4 emerged as an adipokine/hepatokine 
with potential connections to skeletal muscle func-
tion and BMD [20]. Indeed, DPP-4 acts as a receptor or 
costimulatory protein in immunomodulatory signaling 
processes in various immune cells such as CD8 + and 
CD4 + T cells, B cells, and macrophages, and hydrolyzes 
different sites of chemokines and interleukins that are 
part of bone remodeling. The effects of DPP-4 on bone 
health are underscored by its effects in generating pro-
inflammatory cytokines such as interleukin-6 (IL-6) 
and tumor necrosis factor-alpha (TNF-α), contribut-
ing to inflammatory processes mediated by adipose tis-
sue macrophages, which are implicated in conditions 
ranging from obesity to osteoporosis [21]. In fact, mice 
with hepatocyte-specific DPP-4 knockdown have a sig-
nificant reduction in serum DPP-4 activity and reduced 
adipose tissue inflammation, insulin resistance, and glu-
cose intolerance [20]. Expression of DPP-4 is substan-
tially dysregulated in a variety of disease states, including 
inflammation, cancer, obesity, and diabetes [22]. This 
suggests that DPP-4 inhibitors, which are commonly 
used for treating type 2 diabetes mellitus (T2DM), may 
offer therapeutic benefits beyond glycemic control, 
potentially mitigating bone resorption and reducing frac-
ture risk [23]. Clinical studies investigating the effects of 
DPP-4 inhibitors have yielded promising results, indi-
cating improvements in bone density and a potential 
decrease in fracture incidence. However, conflicting find-
ings and gaps in understanding persist, calling for further 
research into the mechanisms underlying the influence of 

DPP-4 on bone metabolism. Of particular interest are the 
paracrine effects of adipokines and gastrointestinal sub-
strates regulated by DPP-4, such as leptin, adiponectin, 
pancreatic peptide YY (PYY), and glucagon-like peptide 
1 (GLP-1) and glucagon-like peptide 2 (GLP-2), which 
may mediate the crosstalk between bone remodeling and 
energy metabolism [2, 24].

In summary, elucidating the bone effects of DPP-4 
holds significant implications for both clinical practice 
and basic research. By unraveling the complex intercon-
nections between DPP-4, energy metabolism, and bone 
health, we can uncover valuable insight to guide the 
development of innovative treatments for conditions 
ranging from T2DM to osteoporosis.

Molecular structure of DPP‑4
Initially described by Hopsu-Havu & Glenner in 1966 
[25], DPP-4 is a dimeric 240-kDa glycoprotein composed 
of two 120-kDa subunits and encoded by a gene located 
in chromosome 2q24 [25].

Structurally, DPP-4 is formed by three domains: short 
cytoplasmic, transmembrane, and extracellular (Fig.  1). 
The extracellular domain is further subdivided into three 
regions, i.e., glycosylated, cysteine-rich, and catalytic 
(or C-terminal, [22]). The glycosylated and cysteine-rich 
regions are involved in nonenzymatic functions of the 
enzyme and interact with other proteins (e.g., adenosine 
deaminase (ADA), caveolin-1, streptokinase, and plasmi-
nogen) and components of the extracellular matrix (e.g., 
collagen and fibronectin.) The best-studied interaction in 
this regard is certainly the binding of DPP-4 and ADA. 
Furthermore, ADA activity is elevated in patients with 
T2DM and may serve as a marker of inflammation and 
obesity. Via interaction with CD45, the complex of ADA 
and DPP-4 enhances T-cell activation [22, 26]. A flexible 
segment in DPP-4 connects the transmembrane domain 
to the extracellular domain and is the target of shedding, 
a process in which the enzyme is cleaved and released 
into circulation [22]. The extracellular portion released 
as soluble DPP-4 is found in plasma and biological fluids 
and can be quantified both in terms of activity and con-
centration [9]. In addition to the soluble isoform, DPP-4 
presents an enzymatic form, each with different roles in 
influencing various physiological processes controlling 
inflammation and glucose homeostasis. While enzymatic 
DPP-4 may be more closely related to obesity-associated 
inflammation and glucose regulation, soluble DPP-4 may 
have a distinct role that is not associated with inflamma-
tion. Overall, 90–95% of serum DPP-4 activity is related 
to soluble DPP-4 levels [27–31].

A study has analyzed how plasma DPP-4 activity and 
levels of soluble DPP-4 correlate with inflammatory 
markers (C-reactive protein [CRP], IL-6, TNF-α, and 
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monocyte chemoattractant protein-1 [MCP-1]) in a sub-
set of patients with T2DM treated with sitagliptin for 
12 months as part of the Trial Evaluating Cardiovascular 
Outcomes with Sitagliptin (TECOS, 26). As expected, 
treatment with sitagliptin led to a significant reduction 
in plasma DPP-4 activity at 12  months, but the levels 
of soluble DPP-4 and inflammatory markers remained 
unchanged [25]. These findings indicate a dissociation in 
the modulation of DPP-4-related parameters and inflam-
matory biomarkers in humans [32, 33].

