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Abstract

Background Dipeptidy! peptidase 4 (DPP-4) plays a crucial role in breaking down various substrates. It

also has effects on the insulin signaling pathway, contributing to insulin resistance, and involvement in inflammatory
processes like obesity and type 2 diabetes mellitus. Emerging effects of DPP-4 on bone metabolism include an inverse
relationship between DPP-4 activity levels and bone mineral density, along with an increased risk of fractures.

Main body The influence of DPP-4 on bone metabolism occurs through two axes. The entero-endocrine-osseous
axis involves gastrointestinal substrates for DPP-4, including glucose-dependent insulinotropic polypeptide (GIP)
and glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). Studies suggest that supraphysiological doses of exogenous
GLP-2 has a significant inhibitory effect on bone resorption, however the specific mechanism by which GLP-2 influ-
ences bone metabolism remains unknown. Of these, GIP stands out for its role in bone formation. Other gastrointes-
tinal DPP-4 substrates are pancreatic peptide YY and neuropeptide Y—both bind to the same receptors and appear
to increase bone resorption and decrease bone formation. Adipokines (e.g., leptin and adiponectin) are regulated

by DPP-4 and may influence bone remodeling and energy metabolism in a paracrine manner. The pancreatic-endo-
crine-osseous axis involves a potential link between DPP-4, bone, and energy metabolism through the receptor acti-
vator of nuclear factor kappa B ligand (RANKL), which induces DPP-4 expression in osteoclasts, leading to decreased
GLP-1 levels and increased blood glucose levels. Inhibitors of DPP-4 participate in the pancreatic-endocrine-osseous
axis by increasing endogenous GLP-1. In addition to their glycemic effects, DPP-4 inhibitors have the potential

to decrease bone resorption, increase bone formation, and reduce the incidence of osteoporosis and fractures. Still,
many questions on the interactions between DPP-4 and bone remain unanswered, particularly regarding the effects
of DPP-4 inhibition on the skeleton of older individuals.

Conclusion The elucidation of the intricate interactions and impact of DPP-4 on bone is paramount for a proper
understanding of the body’s mechanisms in regulating bone homeostasis and responses to internal stimuli. This
understanding bears significant implications in the investigation of conditions like osteoporosis, in which disruptions
to these signaling pathways occur. Further research is essential to uncover the full extent of DPP-4's effects on bone
metabolism and energy regulation, paving the way for novel therapeutic interventions targeting these pathways,
particularly in older individuals.
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Introduction

Dipeptidyl peptidase 4 (DPP-4) is a serine peptidase
found in the form of a surface protein anchored to the
cell membrane or soluble in plasma. This enzyme has
been increasingly recognized for its multifaceted role
in various physiological processes, extending beyond its
initially known functions in insulin signaling, inflamma-
tion, and energy metabolism [1]. Various cells in the bone
microenvironment secrete DPP-4, including osteoclasts,
bone marrow adipose tissue, and immune cells [2]. The
association of DPP-4 with osteoclasts suggests a stimu-
latory action of this enzyme on bone resorption [3, 4],
potentially affecting bone mineral density (BMD) and
fracture risk and identifying DPP-4 activity as a potential
marker of altered bone metabolism [5-10]. In fact, stud-
ies have revealed an inverse correlation between DPP-4
activity levels and BMD, suggesting a likely role of DPP-4
in bone homeostasis [5-8, 10]. Additionally, individuals
with increased DPP-4 activity may have an elevated risk
of fractures, implicating DPP-4 in skeletal fragility [5, 7,
10]. These findings highlight the importance of under-
standing the intricate interplay between DPP-4, bone
metabolism, and systemic health [9, 11-19].

Recently, DPP-4 emerged as an adipokine/hepatokine
with potential connections to skeletal muscle func-
tion and BMD [20]. Indeed, DPP-4 acts as a receptor or
costimulatory protein in immunomodulatory signaling
processes in various immune cells such as CD8+and
CD4+T cells, B cells, and macrophages, and hydrolyzes
different sites of chemokines and interleukins that are
part of bone remodeling. The effects of DPP-4 on bone
health are underscored by its effects in generating pro-
inflammatory cytokines such as interleukin-6 (IL-6)
and tumor necrosis factor-alpha (TNF-«), contribut-
ing to inflammatory processes mediated by adipose tis-
sue macrophages, which are implicated in conditions
ranging from obesity to osteoporosis [21]. In fact, mice
with hepatocyte-specific DPP-4 knockdown have a sig-
nificant reduction in serum DPP-4 activity and reduced
adipose tissue inflammation, insulin resistance, and glu-
cose intolerance [20]. Expression of DPP-4 is substan-
tially dysregulated in a variety of disease states, including
inflammation, cancer, obesity, and diabetes [22]. This
suggests that DPP-4 inhibitors, which are commonly
used for treating type 2 diabetes mellitus (T2DM), may
offer therapeutic benefits beyond glycemic control,
potentially mitigating bone resorption and reducing frac-
ture risk [23]. Clinical studies investigating the effects of
DPP-4 inhibitors have yielded promising results, indi-
cating improvements in bone density and a potential
decrease in fracture incidence. However, conflicting find-
ings and gaps in understanding persist, calling for further
research into the mechanisms underlying the influence of
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DPP-4 on bone metabolism. Of particular interest are the
paracrine effects of adipokines and gastrointestinal sub-
strates regulated by DPP-4, such as leptin, adiponectin,
pancreatic peptide YY (PYY), and glucagon-like peptide
1 (GLP-1) and glucagon-like peptide 2 (GLP-2), which
may mediate the crosstalk between bone remodeling and
energy metabolism [2, 24].

