RESEARCH

Open Access

Independent effects of the glucose-to-glycated hemoglobin ratio on mortality in critically ill patients with atrial fibrillation

Yuqing Fu¹, Xing Wei², Cong Xu¹ and Guifu Wu^{1*}

Abstract

Background The glucose-to-glycated hemoglobin ratio (GAR) represents stress hyperglycemia, which has been closely associated with adverse outcomes in cardio-cerebrovascular diseases. No studies have examined the association between stress hyperglycemia and atrial fibrillation (AF) in critically ill patients. This study aims to explore the relationship between GAR and the prognosis of critically ill patients with AF.

Methods A retrospective cohort of patients was selected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The GAR was calculated based on fasting blood glucose and glycated hemoglobin levels measured after admission. The primary outcome was the 30-day mortality rate, with secondary outcomes being the 90-day and 365-day mortality rates. The GAR was divided into tertiles, and Kaplan–Meier analysis was employed to compare differences in mortality rates between groups. The Cox proportional hazards model and restricted cubic splines (RCS) were utilized to evaluate the relationship between the GAR and mortality. Subsequently, a segmented regression model was constructed to analyze threshold effects in cases where nonlinear relationships were determined.

Results In this cohort, the second tertile of the GAR exhibited lower mortality rates at 30 days (10.56% vs 6.33% vs 14.51%), 90 days (17.11% vs 10.09% vs 17.88%), and 365 days (25.30% vs 16.15% vs 22.72%). In the third tertile, the risk of mortality at 30 days increased by 165% (HR = 2.65, 95% Cl 1.99–3.54, p < 0.001), at 90 days increased by 113% (HR = 2.13, 95% Cl 1.68–2.70, p < 0.001), and at 365 days increased by 70% (HR = 1.70, 95% Cl 1.68–2.70, p < 0.001). The association between the GAR and patient mortality demonstrated a "J-shaped" non-linear correlation. Once the GAR exceeded 15.915, each incremental unit increase in the ratio was associated with a 27.2% increase in the risk of 30-day mortality in critically ill atrial fibrillation patients (HR = 1.262, 95% Cl 1.214–1.333, p < 0.001).

Conclusion The GAR is associated with both short-term and long-term mortality in critically ill patients with AF in a J-shaped relationship. Both low and excessively high GAR values indicate poor prognosis.

Keywords Atrial fibrillation, Intensive care unit, Glucose-to-glycated hemoglobin ratio

*Correspondence:

Guifu Wu

wuguifu@mail.sysu.edu.cn

¹ Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, Guangdong, China

² Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, Anhui, China

Introduction

AF is the most common cardiac arrhythmia worldwide, associated with increased risks of heart failure, myocardial infarction, and stroke, consequently elevating the burden of mortality [1]. Critically ill patients often face the risk of new-onset AF [2], and those with either newonset AF or pre-existing AF during Intensive Care Unit

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, wisit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

(ICU) admission have a higher mortality rate compared to patients with no history of AF [3]. However, research on adverse prognostic factors in critically ill AF patients is limited.

Stress hyperglycemia is a physiological response to a sudden clinical event that causes an increase in blood glucose levels, a common occurrence in ICU patients [4, 5], which can induce myocardial injury through multiple mechanisms, including acidosis from lactate accumulation, heightened inflammatory responses, intracellular calcium overload, and disturbances in lipid metabolism [6]. Given that the myocardium predominantly utilizes fatty acids as its energy source [7], patients with AF experience exacerbated cardiac damage due to increased myocardial glycolysis and the accumulation of late-stage glucose metabolic byproducts, which result from myocardial injury and rapid, disorganized electrical activity [8]. Meanwhile, hypoglycemia is a risk factor for cardiovascular disease and mortality, particularly among individuals with concomitant arrhythmias [9]. Evaluating the association between stress hyperglycemia and critically ill AF patients is essential. The GAR, representing the ratio of plasma glucose concentration to glycated hemoglobin (the baseline average glucose over the past 3 months), quantifies acute plasma glucose elevation. Additionally, the GAR quantifies acute plasma glucose elevation. Previous studies have linked elevated GAR indices to outcomes following ischemic stroke and thrombolytic therapy [10-12]. This study represents the inaugural assessment of the correlation between stress hyperglycemia, delineated by the GAR, and the prognosis of critically ill AF patients, thereby furnishing valuable insights for tailored glucose management strategies.