Mechanisms of DPP‑4 action
Widely distributed, DPP-4 is present on the surface of 
various cells, including adipocytes and liver, kidney, 
intestine, endothelial, and immune cells [34]. Initial stud-
ies had indicated DPP-4 to be an adipokine due to its 

release from the adipocyte membrane through the action 
of matrix metallopeptidase 9 (MMP9), resulting in the 
release of the soluble DPP-4 form in the circulation [35]. 
Subsequently, Lamers et  al. described a strong correla-
tion between soluble DPP-4 and adipocyte size, suggest-
ing an important link between DPP-4 and obesity [34].

Recent studies have uncovered increased DPP-4 
expression and secretion from hepatocytes in obese 
mice, with a DPP-4 expression and activity much higher 
in the liver than in adipose tissue, indicating its emerg-
ing role as a hepatokine in the interplay between hepat-
ocytes and adipocytes [4]. Conversely, selective loss of 
adipocyte DPP-4 enhances hepatic insulin sensitivity and 
reduces inflammation, with no effects on glucose toler-
ance [4]. These findings have set the stage for Varin et al. 
to explore the roles of DPP-4. These authors discussed 

Fig. 1 Schematic representation of the dipeptidyl peptidase 4 (DPP-4) monomer bound to the membrane and the soluble DPP-4. Schematic 
representation of the dipeptidyl peptidase 4 (DPP-4) monomer bound to the membrane and to soluble DPP-4. Catalytically active DPP-4 is released 
from the plasma membrane, producing a soluble circulating form (i.e., soluble DPP-4, which contains 727 amino acids). The soluble DPP-4 lacks 
the intracellular and transmembrane domains and accounts for a substantial proportion of DPP-4 activity in human serum. Both membrane-bound 
and circulating soluble DPP-4 share many domains, including the glycosylated region (residues 101–535, specific residues 85, 92, 150), ADA binding 
domain (340–343), fibronectin binding domain (468–479), cysteine-rich domain (351–506, disulfide bonds are formed from 385–394, 444–472, 
and 649–762), and the catalytic domain (507–766, including residues composing the catalytic active site 630, 708, and 740). Adapted from Mulvihill 
et al. Endocrine Reviews, December 2014, 35(6):992–1019 (20). Reproduced with permission from Oxford University Press and Copyright Clearance 
Center (License number 570255101696)
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the presence of circulating soluble DPP-4—a DPP-4 form 
distinct from the enzymatic DPP-4—and proposed that 
while enzymatic DPP-4 may be linked to obesity-associ-
ated inflammation and glucose regulation, soluble DPP-4 
may have separate functions unrelated to inflammation 
[32]. Overall, these studies underscore the intricate rela-
tionships between DPP-4, glucose regulation, obesity, 
and inflammation, highlighting its complexity and inter-
actions with bone metabolism, along with its regulatory 
mechanisms, suggesting potential therapeutic implica-
tions [4, 32, 36].

Several effects have been associated with DPP-4, 
including degradation of various substrates (such as 
incretins, neuropeptides, and cytokines) and involve-
ment with inflammatory processes (including cancer, 
obesity, and T2DM, 20, 37). Additionally, DPP-4 exhibits 
an inverse correlation with BMD, suggesting a potential 
connection with osteoporosis [5–8, 10].

Weivoda et  al. presented compelling evidence indi-
cating the occurrence of a pancreatic-endocrine-bone 
axis governing fuel metabolism in humans [3]. Using 

RNA sequencing of bone biopsies from patients treated 
with denosumab compared with placebo, the authors 
observed a down-regulation of skeletal DPP-4 expression 
with denosumab [3]. Further investigation using in  situ 
hybridization revealed DPP-4 expression in the osteo-
clast lineage. Additionally, RANKL emerged as a poten-
tial link between DPP-4 and bone-energy metabolism, 
as it induced DPP-4 expression in osteoclasts, leading 
to decreased GLP-1 levels and increased blood glucose 
(Fig. 2).

Patients with T2DM treated with denosumab exhibit 
lower glycated hemoglobin levels compared with those 
treated with bisphosphonates or calcium and vitamin 
D supplementation, highlighting the role of the RANK-
RANKL system and implicating DPP-4 as a potential 
mediator between bone remodeling and energy metabo-
lism [3]. These findings underscore the multifaceted roles 
of DPP-4, not only as an osteoclast-derived protein but 
also as a connector between bone remodeling and energy 
metabolism, with significant implications for the pancre-
atic-endocrine-bone axis [3, 36, 37].