In summary, elucidating the bone effects of DPP-4
holds significant implications for both clinical practice
and basic research. By unraveling the complex intercon-
nections between DPP-4, energy metabolism, and bone
health, we can uncover valuable insight to guide the
development of innovative treatments for conditions
ranging from T2DM to osteoporosis.

Molecular structure of DPP-4

Initially described by Hopsu-Havu & Glenner in 1966
[25], DPP-4 is a dimeric 240-kDa glycoprotein composed
of two 120-kDa subunits and encoded by a gene located
in chromosome 2q24 [25].

Structurally, DPP-4 is formed by three domains: short
cytoplasmic, transmembrane, and extracellular (Fig. 1).
The extracellular domain is further subdivided into three
regions, i.e., glycosylated, cysteine-rich, and catalytic
(or C-terminal, [22]). The glycosylated and cysteine-rich
regions are involved in nonenzymatic functions of the
enzyme and interact with other proteins (e.g., adenosine
deaminase (ADA), caveolin-1, streptokinase, and plasmi-
nogen) and components of the extracellular matrix (e.g.,
collagen and fibronectin.) The best-studied interaction in
this regard is certainly the binding of DPP-4 and ADA.
Furthermore, ADA activity is elevated in patients with
T2DM and may serve as a marker of inflammation and
obesity. Via interaction with CD45, the complex of ADA
and DPP-4 enhances T-cell activation [22, 26]. A flexible
segment in DPP-4 connects the transmembrane domain
to the extracellular domain and is the target of shedding,
a process in which the enzyme is cleaved and released
into circulation [22]. The extracellular portion released
as soluble DPP-4 is found in plasma and biological fluids
and can be quantified both in terms of activity and con-
centration [9]. In addition to the soluble isoform, DPP-4
presents an enzymatic form, each with different roles in
influencing various physiological processes controlling
inflammation and glucose homeostasis. While enzymatic
DPP-4 may be more closely related to obesity-associated
inflammation and glucose regulation, soluble DPP-4 may
have a distinct role that is not associated with inflamma-
tion. Overall, 90-95% of serum DPP-4 activity is related
to soluble DPP-4 levels [27-31].

A study has analyzed how plasma DPP-4 activity and
levels of soluble DPP-4 correlate with inflammatory
markers (C-reactive protein [CRP], IL-6, TNF-«a, and
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Fig. 1 Schematic representation of the dipeptidyl peptidase 4 (DPP-4) monomer bound to the membrane and the soluble DPP-4. Schematic
representation of the dipeptidyl peptidase 4 (DPP-4) monomer bound to the membrane and to soluble DPP-4. Catalytically active DPP-4 is released
from the plasma membrane, producing a soluble circulating form (i.e,, soluble DPP-4, which contains 727 amino acids). The soluble DPP-4 lacks

the intracellular and transmembrane domains and accounts for a substantial proportion of DPP-4 activity in human serum. Both membrane-bound
and circulating soluble DPP-4 share many domains, including the glycosylated region (residues 101-535, specific residues 85, 92, 150), ADA binding
domain (340-343), fibronectin binding domain (468-479), cysteine-rich domain (351-506, disulfide bonds are formed from 385-394, 444-472,

and 649-762), and the catalytic domain (507-766, including residues composing the catalytic active site 630, 708, and 740). Adapted from Mulvihill
et al. Endocrine Reviews, December 2014, 35(6):992-1019 (20). Reproduced with permission from Oxford University Press and Copyright Clearance
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monocyte chemoattractant protein-1 [MCP-1]) in a sub-
set of patients with T2DM treated with sitagliptin for
12 months as part of the Trial Evaluating Cardiovascular
Outcomes with Sitagliptin (TECOS, 26). As expected,
treatment with sitagliptin led to a significant reduction
in plasma DPP-4 activity at 12 months, but the levels
of soluble DPP-4 and inflammatory markers remained
unchanged [25]. These findings indicate a dissociation in
the modulation of DPP-4-related parameters and inflam-
matory biomarkers in humans [32, 33].

Mechanisms of DPP-4 action

Widely distributed, DPP-4 is present on the surface of
various cells, including adipocytes and liver, kidney,
intestine, endothelial, and immune cells [34]. Initial stud-
ies had indicated DPP-4 to be an adipokine due to its

NH2

release from the adipocyte membrane through the action
of matrix metallopeptidase 9 (MMP9), resulting in the
release of the soluble DPP-4 form in the circulation [35].
Subsequently, Lamers et al. described a strong correla-
tion between soluble DPP-4 and adipocyte size, suggest-
ing an important link between DPP-4 and obesity [34].
Recent studies have uncovered increased DPP-4
expression and secretion from hepatocytes in obese
mice, with a DPP-4 expression and activity much higher
in the liver than in adipose tissue, indicating its emerg-
ing role as a hepatokine in the interplay between hepat-
ocytes and adipocytes [4]. Conversely, selective loss of
adipocyte DPP-4 enhances hepatic insulin sensitivity and
reduces inflammation, with no effects on glucose toler-
ance [4]. These findings have set the stage for Varin et al.
to explore the roles of DPP-4. These authors discussed
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the presence of circulating soluble DPP-4—a DPP-4 form
distinct from the enzymatic DPP-4—and proposed that
while enzymatic DPP-4 may be linked to obesity-associ-
ated inflammation and glucose regulation, soluble DPP-4
may have separate functions unrelated to inflammation
[32]. Overall, these studies underscore the intricate rela-
tionships between DPP-4, glucose regulation, obesity,
and inflammation, highlighting its complexity and inter-
actions with bone metabolism, along with its regulatory
mechanisms, suggesting potential therapeutic implica-
tions [4, 32, 36].