Methods and materials

Study population

This retrospective study extracted data on patients with AF from the MIMIC-IV database, a large database developed and managed by the Laboratory for Computational Physiology at the Massachusetts Institute of Technology. The database contains medical information on patients admitted to the intensive care units of the Beth Israel Deaconess Medical Center. The first author of this study obtained permission to access the dataset and extracted the relevant data. The use of this database for research has been approved by the institutional review boards of the Massachusetts Institute of Technology and the Beth Israel Deaconess Medical Center.

In this study, 12,255 patients with AF who were admitted to the ICU for the first time were included, diagnosed according to the International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes. Exclusions were made for 253 cases lacking glucose data, 56 cases with anomalous death times, and 8,661 cases lacking data on glycated hemoglobin, ultimately resulting in the inclusion of 3,285 critically ill patients with AF. A flowchart of patient selection was shown as Fig. 1.

Data extractions

PostgreSQL software (version 13.7.2) was used to extract data via Structured Query Language (SQL). Potential covariates included in this study were: (1) Baseline demographic information: age, gender, race, and body mass index (BMI). (2) Comorbidities: hypertension, diabetes, acute kidney injury (AKI), chronic kidney disease (CKD), acute myocardial infarction (AMI), heart failure (HF), stroke, cancer, and hyperlipidemia. (3) Laboratory parameters: fasting blood glucose, glycated hemoglobin(HbA1c), white blood cells (WBC), hemoglobin (HGB), serum creatinine, serum uric acid, serum lactate, international normalized ratio (INR), D-dimer, triglycerides, and low-density lipoprotein cholesterol (LDL-C). (4) Disease severity scores: Oxford Acute Severity of Illness Score (OASIS) and Sequential Organ Failure Assessment (SOFA) score. Due to more than 30% missing data for serum lipids, serum uric acid and D-dimer these were not included in the statistical analysis. Missing data for other variables included in the analysis were imputed using the random forest method for all serological indicators.

Exposure variables

Stress hyperglycemia syndrome was estimated using the GAR, calculated by the formula: fasting blood glucose (mg/dL) / HbA1c (%). As critically ill patients in the MIMIC database do not have a separately defined fasting blood glucose, the lowest blood glucose level during hospitalization was used as a proxy for fasting blood glucose. Patients were stratified into three groups based on the tertiles of the GAR.

Outcome events

The primary outcome of this study was all-cause mortality at 30 days following ICU admission, with secondary outcomes including all-cause mortality at 90 days and 365 days post-admission.

Statistical analysis

For this study, categorical variables were presented as percentages, and chi-square tests were employed to evaluate the significance of differences in categorical variables among various GAR groups. Normality tests were performed for all continuous variables; non-normally distributed variables were represented by median (interquartile range) and compared using

Fig. 1 A flowchart of patient selection

non-parametric rank-sum tests. Patients were divided into three groups based on GAR tertiles, with the second tertile serving as the reference. The Cox proportional hazards model was used to assess hazard ratio (HR) for outcome events, incorporating age, gender, race, BMI, AKI, CKD, HF, hypertension, cancer, stroke, WBC, hemoglobin, creatinine, serum lactate, SOFA score and OASIS score as confounders in the multivariate Cox regression model. AMI and diabetes did not meet the Cox proportional hazards assumption and were therefore not included in the model.