Fig. 2 Potential mechanisms of action of dipeptidyl peptidase 4 on bone metabolism*. BMAT, bone marrow adipose tissue; DPP-4, dipeptidyl 
peptidase 4; GLP1-R, receptor for glucagon-like peptide 1 (GLP-1); GIPR, receptor for glucose-dependent insulinotropic polypeptide (GIP); IL, 
interleukin; PYR, receptor for peptide YY; NPYR, receptor for neuropeptide Y; RANKL, receptor activator of nuclear factor-kappa B ligand, TNF-α, tumor 
necrosis factor-alpha. Complex roles of DPP-4 in classical enzymatic and nonenzymatic functions of bone metabolism. Bone marrow mesenchymal 
cells, liver, and adipose tissue produce DPP-4, while RANKL induces the expression of DPP-4 by osteoclasts, leading to decreased GLP-1 levels 
and increased blood glucose levels. Further, DPP-4 cleaves various sites on chemokines, interleukins, and other cytokines that participate actively 
in bone remodeling. Potentially, DPP-4 exerts indirect regulation of bone remodeling by interacting with multiple peptide substrates on bone cells, 
including GLP-1, glucagon-like peptide-2 (GLP-2), GIP, NPY, and PYY
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The modulation of glucose metabolism is one of the 
most relevant effects of DPP-4 in clinical practice [23]. 
The idea of regulating glucose levels through DPP-4 inhi-
bition was initially conceived 25  years ago, paving the 
way for the development of different DPP-4 inhibitors 
and their widespread clinical utilization [38]. Extensive 
clinical experience has been reported using these medi-
cations in a wide spectrum of patients with T2DM and 
concomitant cardiovascular disease, chronic kidney 
disease, or obesity, among others. These medications 
potently and selectively inhibit the enzymatic activity of 
DPP-4, enhancing the effectiveness of GLP-1 and glu-
cose-dependent insulinotropic polypeptide (GIP), which 
are the primary incretins (endogenous glucoregulatory 
peptides, [39–41]).

Entero‑endocrine‑osseous axis: gastrointestinal hormones 
as substrates for DPP‑4
The initial observation that patients receiving long-term 
parenteral nutrition develop osteoporosis and osteomala-
cia raised suspicion about the lack of stimulation for the 
secretion of incretin hormones in this mode of nutrition 
and a potential connection between these hormones and 
bone metabolism [42]. This has led to the exploration of 
a potential connection between incretin hormones and 
bone tissue, referred to as the entero-endocrine-osseous 
axis. Further evidence supporting this hypothesis comes 
from the typical decrease in bone turnover observed 
after oral glucose intake, which is inhibited by infusion 
of octreotide, a somatostatin analog that suppresses the 
secretion of gastrointestinal and pancreatic peptides [43]. 
These findings suggest that the gut plays a crucial role in 
postprandial bone remodeling [42, 43].

The incretin hormones GIP and GLP-1 are important 
substrates for DPP-4 action, while increased DPP-4 activ-
ity is associated with lower levels of GIP and GLP-1 [3]. 
Notably, GIP is secreted by the enteroendocrine K-cells 
that are present in high density in the duodenum and 
upper jejunum, while GLP-1-producing cells of the intes-
tine are mainly positioned in the distal parts of the gut 
[44]. Serum levels of GIP and GLP-1 increase approxi-
mately five times after a meal [45]. The breakdown of GIP 
and GLP-1 by DPP-4 occurs approximately 4  min after 
these hormones enter the circulation. Studies show that 
these peptides have a favorable effect on bone metabo-
lism, although these effects are still poorly understood 
[46].

GIP
Similar to the other two gut-derived hormones (GLP-1 
and GLP-2), GIP influences bone remodeling as part 
of the entero-endocrine-osseous axis. Receptors for 
GIP are expressed in osteoblasts and bone marrow 

cells [47]. Additionally, GIP is expressed in osteoclasts, 
and its binding to the receptor inhibits bone resorp-
tion [21]. Studies in animals with GIP knockout genes 
have shown different results depending on the deleted 
exon. In general, GIP knockout leads to decreased bone 
formation parameters (e.g., BMD, bone mineral con-
tent, trabecular bone volume, alkaline phosphatase, and 
osteocalcin) and increased resorptive parameters (e.g., 
greater number of osteoclasts and increased urinary 
elimination of the resorption marker deoxypyridinoline, 
[48]). Another study in a GIP receptor knockout model 
showed decreased bone strength and cortical thickness 
and increased bone resorption—but paradoxically, an 
increased number of osteoblasts and a reduced number 
of osteoclasts [49].

In humans and rodents, GIP infusion results in 
decreased levels of cross-linked C-terminal telopeptide 
of type I collagen (CTX-1) and increased levels of procol-
lagen type I N-terminal propeptide (P1NP), regardless of 
whether blood glucose levels are normal or elevated [50–
52]. Observational studies have shown that GIP receptor 
mutations lead to decreased receptor signaling, which 
results in lower BMD and increased risk of fractures [50]. 
Additionally, GIP may stimulate bone formation, indicat-
ing a possible separation between the processes of bone 
resorption and formation [47].

Some studies involving healthy subjects reported that 
endogenous GIP contributes to up to 25% of the suppres-
sion of bone resorption after a meal, while it found that 
endogenous GLP-1 has no impact on postprandial bone 
homeostasis [53, 54].

In summary, GIP influences bone remodeling through 
an entero-endocrine-osseous axis and plays a role in 
coordinating optimal bone turnover in response to 
food intake, mainly during the day. Both exogenous and 
endogenous GIP decrease bone resorption in humans 
[50]. This suggests that the GIP receptor could be a 
potential target for the prevention and treatment of oste-
oporosis [50], Fig. 3).