Several effects have been associated with DPP-4,
including degradation of various substrates (such as
incretins, neuropeptides, and cytokines) and involve-
ment with inflammatory processes (including cancer,
obesity, and T2DM, 20, 37). Additionally, DPP-4 exhibits
an inverse correlation with BMD, suggesting a potential
connection with osteoporosis [5-8, 10].

Weivoda et al. presented compelling evidence indi-
cating the occurrence of a pancreatic-endocrine-bone
axis governing fuel metabolism in humans [3]. Using
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RNA sequencing of bone biopsies from patients treated
with denosumab compared with placebo, the authors
observed a down-regulation of skeletal DPP-4 expression
with denosumab [3]. Further investigation using in situ
hybridization revealed DPP-4 expression in the osteo-
clast lineage. Additionally, RANKL emerged as a poten-
tial link between DPP-4 and bone-energy metabolism,
as it induced DPP-4 expression in osteoclasts, leading
to decreased GLP-1 levels and increased blood glucose
(Fig. 2).

Patients with T2DM treated with denosumab exhibit
lower glycated hemoglobin levels compared with those
treated with bisphosphonates or calcium and vitamin
D supplementation, highlighting the role of the RANK-
RANKL system and implicating DPP-4 as a potential
mediator between bone remodeling and energy metabo-
lism [3]. These findings underscore the multifaceted roles
of DPP-4, not only as an osteoclast-derived protein but
also as a connector between bone remodeling and energy
metabolism, with significant implications for the pancre-
atic-endocrine-bone axis [3, 36, 37].
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Fig. 2 Potential mechanisms of action of dipeptidyl peptidase 4 on bone metabolism*. BMAT, bone marrow adipose tissue; DPP-4, dipeptidyl
peptidase 4; GLP1-R, receptor for glucagon-like peptide 1 (GLP-1); GIPR, receptor for glucose-dependent insulinotropic polypeptide (GIP); IL,
interleukin; PYR, receptor for peptide YY; NPYR, receptor for neuropeptide Y; RANKL, receptor activator of nuclear factor-kappa B ligand, TNF-a, tumor
necrosis factor-alpha. Complex roles of DPP-4 in classical enzymatic and nonenzymatic functions of bone metabolism. Bone marrow mesenchymal
cells, liver, and adipose tissue produce DPP-4, while RANKL induces the expression of DPP-4 by osteoclasts, leading to decreased GLP-1 levels

and increased blood glucose levels. Further, DPP-4 cleaves various sites on chemokines, interleukins, and other cytokines that participate actively

in bone remodeling. Potentially, DPP-4 exerts indirect regulation of bone remodeling by interacting with multiple peptide substrates on bone cells,

including GLP-1, glucagon-like peptide-2 (GLP-2), GIP, NPY, and PYY
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The modulation of glucose metabolism is one of the
most relevant effects of DPP-4 in clinical practice [23].
The idea of regulating glucose levels through DPP-4 inhi-
bition was initially conceived 25 years ago, paving the
way for the development of different DPP-4 inhibitors
and their widespread clinical utilization [38]. Extensive
clinical experience has been reported using these medi-
cations in a wide spectrum of patients with T2DM and
concomitant cardiovascular disease, chronic kidney
disease, or obesity, among others. These medications
potently and selectively inhibit the enzymatic activity of
DPP-4, enhancing the effectiveness of GLP-1 and glu-
cose-dependent insulinotropic polypeptide (GIP), which
are the primary incretins (endogenous glucoregulatory
peptides, [39-41]).

Entero-endocrine-osseous axis: gastrointestinal hormones

as substrates for DPP-4

The initial observation that patients receiving long-term
parenteral nutrition develop osteoporosis and osteomala-
cia raised suspicion about the lack of stimulation for the
secretion of incretin hormones in this mode of nutrition
and a potential connection between these hormones and
bone metabolism [42]. This has led to the exploration of
a potential connection between incretin hormones and
bone tissue, referred to as the entero-endocrine-osseous
axis. Further evidence supporting this hypothesis comes
from the typical decrease in bone turnover observed
after oral glucose intake, which is inhibited by infusion
of octreotide, a somatostatin analog that suppresses the
secretion of gastrointestinal and pancreatic peptides [43].
These findings suggest that the gut plays a crucial role in
postprandial bone remodeling [42, 43].

The incretin hormones GIP and GLP-1 are important
substrates for DPP-4 action, while increased DPP-4 activ-
ity is associated with lower levels of GIP and GLP-1 [3].
Notably, GIP is secreted by the enteroendocrine K-cells
that are present in high density in the duodenum and
upper jejunum, while GLP-1-producing cells of the intes-
tine are mainly positioned in the distal parts of the gut
[44]. Serum levels of GIP and GLP-1 increase approxi-
mately five times after a meal [45]. The breakdown of GIP
and GLP-1 by DPP-4 occurs approximately 4 min after
these hormones enter the circulation. Studies show that
these peptides have a favorable effect on bone metabo-
lism, although these effects are still poorly understood
[46].