Survival analysis was conducted using the Kaplan– Meier method based on GAR tertiles, with inter-group differences assessed using the log-rank test. Restricted cubic splines (RCS) were utilized to explore the correlation between GAR and outcome events, and a threshold effect model was established to analyze the inflection points of GAR. Subgroup analyses were performed to verify the robustness of the results. Statistical analyses in this study were conducted using R Studio (version R4.2.3) and IBM SPSS Statistics (version V22.0). A two-sided *P*-value of < 0.05 was considered statistically significant.

Results

Patients' baseline information

The study cohort comprised 3,285 patients with critical illness and a diagnosis of AF. Mortality rates within the cohort were as follows: 344 patients (10.47%) succumbed within 30 days, 494 patients (15.04%) within 90 days, and 703 patients (21.40%) within 1 year of the initial diagnosis. The baseline characteristics patient according to tertile of GAR (1099 patients in tertile 1 [1.97–14.03]; 1090 patients in tertile 2 [14.04–16.54]; and 1096 patient in tertile 3 [16.55–40.32] are summarized in Table 1. Compared to patients in Tertile 2, those with lower and higher GAR values exhibited increased short-term and long-term mortality rates. Meanwhile, Tertile 3 had a higher proportion of diabetics than Tertile 1, but similar to Tertile 2.

Survival analysis

Kaplan–Meier survival analysis based on GAR tertiles revealed that the 30-day, 90-day, and 365-day mortality rates were significantly lower in the Tertile 2, with statistically significant differences between the three