GLP‑1
Multiple studies in rodents have established the role 
of GLP-1 in bone metabolism. Indeed, mice osteo-
blasts, osteocytes, and osteoclasts have been shown 
to express GLP-1 receptors [21]. The primary GLP-1 
action in rodents’ bone is to promote bone formation 
by stimulating osteoblasts through the regulation of 
runt-related transcription factor 2 (RUNX2), alkaline 
phosphatase, collagen type 1, and osteocalcin [55]. 
Additionally, GLP-1 acts directly and indirectly on the 
Wnt/β-catenin pathway by reducing the mRNA levels 
of sclerostin, a known inhibitor of bone formation [55]. 
In rodents, stimulation of GLP-1 receptors in thyroid 
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C cells promotes the secretion of calcitonin. This hor-
mone, in turn, inhibits osteoclastic activity, which 
decreases the release of calcium from the bone into the 
bloodstream, leading to decreased bone resorption [56, 
57]. Prolonged administration of high-dose liraglutide 
(a GLP-1 receptor agonist) to monkeys did not result 
in calcitonin secretion or C-cell hyperplasia. This indi-
cates marked differences in the effects of GLP-1 on 
bone metabolism between different mammalian species 
[56, 58].

In summary, GLP-1 has positive effects on bone 
strength and quality in rats and protects against bone 
loss. It increases bone formation parameters and 
decreases bone resorption parameters. These findings 
suggest an essential role for endogenous GLP-1 receptor 
signaling in the control of bone resorption. In rodents, 
this effect likely occurs through a calcitonin-dependent 
pathway since GLP-1 does not appear to have a direct 
effect on osteoblasts and osteoclasts in vitro [56].

Findings from human studies focused on GLP-1 actions 
on bone are inconsistent. Agonists of the GLP-1 receptor 
have been shown to increase levels of markers of bone 
formation (osteocalcin and procollagen type 1 N-termi-
nal propeptide [P1NP]) and protect against loss of bone 
mineral content in obese women after weight loss while 
having no effect on plasma CTX-1 concentrations [59, 
60]. In a retrospective cohort study, patients with T2DM 
and concomitant osteoporosis or osteopenia who used 
DPP-4 inhibitors and no antiosteoporotic medications 
were divided into two groups: those who switched to a 
GLP-1 receptor agonist and those who continued on a 
DPP-4 inhibitor [61]. The authors compared changes in 
glycemic control and BMD with and without conver-
sion from DPP-4 inhibitor to GLP-1 receptor agonist for 
3  years and observed that patients who switched to the 
latter had greater decline in lumbar BMD than controls 
regardless of weight loss [12, 61].

A meta-analysis of randomized clinical trials evaluat-
ing the use of GLP-1 receptor agonists and the occur-
rence of bone fractures in patients with T2DM observed 
that these medications did not reduce the incidence of 
fractures compared with other antidiabetic medications 
[62]. In contrast, another meta-analysis observed that 
the risk of fractures was reduced with liraglutide but 
increased with exenatide (also a GLP-1 receptor agonist, 
[63]. In a systematic review and network meta-analysis, 
Zhang et  al. found benefits from GLP-1 receptor ago-
nists in terms of fracture risk [13]. Notably, these authors 
included in their analysis only randomized controlled tri-
als with a duration ≥ 52 weeks considering that interven-
tions shorter than that were unlikely to affect the fracture 
risk [13].

The conclusions of most clinical studies on GLP-1 
effects are insufficient to provide strong evidence. 
Although GLP-1 receptor agonists show benefits in ani-
mal models, limited clinical data preclude researchers 
from drawing confident conclusions [64, 65]. Discrepant 
findings in humans may be due to the short duration of 
the studies (on average 35 weeks) and the fact that frac-
tures have not been considered a primary outcome in the 
studies, but rather, an adverse event [56], (Table 1).

In summary, human studies analyzing the effects of 
GLP-1 receptor agonists on bone show inconsistent 

Fig. 3 Entero endocrine-osseous axis The entero-endocrine-osseous 
axis. Lower serum calcium levels stimulate the parathyroid release 
of PTH, which increases bone reabsorption with release of calcium 
into the circulation. Thyroid C cells present receptors for GLP-1, 
as demonstrated in preclinical studies, and stimulation of calcitonin 
production inhibits osteoclastic activity. The contributions 
of endogenous GIP to postprandial bone homeostasis are as follows: 
endogenous GIP contributes to the postprandial suppression 
of bone resorption in humans and stimulates bone formation 
through stimulation of osteoblasts [47]. Both GIP and GLP‐2 receptors 
are expressed in parathyroid tissue, and the effect of GLP‐2 on bone 
turnover seems to depend on changes in PTH levels and may 
be mediated through GLP‐2 receptor in the parathyroid gland. 
Effects of GIP on bone turnover may be mediated directly via GIP 
receptor expressed in osteoblasts and osteoclasts, which may occur 
independently from PTH [47]. SOURCE: Adapted from Stensen 
et al. The enterosseous axis and its relationship with thyroid C cells 
and PTH. Copyright provided by Elsevier and Copyright Clearance 
Center. License Number 5702571099338. Abbreviations: GIP, 
glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like 
peptide 1; GLP-2, glucagon-like peptide 2; CTX, carboxy-terminal 
type 1 collagen crosslinks; P1NP, procollagen type 1 amino-terminal 
propeptide
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results. While these analogs may protect against bone 
mineral content loss and increase bone formation indi-
cators, they show no effect on plasma CTX-1 concen-
trations. Meta-analyses on GLP-1 receptor agonists and 
fracture occurrence have yielded conflicting results, pos-
sibly due to short study durations and fractures not being 
primary outcomes. Limited clinical data hinder confident 
conclusions despite positive findings in animal models.