GIP

Similar to the other two gut-derived hormones (GLP-1
and GLP-2), GIP influences bone remodeling as part
of the entero-endocrine-osseous axis. Receptors for
GIP are expressed in osteoblasts and bone marrow
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cells [47]. Additionally, GIP is expressed in osteoclasts,
and its binding to the receptor inhibits bone resorp-
tion [21]. Studies in animals with GIP knockout genes
have shown different results depending on the deleted
exon. In general, GIP knockout leads to decreased bone
formation parameters (e.g, BMD, bone mineral con-
tent, trabecular bone volume, alkaline phosphatase, and
osteocalcin) and increased resorptive parameters (e.g,
greater number of osteoclasts and increased urinary
elimination of the resorption marker deoxypyridinoline,
[48]). Another study in a GIP receptor knockout model
showed decreased bone strength and cortical thickness
and increased bone resorption—but paradoxically, an
increased number of osteoblasts and a reduced number
of osteoclasts [49].

In humans and rodents, GIP infusion results in
decreased levels of cross-linked C-terminal telopeptide
of type I collagen (CTX-1) and increased levels of procol-
lagen type I N-terminal propeptide (P1NP), regardless of
whether blood glucose levels are normal or elevated [50—
52]. Observational studies have shown that GIP receptor
mutations lead to decreased receptor signaling, which
results in lower BMD and increased risk of fractures [50].
Additionally, GIP may stimulate bone formation, indicat-
ing a possible separation between the processes of bone
resorption and formation [47].

Some studies involving healthy subjects reported that
endogenous GIP contributes to up to 25% of the suppres-
sion of bone resorption after a meal, while it found that
endogenous GLP-1 has no impact on postprandial bone
homeostasis [53, 54].

In summary, GIP influences bone remodeling through
an entero-endocrine-osseous axis and plays a role in
coordinating optimal bone turnover in response to
food intake, mainly during the day. Both exogenous and
endogenous GIP decrease bone resorption in humans
[50]. This suggests that the GIP receptor could be a
potential target for the prevention and treatment of oste-
oporosis [50], Fig. 3).

GLP-1

Multiple studies in rodents have established the role
of GLP-1 in bone metabolism. Indeed, mice osteo-
blasts, osteocytes, and osteoclasts have been shown
to express GLP-1 receptors [21]. The primary GLP-1
action in rodents’ bone is to promote bone formation
by stimulating osteoblasts through the regulation of
runt-related transcription factor 2 (RUNX2), alkaline
phosphatase, collagen type 1, and osteocalcin [55].
Additionally, GLP-1 acts directly and indirectly on the
Wnt/B-catenin pathway by reducing the mRNA levels
of sclerostin, a known inhibitor of bone formation [55].
In rodents, stimulation of GLP-1 receptors in thyroid
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In summary, GLP-1 has positive effects on bone
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Biomarkers C-teminal colagen Procollagen type 1 N-terminal were divided into two groups: those who switched to a
crossiinks (CTX) propeptide (P1NP) . .
Osteocalcn GLP-1 receptor agonist and those who continued on a
Fig. 3 Entero endocrine-osseous axis The entero-endocrine-osseous DPP-4 ‘mhlbltor [61]. The auth9rs CompaFed Changes n
glycemic control and BMD with and without conver-

axis. Lower serum calcium levels stimulate the parathyroid release
of PTH, which increases bone reabsorption with release of calcium
into the circulation. Thyroid C cells present receptors for GLP-1,

sion from DPP-4 inhibitor to GLP-1 receptor agonist for
3 years and observed that patients who switched to the

as demonstrated in preclinical studies, and stimulation of calcitonin latter had greater decline in lumbar BMD than controls
production inhibits osteoclastic activity. The contributions .

of endogenous GIP to postprandial bone homeostasis are as follows: regardless of welght loss [12, 61].

endogenous GIP contributes to the postprandial suppression A meta-analysis of randomized clinical trials evaluat-
of bone resorption in humans and stimulates bone formation ing the use of GLP-1 receptor agonists and the occur-
through stimulation of osteoblasts [47]. Both GIP and GLP-2 receptors rence of bone fractures in patients with T2DM observed
are expressed in pa(;athyrzid tisshue' and the eﬁ'fd TfGLgQ on bone that these medications did not reduce the incidence of
turnover seems to depend on changes in PTH levels and may . 1. . ..

be mediated through GLP-2 receptor in the parathyroid gland. fractures compared with other antidiabetic medications
Effects of GIP on bone turnover may be mediated directly via GIP [62]. In contrast, another meta-analysis observed that
receptor expressed in osteoblasts and osteoclasts, which may occur the risk of fractures was reduced with liraglutide but
independently from PTH [47]. SOURCE: Adapted from Stensen increased with exenatide (also a GLP-1 receptor agonist,
et al. The enterosseous axis and its relationship with thyroid C cells [63]. In a systematic review and network meta—analysis,
and PTH. Copyright provided by Elsevier and Copyright Clearance 7h L f d benefits fi GLP-1 )
Center. License Number 5702571099338, Abbreviations: GIP, ang et al. found benefits from receptor ago
glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like nists in terms of fracture risk [13]. Notably, these authors

included in their analysis only randomized controlled tri-

peptide 1; GLP-2, glucagon-like peptide 2; CTX, carboxy-terminal
type 1 collagen crosslinks; PTNP, procollagen type 1 amino-terminal
propeptide

als with a duration >52 weeks considering that interven-
tions shorter than that were unlikely to affect the fracture
risk [13].