Table 1 Patients' baseline information

Characteristic	Total (n=3285)	Tertile1 (n = 1099)	Tertile2 (n = 1090)	Tertile3 (n = 1096)	P-value
Age (years)					0.939
<65	705 (21.46)	233 (21.20)	233 (21.38)	239 (21.81)	
≥65	2580 (78.54)	866 (78.80)	857 (78.62)	857 (78.19)	
Gender (%)					0.068
Male	1288 (39.21)	460 (41.86)	421 (38.62)	407 (37.14)	
Female	1997 (60.79)	639 (58.14)	669 (61.38)	689 (62.86)	
Bace n (%)					0.010
White	2185 (66 51)	696 (63 33)	761 (69.82)	728 (66 42)	0.010
Black	149 (4 54)	61 (5 55)	47 (4 31)	41 (3 74)	
Other	951 (28 95)	342 (31 12)	282 (25.87)	327 (29.84)	
BMI kg/m2 n (%)	551 (20.55)	512 (51.12)	202 (25.07)	527 (25.01)	0.023
< 24.0	740 (22 0)	277 (25 2)	257 (22 6)	215 (10.6)	0.025
≥ 24.9 ⊃5	1006 (22.0)	277 (23.2)	237 (23.0)	213 (19.0)	
25-50	1090 (33.4)	331 (31.9)	572 (54.1)	575 (54)	
>30	1440 (43.8)	471 (42.9)	461 (42.3)	508 (46.4)	0.001
Hypertension, n (%)			545 (17.63)		< 0.001
No	1628 (49.56)	620 (56.41)	513 (47.06)	495 (45.16)	
Yes	1657 (50.44)	479 (43.59)	577 (52.94)	601 (54.84)	
Diabetes, n (%)					< 0.001
No	2141 (65.18)	492 (44.77)	830 (76.15)	819 (74.73)	
Yes	1144 (34.82)	607 (55.23)	260 (23.85)	277 (25.27)	
Heart failure, n (%)					< 0.001
No	1857 (56.53)	523 (47.59)	636 (58.35)	698 (63.69)	
Yes	1428 (43.47)	576 (52.41)	454 (41.65)	398 (36.31)	
AMI, n (%)					0.016
No	2813 (85.63)	916 (83.35)	955 (87.61)	942 (85.95)	
Yes	472 (14.37)	183 (16.65)	135 (12.39)	154 (14.05)	
Cancer, n (%)					0.035
No	2733 (83.20)	902 (82.07)	893 (81.93)	938 (85.58)	
Yes	552 (16.80)	197 (17.93)	197 (18.07)	158 (14.42)	
CKD, n (%)					< 0.001
No	2577 (78.45)	774 (70.43)	893 (81.93)	910 (83.03)	
Yes	708 (21.55)	325 (29.57)	197 (18.07)	186 (16.97)	
AKL n (%)	,		,		< 0.001
No	2341 (71 26)	668 (60 78)	804 (73 76)	869 (79 29)	
Ves	944 (28 74)	431 (39.22)	286 (26 24)	227 (20 71)	
Stroke n (%)	511 (20.71)	131 (39.22)	200 (20.2 1)	227 (20.71)	0.007
No	2790 (94 00)	062 (07 62)	0.06 (92 12)	020 (02 04)	0.007
No	2709 (04.90)	903 (07.03)	104 (16 00)	920 (83.94)	
tes	490 (15.10)	150 (12.57)	164 (10.66)	170 (10.00)	0.000
Ne Ne	1 40 4 (45 40)	406 (45 12)	400 (45 60)	F00 (4F (2))	0.960
INO	1494 (45.48)	490 (45.13)	498 (45.09)	500 (45.62)	
Yes	1/91 (54.52)	603 (54.87)	592 (54.31)	596 (54.38)	0.004
HbA1c, %, M (Q_1, Q_3)	5.90 (5.50, 6.50)	6.40 (5.90,7.50)	5.80 (5.50,6.10)	5./0 (5.30,6.10)	< 0.001
Glugose, (mmol/L), M (Q_1, Q_3)	90.00 (80.00, 100.00)	75.00 (65.00,84.00)	89.00 (84.00,95.00)	102.00 (95.00,115.00)	< 0.001
WBC (×10 ³ /L), M (Q ₁ , Q ₃)	11.10 (8.20, 14.90)	11.40 (8.20,15.40)	11.10 (8.20,14.80)	11.05 (8.30,14.60)	0.475
HGB(g/L), M (Q ₁ , Q ₃)	104.0 (88.0, 122.0)	98.0 (85.0,116.0)	104.0 (88.0,122.0)	109.0 (91.0,126.0)	< 0.001
Creatinine, (mg/dL) M (Q ₁ , Q ₃)	1.00 (0.80, 1.30)	1.00 (0.80,1.45)	0.90 (0.70,1.20)	0.90 (0.70,1.20)	< 0.001
serum lactate, (mmol/L) M (Q ₁ , Q ₃)	1.8 (1.3, 2.6)	1.9 (1.3, 2.7)	1.8 (1.3, 2.7)	1.8 (1.3, 2.5)	0.048
INR, M (Q ₁ , Q ₃)	1.40 (1.20, 1.60)	1.40 (1.20,1.60)	1.40 (1.20,1.60)	1.30 (1.20,1.50)	< 0.001
SOFA, M (Q_1, Q_3)	5.00 (3.00, 7.00)	5.00 (3.00,8.00)	4.00 (2.00,7.00)	4.00 (2.00,6.00)	< 0.001

Characteristic	Total (n = 3285)	Tertile1 (n = 1099)	Tertile2 (n = 1090)	Tertile3 (n = 1096)	P-value
OASIS, M (Q ₁ , Q ₃)	32.00 (27.00, 37.00)	33.00 (27.00,39.00)	31.00 (27.00,37.00)	31.00 (26.00,37.00)	< 0.001
30-day mortality, n (%)	344 (10.47)	116 (10.56)	69 (6.33)	159 (14.51)	< 0.001
90-day mortality, n (%)	494 (15.04)	188 (17.11)	110 (10.09)	196 (17.88)	< 0.001
365-day mortality, n (%)	703 (21.40)	278 (25.30)	176 (16.15)	249 (22.72)	< 0.001