GLP‑2
A hormone consisting of 33 amino acids, GLP-2 is 
encoded by a section of the proglucagon gene that is 
located closely to the sequence that encodes GLP-1. Fol-
lowing its secretion from gut endocrine cells, GLP-2 
promotes the absorption of nutrients through distinct 
mechanisms of action [66]. Additionally, GLP-2 increases 
the barrier function of the gut epithelium and regulates 
gastric motility, gastric acid secretion, and intestinal hex-
ose transport [66, 67]. In healthy subjects, subcutane-
ous injections of GLP-2 elicit a dose-related decrease in 
CTX-1 (a bone resorption marker), which has sparked 
suggestions for the use of GLP-2 as a potential osteopo-
rosis treatment [68]. Despite a described effect of GLP-2 

on osteoclast activity, the GLP-2 receptor has not been 
identified in human osteoclasts or any other bone-related 
cell type [69], except for immature human osteoblast cell 
lines MG-63 and TE-85 [69]. In a clinical study published 
by Gottschalck et  al. exogenous GLP-2 administration 
decreased serum and urinary markers of bone resorption 
and increased hip BMD in postmenopausal women and 
spine BMD in patients with short bowel syndrome [70]. 
No studies have reported the effects of GLP-2 on bone 
remodeling in mice [50].

More recently, unimolecular incretin agonists have 
been engineered by Gobron et al. [71]. The authors devel-
oped a series of unimolecular dual GIP/GLP-2 analogs 
with the first-in-class molecule GL-0001 being capable 
of enhancing collagen maturity, improving bone biome-
chanical response, and increasing resistance to fractures 
in vivo. The study’s emphasis on targeting bone material 
properties rather than BMD alone was innovative and 
different from conventional methods for treating bone 
fragility [71].

A randomized, double-blind, placebo-controlled, 
crossover study evaluated bone markers of formation 
and resorption in 17 overweight or obese men without 

Table 1 Actions of dipeptidyl peptidase 4 (DPP-4) substrates on bone remodeling

* Central (intraventricular) administration of leptin in ob/ob mice. ** Via Y1 and Y2 receptors. CTX-1 cross-linked C-terminal telopeptide of type I collagen, GIP glucose-
dependent insulinotropic polypeptide, GLP-1 glucagon-like peptide 1, GLP-2 glucagon-like peptide 2; N/A not applicable, NPY neuropeptide Y, PYY peptide YY

Bone formation parameters Bone reabsorption parameters

GLP-1

Preclinical studies [55, 56, 58] Increase Decrease/stimulation of calcitonin secretion 
and inhibition of osteoclastic activity. No effect 
on CTX-1

Clinical studies [12, 13, 56, 61, 62] Controversial (varies with type of study) No effect

GIP

Preclinical studies [47–49, 52] Increase Decrease in CTX-1

Clinical studies (52[51, 53, 54] Increase Decrease

GLP-2

Clinical studies [70] No effect Decrease

GIP + GLP-1

Clinical studies [71] Increase Decrease

LEPTIN

Preclinical studies*[102, 106, 108] Increase (cortical bone) Increase (trabecular bone)

Clinical studies [94, 102–106] Potential increase N/A

ADIPONECTIN

Preclinical studies [86, 87, 92] Increase Decrease

Clinical studies [85, 88–91, 93–96] Discrepant results Probable increase

NPY**

Preclinical studies [73, 74, 76, 77, 79] Decrease Increase

Clinical studies [78] Decrease Increase

PYY

Preclinical studies [77] Increase Decrease

Clinical studies [80–82] Decrease Increase
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T2DM who received sequence infusions of GIP alone, 
GLP-1 alone, a combination of GIP and GLP-1, and pla-
cebo [72]. The results showed that the combination of 
GIP and GLP-1 had an additive effect by suppressing 
bone resorption markers (74, Fig.  3, Table  1). Similar 
to GIP, GLP-1 led to a notable suppression of the bone 
resorption marker CTX-1. The reduction in CTX-1 was 
greater when both incretin hormones (GLP-1 and GIP) 
were administered together, compared with each hor-
mone administered alone. Notably, P1NP levels were 
unaffected by the interventions. The study’s results sug-
gest that both GLP-1 and GIP suppress bone resorption. 
Future research on dual-receptor agonists may help shed 
light on their potential benefits in bone health.

In summary, GLP-2 has a significant inhibitory effect 
on bone resorption with minimal impact on bone for-
mation, resulting in increased BMD. Studies suggest 
that only supraphysiological doses of exogenous GLP-2 
effectively reduce bone resorption (CTX-1). However, 
the specific mechanism by which GLP-2 influences bone 
metabolism remains unknown. It is uncertain whether 
GLP-2 acts directly on bone cells or if its effects are medi-
ated indirectly, possibly involving other intestinal factors 
([50], Fig. 3).