The conclusions of most clinical studies on GLP-1
C cells promotes the secretion of calcitonin. This hor-  fects are insufficient to provide strong evidence.
mone, in turn, inhibits o‘steoclastic activity, which  Ajthough GLP-1 receptor agonists show benefits in ani-
decreases the rele*flse of calcium from the bone into the  mal models, limited clinical data preclude researchers
bloodstream, leading to decreased bone resorption [56,  from drawing confident conclusions [64, 65]. Discrepant
57]. Prolonged administration of high-dose liraglutide findings in humans may be due to the short duration of
Fa GLP'I receptor .agomst) to monkeys d¥d not r‘esu‘lt the studies (on average 35 weeks) and the fact that frac-
in calcitonin secretion or C-cell hyperplasia. This indi- ;)¢5 have not been considered a primary outcome in the
cates marked differences in the effects of GLP-1 on studies, but rather, an adverse event [56], (Table 1).
bone metabolism between different mammalian species In summary, human studies analyzing the effects of
[56, 58]. GLP-1 receptor agonists on bone show inconsistent
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Table 1 Actions of dipeptidyl peptidase 4 (DPP-4) substrates on bone remodeling

Bone formation parameters

Bone reabsorption parameters

GLP-1

Preclinical studies [55, 56, 58] Increase

Clinical studies [12, 13, 56,61, 62]
GIP

Preclinical studies [47-49, 52] Increase
Clinical studies (52[51, 53, 54] Increase
GLP-2

Clinical studies [70] No effect
GIP+GLP-1

Clinical studies [71] Increase
LEPTIN

Preclinical studies*[102, 106, 108]
Clinical studies [94, 102-106]
ADIPONECTIN

Preclinical studies [86, 87, 92]
Clinical studies [85, 88-91, 93-96]
NPY**

Increase (cortical bone)
Potential increase

Increase
Discrepant results

Preclinical studies [73, 74, 76, 77, 79] Decrease
Clinical studies [78] Decrease
PYY

Preclinical studies [77] Increase
Clinical studies [80-82] Decrease

Controversial (varies with type of study)

Decrease/stimulation of calcitonin secretion
and inhibition of osteoclastic activity. No effect
on CTX-1

No effect

Decrease in CTX-1
Decrease

Decrease

Decrease

Increase (trabecular bone)
N/A

Decrease
Probable increase

Increase
Increase

Decrease

Increase

" Central (intraventricular) administration of leptin in ob/ob mice. ** Via Y1 and Y2 receptors. CTX-1 cross-linked C-terminal telopeptide of type I collagen, GIP glucose-
dependent insulinotropic polypeptide, GLP-1 glucagon-like peptide 1, GLP-2 glucagon-like peptide 2; N/A not applicable, NPY neuropeptide Y, PYY peptide YY

results. While these analogs may protect against bone
mineral content loss and increase bone formation indi-
cators, they show no effect on plasma CTX-1 concen-
trations. Meta-analyses on GLP-1 receptor agonists and
fracture occurrence have yielded conflicting results, pos-
sibly due to short study durations and fractures not being
primary outcomes. Limited clinical data hinder confident
conclusions despite positive findings in animal models.

GLP-2

A hormone consisting of 33 amino acids, GLP-2 is
encoded by a section of the proglucagon gene that is
located closely to the sequence that encodes GLP-1. Fol-
lowing its secretion from gut endocrine cells, GLP-2
promotes the absorption of nutrients through distinct
mechanisms of action [66]. Additionally, GLP-2 increases
the barrier function of the gut epithelium and regulates
gastric motility, gastric acid secretion, and intestinal hex-
ose transport [66, 67]. In healthy subjects, subcutane-
ous injections of GLP-2 elicit a dose-related decrease in
CTX-1 (a bone resorption marker), which has sparked
suggestions for the use of GLP-2 as a potential osteopo-
rosis treatment [68]. Despite a described effect of GLP-2

on osteoclast activity, the GLP-2 receptor has not been
identified in human osteoclasts or any other bone-related
cell type [69], except for immature human osteoblast cell
lines MG-63 and TE-85 [69]. In a clinical study published
by Gottschalck et al. exogenous GLP-2 administration
decreased serum and urinary markers of bone resorption
and increased hip BMD in postmenopausal women and
spine BMD in patients with short bowel syndrome [70].
No studies have reported the effects of GLP-2 on bone
remodeling in mice [50].

More recently, unimolecular incretin agonists have
been engineered by Gobron et al. [71]. The authors devel-
oped a series of unimolecular dual GIP/GLP-2 analogs
with the first-in-class molecule GL-0001 being capable
of enhancing collagen maturity, improving bone biome-
chanical response, and increasing resistance to fractures
in vivo. The study’s emphasis on targeting bone material
properties rather than BMD alone was innovative and
different from conventional methods for treating bone
fragility [71].