Table 1 (continued)

Continuous numerical variables are expressed as medians (interquartile spacing) and categorical variables are expressed as numbers (percentages). M: Median, Q₁: 1st Quartile, Q₃: 3st Quartile

AMI acute myocardial infarction, CKD chronic kidney disease, AKI acute kidney injury, GAR glucose-to-glycated hemoglobin ratio, INR international normalized ratio, SOFA sepsis-organ failure assessment score, OASIS Oxford acute severity of illness score, WBC white blood cells, RBC red blood cells, HGB hemoglobin

groups (P < 0.001) (Fig. 2). This indicates that both high and low levels of GAR are associated with worse shortterm and long-term outcomes in critically ill patients with AF.

The association between GAR and patient clinical outcomes

Two Cox regression models were employed to investigate the independent influence of the GAR on mortality (Table 2), both unadjusted and adjusted for age, gender, race, AKI, CKD, HF, hypertension, cancer, stroke, WBC, hemoglobin, creatinine, SOFA score and OASIS score. Using the tertiles 2 as the reference in both models, heightened mortality risks were evident in the other two groups at 30 days, 90 days, and 365 days. In the unadjusted model, compared to the reference group (Tertile 2), the 30-day mortality risk for the third tertile was 2.42 (95% CI 1.83-3.21, P<0.001), and for the first tertile, it was 1.69 (95% CI 1.25-2.28, P=0.001). In the multivariate-adjusted model, the HR for the first tertile (reference: the second tertile, 1.00) was 1.53 (95% CI 1~1.83, P=0.052), and for the third group, it was 2.56 (95% CI 1.99 ~ 3.54, P < 0.001), with a similar trend observed at 90 days and 365 days.

The dose–response association between the GAR and 30-day, 90-day, and 365-day mortality rates is depicted in Fig. 3, revealing a nonlinear "J-shaped" relationship across all three time points (*P non-linear* < 0.001). Given the reliability of this nonlinear relationship, a threshold effect analysis was conducted, with the results presented in Table 3. The thresholds for mortality risk at 30-day, 90-day, and 365-day were determined to be 15.915, 17.363 and 18.214, respectively. Beyond these thresholds, the risk of mortality significantly increased with increasing GAR.

Subgroup analysis

Subgroup analyses were conducted for multiple characteristics includingage, gender, race, AKI, CKD, HF, hypertension, cancer, stroke and BMI. No interactions were found (P for interaction > 0.05), indicating robustness of the outcomes, as shown in Tables 4, 5, 6.

Discussion

This study explored the relationship between the GAR, a representative marker of stress-induced hyperglycemia, and the risk of mortality in critically ill patients with AF. We observed that both excessively high and low levels of the GAR are associated with increased risks of shortterm and long-term mortality. This relationship persisted even after adjusting for multiple confounding factors. Based on the restricted cubic splines (RCS) curve, a "J-shaped" relationship was established, and threshold analysis of continuous variables was employed to explore the inflection points of the GAR at various survival time points. Additionally, subgroup analyses revealed no interaction effects.

The occurrence of AF is associated with the cardiac electrophysiology, defects in specific molecular pathways, and structural changes in the left atrium [13]. Improvements in the prognosis of AF patients primarily focus on heart rate control, anticoagulation, and stroke prevention [14]. Although catheter ablation can cure AF, it often accompanies uncontrollable recurrence postoperatively. Current research has also demonstrated that preventing nicotinamide adenine dinucleotide (NAD) depletion and subsequent myocardial cell dysfunction, inhibiting inflammatory compounds, and regulating calcium ion homeostasis can improve the prognosis of AF [13].