NPY and PYY
A part of the pancreatic polypeptide family, NPY is a 
36-amino acid peptide. It is primarily produced and 
expressed in the central and peripheral nervous system, 
with significant expression in the hypothalamus. Nota-
bly, NPY plays a significant role in various physiologi-
cal processes, including the regulation of appetite, stress 
responses, and control of blood pressure. Its widespread 
distribution in the nervous system underscores its impor-
tance in modulating a wide range of physiological func-
tions [73]. Expression of NPY by osteoblasts, osteoclasts, 
osteocytes, chondrocytes, and adipose tissue has recently 
been described [74]. This action on bone metabolism 
caught the attention of several researchers in the area and 
has become a hot topic in recent years. Additionally, NPY 
acts as a multifunctional neurotransmitter and neuro-
modulator through a family of G-protein coupled recep-
tors known as Y receptors [73].

There are five known subtypes of Y receptors, namely, 
Y1R, Y2R, Y4R, Y5R, and Y6R. The interplay between 
these receptors and NPY in the context of bone mass 
regulation, an area of active research, highlights the 
complex role of NPY in the body’s regulatory systems 
[75]. Of these receptor subtypes, Y1R and Y2R are par-
ticularly involved in modulating bone mass, but they do 
so through different mechanisms and at different sites. 
The Y1R subtype is primarily expressed in osteoblasts. 
A Y1R germline deletion results in elevated osteoblast 

activity and mineral apposition rate, together with 
increased formation of highly multinucleated osteo-
clasts and enhanced surface area, demonstrating a 
negative role of Y1R on bone mass maintenance [76]. 
When truncated by DPP-4, NPY has a half-life of 2 to 
3 min, after which it loses the ability to bind to the Y1R 
[76]. The Y2R subtype, on the other hand, is expressed 
in sympathetic nerve fibers that innervate bone tissue 
and can influence bone remodeling by regulating the 
sympathetic nervous system’s activity. Mice with Y2R 
knockout in the hypothalamus have increased osteo-
blastic activity, mineralization rate, and bone mass, 
indicating that Y2R normally plays a catabolic role in 
stimulating cortical and cancellous bone formation 
[77].

In postmenopausal osteoporosis, NPY is upregulated in 
bone tissue. This upregulation of NPY may contribute to 
the bone loss seen after menopause [78, 79]. In osteopo-
rosis associated with glucocorticoid-induced bone loss, 
NPY mRNA expression and protein concentration are 
elevated [79]. This elevation of NPY has been associated 
with a significant reduction in BMD and bone micro-
structure, which suggests that NPY may contribute to the 
negative effects of glucocorticoids on bone health [79].

The pancreatic peptide YY (PYY), a member of the 
pancreatic polypeptide family, is another gastrointesti-
nal peptide released after food ingestion. It is cosecreted 
along with GLP-1 e GLP-2 and is considered a physio-
logical DPP-4 substrate. Upon secretion, PYY is released 
as a peptide consisting of 36 amino acids known as PYY 
1–36. After secretion, PYY 1–36 is metabolized by DPP-4 
to form PYY 3–36 [75]. Interestingly, PYY 1–36 binds to 
Y1R, Y2R, and Y5R, whereas PYY 3–36 has a high affinity 
for Y2R [80]. A possible action of PYY is a catabolic effect 
on bone [50]. In certain conditions characterized by low 
bone mass in humans, PYY is upregulated. An inverse 
correlation is observed between plasma PYY and BMD 
in populations with weight gain and obesity (decreased 
PYY and increased BMD) and in weight loss scenarios 
(increased PYY and decreased BMD), as observed in 
patients with anorexia and amenorrheic athletes [81].

The PYY concentration increases significantly after 
Roux-en-Y gastric bypass (RYGB), potentially contrib-
uting to the notable bone loss observed after this pro-
cedure. This bone loss exceeds what can be attributed 
solely to the substantial weight reduction associated with 
RYGB. Concurrently, there is a rise in CTX-1 levels fol-
lowing gastric bypass, directly correlating with the altera-
tions in PYY levels. Patients undergoing weight loss after 
gastric banding demonstrate no significant changes in 
either PYY or CTX-1 concentrations. This discrepancy 
between the effects of RYGB and gastric banding on PYY 
and CTX-1 supports a connection between PYY and 
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bone markers, particularly in the context of bone health 
markers after bariatric surgery [82], (Table 1).

In summary, the formation of PYY is decreased by 
DPP-4 inhibition. [76, 77, 81, 83]. Both PYY and NPY 
share the same receptors (Y receptors, notably Y1R and 
Y2R), which regulate bone mass [80]. Activation of Y1R 
results in osteoclast formation, negatively impacting 
bone maintenance, while activation of Y2R influences 
bone remodeling by modulating the activity of the sym-
pathetic nervous system.

Adipokines: adiponectin and leptin and their relationship 
with DPP‑4
Adiponectin, another DPP-4 substrate hormone, is 
related to energy metabolism and is primarily secreted 
by brown adipose tissue and bone marrow adipose tissue 
[84]. It holds a significant role in obesity, glucose, lipid 
metabolism, and cardiovascular disease [84]. Evidence 
has shown a negative correlation between DPP-4 activity 
and circulating adiponectin levels in lean and obese sub-
jects [85].