A randomized, double-blind, placebo-controlled,
crossover study evaluated bone markers of formation
and resorption in 17 overweight or obese men without
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T2DM who received sequence infusions of GIP alone,
GLP-1 alone, a combination of GIP and GLP-1, and pla-
cebo [72]. The results showed that the combination of
GIP and GLP-1 had an additive effect by suppressing
bone resorption markers (74, Fig. 3, Table 1). Similar
to GIP, GLP-1 led to a notable suppression of the bone
resorption marker CTX-1. The reduction in CTX-1 was
greater when both incretin hormones (GLP-1 and GIP)
were administered together, compared with each hor-
mone administered alone. Notably, PINP levels were
unaffected by the interventions. The study’s results sug-
gest that both GLP-1 and GIP suppress bone resorption.
Future research on dual-receptor agonists may help shed
light on their potential benefits in bone health.

In summary, GLP-2 has a significant inhibitory effect
on bone resorption with minimal impact on bone for-
mation, resulting in increased BMD. Studies suggest
that only supraphysiological doses of exogenous GLP-2
effectively reduce bone resorption (CTX-1). However,
the specific mechanism by which GLP-2 influences bone
metabolism remains unknown. It is uncertain whether
GLP-2 acts directly on bone cells or if its effects are medi-
ated indirectly, possibly involving other intestinal factors
([50], Fig. 3).

NPY and PYY

A part of the pancreatic polypeptide family, NPY is a
36-amino acid peptide. It is primarily produced and
expressed in the central and peripheral nervous system,
with significant expression in the hypothalamus. Nota-
bly, NPY plays a significant role in various physiologi-
cal processes, including the regulation of appetite, stress
responses, and control of blood pressure. Its widespread
distribution in the nervous system underscores its impor-
tance in modulating a wide range of physiological func-
tions [73]. Expression of NPY by osteoblasts, osteoclasts,
osteocytes, chondrocytes, and adipose tissue has recently
been described [74]. This action on bone metabolism
caught the attention of several researchers in the area and
has become a hot topic in recent years. Additionally, NPY
acts as a multifunctional neurotransmitter and neuro-
modulator through a family of G-protein coupled recep-
tors known as Y receptors [73].

There are five known subtypes of Y receptors, namely,
Y1R, Y2R, Y4R, Y5R, and Y6R. The interplay between
these receptors and NPY in the context of bone mass
regulation, an area of active research, highlights the
complex role of NPY in the body’s regulatory systems
[75]. Of these receptor subtypes, YIR and Y2R are par-
ticularly involved in modulating bone mass, but they do
so through different mechanisms and at different sites.
The Y1R subtype is primarily expressed in osteoblasts.
A YIR germline deletion results in elevated osteoblast
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activity and mineral apposition rate, together with
increased formation of highly multinucleated osteo-
clasts and enhanced surface area, demonstrating a
negative role of YIR on bone mass maintenance [76].
When truncated by DPP-4, NPY has a half-life of 2 to
3 min, after which it loses the ability to bind to the YIR
[76]. The Y2R subtype, on the other hand, is expressed
in sympathetic nerve fibers that innervate bone tissue
and can influence bone remodeling by regulating the
sympathetic nervous system’s activity. Mice with Y2R
knockout in the hypothalamus have increased osteo-
blastic activity, mineralization rate, and bone mass,
indicating that Y2R normally plays a catabolic role in
stimulating cortical and cancellous bone formation
[77].

In postmenopausal osteoporosis, NPY is upregulated in
bone tissue. This upregulation of NPY may contribute to
the bone loss seen after menopause [78, 79]. In osteopo-
rosis associated with glucocorticoid-induced bone loss,
NPY mRNA expression and protein concentration are
elevated [79]. This elevation of NPY has been associated
with a significant reduction in BMD and bone micro-
structure, which suggests that NPY may contribute to the
negative effects of glucocorticoids on bone health [79].

The pancreatic peptide YY (PYY), a member of the
pancreatic polypeptide family, is another gastrointesti-
nal peptide released after food ingestion. It is cosecreted
along with GLP-1 e GLP-2 and is considered a physio-
logical DPP-4 substrate. Upon secretion, PYY is released
as a peptide consisting of 36 amino acids known as PYY
1-36. After secretion, PYY 1-36 is metabolized by DPP-4
to form PYY 3-36 [75]. Interestingly, PYY 1-36 binds to
Y1R, Y2R, and Y5R, whereas PYY 3-36 has a high affinity
for Y2R [80]. A possible action of PYY is a catabolic effect
on bone [50]. In certain conditions characterized by low
bone mass in humans, PYY is upregulated. An inverse
correlation is observed between plasma PYY and BMD
in populations with weight gain and obesity (decreased
PYY and increased BMD) and in weight loss scenarios
(increased PYY and decreased BMD), as observed in
patients with anorexia and amenorrheic athletes [81].

The PYY concentration increases significantly after
Roux-en-Y gastric bypass (RYGB), potentially contrib-
uting to the notable bone loss observed after this pro-
cedure. This bone loss exceeds what can be attributed
solely to the substantial weight reduction associated with
RYGB. Concurrently, there is a rise in CTX-1 levels fol-
lowing gastric bypass, directly correlating with the altera-
tions in PYY levels. Patients undergoing weight loss after
gastric banding demonstrate no significant changes in
either PYY or CTX-1 concentrations. This discrepancy
between the effects of RYGB and gastric banding on PYY
and CTX-1 supports a connection between PYY and
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bone markers, particularly in the context of bone health
markers after bariatric surgery [82], (Table 1).