In relation to bone metabolism, receptors for adiponec-
tin have been described in osteoblasts and osteoclasts 
[84]. However, the involvement of adiponectin in bone 
homeostasis is intricate and influenced by various adi-
ponectin isoforms and adiponectin receptor subtypes, 
with conflicting findings between animal and human 
studies. Based on gathered evidence, DPP-4 may reduce 
the putative positive impact of adiponectin on bone mass 
[85].

Rats with DPP-4 deficiency display enhanced adi-
ponectin levels along with attenuated adipose tissue 
inflammation and insulin resistance [86]. Mice lacking 
adiponectin exhibit reduced bone mass and increased 
adiposity. Additionally, adiponectin suppresses essential 
signaling pathways, including nuclear factor-kB (NF-kB) 
and p38, which are crucial for osteoclast formation [87].

Although preclinical data generally suggest a positive 
impact of adiponectin on bone homeostasis through 
the reduction in osteoclast activity and the increase in 
osteoblastic differentiation, clinical studies present con-
flicting results. Some studies indicate an inverse cor-
relation between adiponectin levels and BMD [88–91], 
particularly among individuals with osteoporosis. This 
possibly occurs by stimulation of the RANKL pathway 
and inhibition of production of the decoy receptor for 
RANKL/osteoprotegerin, which differs from findings 
from preclinical studies [92]. Reinforcing this trend, a 
recent case–control study emphasized a robust inverse 
connection between adiponectin and T scores in women 
with osteoporosis and osteopenia [93]. Additionally, a 
large prospective study introduced a notable sex-spe-
cific aspect to the association between adiponectin and 

bone, revealing that high adiponectin levels were associ-
ated with a greater risk of fractures in men, independent 
of body composition and BMD, while no such associa-
tion was observed in women [94]. This suggests that adi-
ponectin may function as a unique predictor of increased 
fracture risk specifically in the male sex. Finally, a system-
atic review and meta-analysis of randomized controlled 
trials has shown that the use of DPP-4 inhibitors leads to 
elevated plasma concentrations of adiponectin [95].

In short, the results of the association between adi-
ponectin and bone metabolism are quite discrepant 
between preclinical and clinical studies. More studies 
are currently needed to improve the understanding of 
the bone effects of this hormone ([88–91, 93, 96–98], 
Table 1).

Leptin, another adipokine, is not a confirmed sub-
strate for DPP-4 like adiponectin but may have a putative 
DPP-4 truncation site [99]. Produced by subcutaneous 
fat, skeletal muscle, bone marrow adipocytes, and chon-
drocytes [100], leptin exerts a dual effect on bone tis-
sue; it can centrally inhibit bone formation by binding to 
leptin receptors in the hypothalamus or locally promote 
bone formation and inhibit bone resorption by bind-
ing to receptors expressed on the surface of osteoblasts 
[100]. Leptin may also suppress RANKL production 
and increase osteoprotegerin levels [101]. Most clinical 
studies on leptin administration have been conducted 
in women with hypothalamic amenorrhea, which is 
known to be associated with reduced leptin levels. Two 
randomized controlled trials in women with hypotha-
lamic amenorrhea have shown conflicting results: one 
indicated an increase in osteocalcin and N-telopeptides 
of type 1 collagen (NTX) but no change in BMD [102], 
while the other revealed increased spine BMD in lean 
women with hypoleptinemia [101, 103, 104].

In summary, studies evaluating the associations 
between leptin and BMD in humans have shown mixed 
results [106]. Large prospective longitudinal studies, 
including clinical trials, are needed to comprehensively 
explore the regulatory impact of leptin on bone and its 
potential implications for fracture risk (110, Table 1).

Inhibition oF DPP‑4 activity and bone metabolism
Some studies have shown that greater DPP-4 levels 
or activity correlate with decreased BMD as well as 
increased bone resorption markers, risk of fractures, 
and inflammatory markers (e.g., IL-6 and high-sensitivity 
CRP, 6). This evidence suggests that DPP-4 may play a 
significant role in regulating bone health and inflamma-
tory response [2, 5, 6, 8–10].

DPP-4 inhibitors play a significant role in glycemic 
regulation and improving glycemic control in patients 
with type 2 diabetes mellitus (T2DM). The incidence of 
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hypoglycemia is relatively low due to their mechanism of 
action. This is particularly important because hypoglyce-
mia is a common cause of falls and subsequent fractures, 
especially in older adults and those with longer-stand-
ing diabetes. Therefore, patients who are more predis-
posed to fractures can benefit significantly from these 
medications, making DPP-4 inhibitors a very appealing 
therapeutic option for the elderly [26]. A retrospective 
population-based cohort study demonstrated a longitu-
dinal relationship over 2  years between glycated hemo-
globin (HbA1c) levels and increased fracture risk among 
individuals with T2DM. After adjusting for covariates, 
poor glycemic control in T2DM patients was associ-
ated with a 29% higher risk of fractures compared to 
those with adequate glycemic control. Treatment with 
metformin and DPP-4 inhibitors was associated with a 
reduced risk of fractures overall [129].