In summary, the formation of PYY is decreased by
DPP-4 inhibition. [76, 77, 81, 83]. Both PYY and NPY
share the same receptors (Y receptors, notably Y1R and
Y2R), which regulate bone mass [80]. Activation of YIR
results in osteoclast formation, negatively impacting
bone maintenance, while activation of Y2R influences
bone remodeling by modulating the activity of the sym-
pathetic nervous system.

Adipokines: adiponectin and leptin and their relationship
with DPP-4

Adiponectin, another DPP-4 substrate hormone, is
related to energy metabolism and is primarily secreted
by brown adipose tissue and bone marrow adipose tissue
[84]. It holds a significant role in obesity, glucose, lipid
metabolism, and cardiovascular disease [84]. Evidence
has shown a negative correlation between DPP-4 activity
and circulating adiponectin levels in lean and obese sub-
jects [85].

In relation to bone metabolism, receptors for adiponec-
tin have been described in osteoblasts and osteoclasts
[84]. However, the involvement of adiponectin in bone
homeostasis is intricate and influenced by various adi-
ponectin isoforms and adiponectin receptor subtypes,
with conflicting findings between animal and human
studies. Based on gathered evidence, DPP-4 may reduce
the putative positive impact of adiponectin on bone mass
[85].

Rats with DPP-4 deficiency display enhanced adi-
ponectin levels along with attenuated adipose tissue
inflammation and insulin resistance [86]. Mice lacking
adiponectin exhibit reduced bone mass and increased
adiposity. Additionally, adiponectin suppresses essential
signaling pathways, including nuclear factor-kB (NF-kB)
and p38, which are crucial for osteoclast formation [87].

Although preclinical data generally suggest a positive
impact of adiponectin on bone homeostasis through
the reduction in osteoclast activity and the increase in
osteoblastic differentiation, clinical studies present con-
flicting results. Some studies indicate an inverse cor-
relation between adiponectin levels and BMD [88-91],
particularly among individuals with osteoporosis. This
possibly occurs by stimulation of the RANKL pathway
and inhibition of production of the decoy receptor for
RANKL/osteoprotegerin, which differs from findings
from preclinical studies [92]. Reinforcing this trend, a
recent case—control study emphasized a robust inverse
connection between adiponectin and T scores in women
with osteoporosis and osteopenia [93]. Additionally, a
large prospective study introduced a notable sex-spe-
cific aspect to the association between adiponectin and
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bone, revealing that high adiponectin levels were associ-
ated with a greater risk of fractures in men, independent
of body composition and BMD, while no such associa-
tion was observed in women [94]. This suggests that adi-
ponectin may function as a unique predictor of increased
fracture risk specifically in the male sex. Finally, a system-
atic review and meta-analysis of randomized controlled
trials has shown that the use of DPP-4 inhibitors leads to
elevated plasma concentrations of adiponectin [95].

In short, the results of the association between adi-
ponectin and bone metabolism are quite discrepant
between preclinical and clinical studies. More studies
are currently needed to improve the understanding of
the bone effects of this hormone ([88-91, 93, 96-98],
Table 1).

Leptin, another adipokine, is not a confirmed sub-
strate for DPP-4 like adiponectin but may have a putative
DPP-4 truncation site [99]. Produced by subcutaneous
fat, skeletal muscle, bone marrow adipocytes, and chon-
drocytes [100], leptin exerts a dual effect on bone tis-
sue; it can centrally inhibit bone formation by binding to
leptin receptors in the hypothalamus or locally promote
bone formation and inhibit bone resorption by bind-
ing to receptors expressed on the surface of osteoblasts
[100]. Leptin may also suppress RANKL production
and increase osteoprotegerin levels [101]. Most clinical
studies on leptin administration have been conducted
in women with hypothalamic amenorrhea, which is
known to be associated with reduced leptin levels. Two
randomized controlled trials in women with hypotha-
lamic amenorrhea have shown conflicting results: one
indicated an increase in osteocalcin and N-telopeptides
of type 1 collagen (NTX) but no change in BMD [102],
while the other revealed increased spine BMD in lean
women with hypoleptinemia [101, 103, 104].

In summary, studies evaluating the associations
between leptin and BMD in humans have shown mixed
results [106]. Large prospective longitudinal studies,
including clinical trials, are needed to comprehensively
explore the regulatory impact of leptin on bone and its
potential implications for fracture risk (110, Table 1).

Inhibition oF DPP-4 activity and bone metabolism
Some studies have shown that greater DPP-4 levels
or activity correlate with decreased BMD as well as
increased bone resorption markers, risk of fractures,
and inflammatory markers (e.g., IL-6 and high-sensitivity
CRP, 6). This evidence suggests that DPP-4 may play a
significant role in regulating bone health and inflamma-
tory response [2, 5, 6, 8—10].

DPP-4 inhibitors play a significant role in glycemic
regulation and improving glycemic control in patients
with type 2 diabetes mellitus (T2DM). The incidence of
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hypoglycemia is relatively low due to their mechanism of
action. This is particularly important because hypoglyce-
mia is a common cause of falls and subsequent fractures,
especially in older adults and those with longer-stand-
ing diabetes. Therefore, patients who are more predis-
posed to fractures can benefit significantly from these
medications, making DPP-4 inhibitors a very appealing
therapeutic option for the elderly [26]. A retrospective
population-based cohort study demonstrated a longitu-
dinal relationship over 2 years between glycated hemo-
globin (HbAlc) levels and increased fracture risk among
individuals with T2DM. After adjusting for covariates,
poor glycemic control in T2DM patients was associ-
ated with a 29% higher risk of fractures compared to
those with adequate glycemic control. Treatment with
metformin and DPP-4 inhibitors was associated with a
reduced risk of fractures overall [129].