Beyond their primary role in improving glycemic con-
trol in patients with T2DM, DPP-4 inhibitors also dem-
onstrate different effects on bone metabolism [107], e.g., 
through actions on DPP-4 substrates and adipokines [99]. 
Most randomized controlled trials and observational and 
clinical studies have demonstrated that DPP-4 inhibitors 
are safe in regard to bone and may decrease the risk of 
fractures in patients with T2DM [37]. Although the effect 
on glucose levels is a class effect of all DPP-4 inhibitors, 
some of them have different and discrepant actions on 
bone metabolism. Vildagliptin appears to have a neutral 
effect, while saxagliptin has a negative effect on bone, 
increasing osteoclastic activity and decreasing osteo-
cytic and osteoblastic activity in the femur in preclinical 
studies [108, 109, 109]. Some clinical studies have shown 
detrimental effects of DPP-4 inhibitors on bone [13, 16, 
18], with one study showing no effects [110]. Having an 
active metabolite is a unique feature of saxagliptin com-
pared with other DPP-4 inhibitors. Whether this distinct 
property of saxagliptin could interact with pathways of 
bone metabolism and bone turnover, thus having a rela-
tively negative impact on bone mass or strength, needs to 
be elucidated. Sitagliptin and linagliptin are the strongest 
DPP-4 inhibitors with the greatest potential to improve 
bone metabolism, as demonstrated in preclinical and 
clinical studies [107].

Another way in which DPP-4 inhibitors may affect 
bone metabolism is through a pathway linked to 
25(OH)-D levels (Vitamin D, [136]). DPP-4 inhibitors 
significantly raise 25(OH)-D levels in serum, promot-
ing bone growth and remodeling [136]. These effects are 
mediated through several mechanisms: DPP-4 modulates 
inflammation in adipose tissue, a major site of vitamin D 
accumulation and action [22]. In diabetic mice, DPP-4 
inhibition with sitagliptin reduces adipose tissue inflam-
mation, potentially enhancing vitamin D activation and 

release from adipocytes into the bloodstream [22]. Addi-
tionally, DPP-4 inhibitors such as linagliptin inhibit the 
receptor for Advanced glycation end products (RAGE) 
expression in keratinocytes, which can facilitate local 
vitamin D production by preventing interference from 
accumulated Advanced glycation end products (AGEs, 
142).

Tables  2, 3, 4    and  5 summarize the main preclinical 
and clinical studies on the effects of DPP-4 inhibitors on 
bone metabolism.

Conclusions
This review provides insights into the influence of DPP-4 
on bone metabolism and delineates the potential mech-
anisms of the interaction between DPP-4 and bone 
(Fig. 2). Although the direct inhibition of DPP-4 activity 
does not seem to regulate bone remodeling, the impact 
of DPP-4 on bone metabolism is indirect, involving the 
modulation of DPP-4 substrates and inflammation within 
the bone microenvironment. These findings suggest that 
increased DPP-4 activity could indirectly foster bone 
resorption while hindering bone formation, thereby ele-
vating the risk of osteoporosis. This opens up avenues for 
a novel understanding of the role of DPP-4 in the mecha-
nisms underlying osteoporosis.

Notably, DPP-4 inhibitors appear to be safe regard-
ing the risk of fractures, as they tend to decrease this 
risk, but more clinical trials are needed to explore the 
effects of DPP-4 inhibitors in other populations beyond 
T2DM. This is particularly important if these inhibitors 
are shown to affect bone metabolism through independ-
ent mechanisms beyond glucose control. The conflicting 
data in some clinical studies may be explained by various 
factors: [1] most cohort studies lacked individual valida-
tion of fractures as primary outcomes, [2] the studies had 
short follow-up duration and [3] did not consider impor-
tant risk factors for osteoporosis such as BMD (even 
though BMD is not a good method for diagnosing osteo-
porosis in T2DM), and [4] some studies included medi-
cations that affect fracture risk, such as corticosteroids or 
antidepressants. Most studies did not identify postmen-
opausal women separately, and some cohorts had more 
men than women. Although the use of DPP-4 inhibi-
tors is associated with increased bone formation, their 
effects are more associated with mechanisms related to 
the suppression of bone resorption. Thus, the poten-
tial positive effect of DPP-4 inhibitors on osteoporosis 
and fractures may be more apparent in postmenopausal 
women because of higher bone remodeling. Another lim-
itation of the studies was the use of different comparators 
ranging from placebo controls to other medications for 
T2DM (including insulin), which have different effects 
on bone tissue and were included in only one group, 
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misleading the interpretation. Other information lacking 
in some studies was the identification of diabetic compli-
cations (retinopathy, nephropathy, neuropathy), which 
could have affected the choice of insulin or fracture risk. 
Some studies were conducted in Asia and others only in 
Europe, precluding the application of the results to popu-
lations of different ethnic backgrounds.

The widespread use of DPP-4 inhibitors among 
patients with T2DM and advanced age, who are more 
predisposed to osteoporosis, underscores the need for a 
better understanding of the relationship between DPP-4 
enzyme activity, its substrates, pharmacological inhibi-
tion, and bone metabolism.
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