Beyond their primary role in improving glycemic con-
trol in patients with T2DM, DPP-4 inhibitors also dem-
onstrate different effects on bone metabolism [107], e.g.,
through actions on DPP-4 substrates and adipokines [99].
Most randomized controlled trials and observational and
clinical studies have demonstrated that DPP-4 inhibitors
are safe in regard to bone and may decrease the risk of
fractures in patients with T2DM [37]. Although the effect
on glucose levels is a class effect of all DPP-4 inhibitors,
some of them have different and discrepant actions on
bone metabolism. Vildagliptin appears to have a neutral
effect, while saxagliptin has a negative effect on bone,
increasing osteoclastic activity and decreasing osteo-
cytic and osteoblastic activity in the femur in preclinical
studies [108, 109, 109]. Some clinical studies have shown
detrimental effects of DPP-4 inhibitors on bone [13, 16,
18], with one study showing no effects [110]. Having an
active metabolite is a unique feature of saxagliptin com-
pared with other DPP-4 inhibitors. Whether this distinct
property of saxagliptin could interact with pathways of
bone metabolism and bone turnover, thus having a rela-
tively negative impact on bone mass or strength, needs to
be elucidated. Sitagliptin and linagliptin are the strongest
DPP-4 inhibitors with the greatest potential to improve
bone metabolism, as demonstrated in preclinical and
clinical studies [107].

Another way in which DPP-4 inhibitors may affect
bone metabolism is through a pathway linked to
25(OH)-D levels (Vitamin D, [136]). DPP-4 inhibitors
significantly raise 25(OH)-D levels in serum, promot-
ing bone growth and remodeling [136]. These effects are
mediated through several mechanisms: DPP-4 modulates
inflammation in adipose tissue, a major site of vitamin D
accumulation and action [22]. In diabetic mice, DPP-4
inhibition with sitagliptin reduces adipose tissue inflam-
mation, potentially enhancing vitamin D activation and
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release from adipocytes into the bloodstream [22]. Addi-
tionally, DPP-4 inhibitors such as linagliptin inhibit the
receptor for Advanced glycation end products (RAGE)
expression in keratinocytes, which can facilitate local
vitamin D production by preventing interference from
accumulated Advanced glycation end products (AGEs,
142).

Tables 2, 3, 4 and 5 summarize the main preclinical
and clinical studies on the effects of DPP-4 inhibitors on
bone metabolism.

Conclusions

This review provides insights into the influence of DPP-4
on bone metabolism and delineates the potential mech-
anisms of the interaction between DPP-4 and bone
(Fig. 2). Although the direct inhibition of DPP-4 activity
does not seem to regulate bone remodeling, the impact
of DPP-4 on bone metabolism is indirect, involving the
modulation of DPP-4 substrates and inflammation within
the bone microenvironment. These findings suggest that
increased DPP-4 activity could indirectly foster bone
resorption while hindering bone formation, thereby ele-
vating the risk of osteoporosis. This opens up avenues for
a novel understanding of the role of DPP-4 in the mecha-
nisms underlying osteoporosis.

Notably, DPP-4 inhibitors appear to be safe regard-
ing the risk of fractures, as they tend to decrease this
risk, but more clinical trials are needed to explore the
effects of DPP-4 inhibitors in other populations beyond
T2DM. This is particularly important if these inhibitors
are shown to affect bone metabolism through independ-
ent mechanisms beyond glucose control. The conflicting
data in some clinical studies may be explained by various
factors: [1] most cohort studies lacked individual valida-
tion of fractures as primary outcomes, [2] the studies had
short follow-up duration and [3] did not consider impor-
tant risk factors for osteoporosis such as BMD (even
though BMD is not a good method for diagnosing osteo-
porosis in T2DM), and [4] some studies included medi-
cations that affect fracture risk, such as corticosteroids or
antidepressants. Most studies did not identify postmen-
opausal women separately, and some cohorts had more
men than women. Although the use of DPP-4 inhibi-
tors is associated with increased bone formation, their
effects are more associated with mechanisms related to
the suppression of bone resorption. Thus, the poten-
tial positive effect of DPP-4 inhibitors on osteoporosis
and fractures may be more apparent in postmenopausal
women because of higher bone remodeling. Another lim-
itation of the studies was the use of different comparators
ranging from placebo controls to other medications for
T2DM (including insulin), which have different effects
on bone tissue and were included in only one group,
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misleading the interpretation. Other information lacking
in some studies was the identification of diabetic compli-
cations (retinopathy, nephropathy, neuropathy), which
could have affected the choice of insulin or fracture risk.
Some studies were conducted in Asia and others only in
Europe, precluding the application of the results to popu-
lations of different ethnic backgrounds.

The widespread use of DPP-4 inhibitors among
patients with T2DM and advanced age, who are more
predisposed to osteoporosis, underscores the need for a
better understanding of the relationship between DPP-4
enzyme activity, its substrates, pharmacological inhibi-
tion, and bone metabolism.
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