In fact, as mentioned earlier, myocardial metabolism primarily relies on fatty acids rather than glucose. During periods of stress hyperglycemia, activation of adrenergic responses, increased inflammation and oxidative stress, formation of glycation end products due to high glucose levels, and myocardial dysfunction caused by vigorous glucose metabolism in the myocardium may occur [15]. Additionally, epicardial adipose tissue (EAT) [16] is considered relevant to AF. Against the backdrop of AF, the inflammatory response in EAT can induce fibrosis in atrial myocytes and disrupt neurohormonal

Fig. 2 Kaplan–Meier all-cause mortality survival analysis curve. A Relationship between GAR tertile groups and 30-day mortality; B Relationship between GAR tertile groups and 90-day mortality; C Relationship between GAR tertile groups and 365-day mortality

Table 2 The Cox proportional hazards model for all-cause mortality at 30 days, 90 days, and 365 days

GAR groups	Model I	P-value	Model II	P-value
30-day mortality risk				
Tertile1(1.97-14.03)	1.69 (1.25~2.28)	0.001	1.35 (1~1.83)	0.052
Tertile2 (14.04–16.54)	1(Ref)		1(Ref))	
Tertile3 (16.55-40.32)	2.42 (1.83~3.21)	< 0.001	2.65 (1.99~3.54)	< 0.001
90-day mortality risk				
Tertile1(1.97-14.03)	1.75 (1.38~2.21)	< 0.001	1.4 (1.1 ~ 1.78)	0.006
Tertile2 (14.04–16.54)	1(Ref)	< 0.001	1(Ref)	
Tertile3 (16.55-40.32)	1.90 (1.5~2.39)	< 0.001	2.13 (1.68~2.7)	< 0.001
365-day mortality risk				
Tertile1(1.97-14.03)	1.65 (1.36~1.99)	< 0.001	1.36 (1.12~1.65)	0.002
Tertile2 (14.04–16.54)	1(Ref)		1(Ref)	
Tertile3 (16.55-40.32)	1.51 (1.25~1.83)	< 0.001	1.7 (1.39~2.06)	< 0.001

Model I: Univariate model for groups stratified by GAR

Model II: Adjusted for age, gender, race, BMI, AKI, CKD, HF, hypertension, cancer, stroke, WBC, HGB, creatinine, serum lactate, SOFA score and OASIS score

Ref reference value

factors through regional secretion, accelerating the progression of heart failure. A randomized controlled trial has shown that SGLT-2 inhibition selectively reduces glucose uptake in EAT among patients with type 2 diabetes, decreasing EAT inflammation and thereby enhancing myocardial blood flow to provide a protective effect [16]. Meanwhile, metabolic abnormalities induced by stress hyperglycemia may promote the onset and persistence of AF by regulating atrial substrates, disrupting myocardial energy metabolism and electrical remodeling, and modulating myocardial ion channels, ultimately leading to poor prognosis in AF [17-20]. Epidemiologically, the impact of stress hyperglycemia on new-onset AF following myocardial infarction has been studied utilizing the stress hyperglycemia ratio (SHR) [21]. Some studies have revealed multifaceted associations between insulin resistance and AF prognosis, post-ablation recurrence, and incident cases in the general populace [22-25]. Additionally, Terauchi et al. proposed a correlation between HbA1c levels \geq 8.0% and heightened all-cause mortality risk among AF patients [22]. Although stress-induced hyperglycemia and AF are considered to be related, evidence is lacking regarding the impact of stress hyperglycemia on the prognosis of AF.

Critically ill patients are particularly susceptible to stress-induced hyperglycemia, a phenomenon more prevalent among them compared to individuals in general wards and healthy populations [4, 5]. The intricate interplay of acute systemic inflammation, hormonal fluctuations, and cytokine dysregulation precipitates excessive hepatic glucose secretion, lipid peroxidation, gluconeogenesis, and heightened insulin resistance, collectively contributing to the development of stress-induced hyperglycemia [5, 26–28]. Notably, diverse metrics serve as proxies for stress-induced hyperglycemia [29]. Our study found robust J-shaped curve outcomes for both short-term and long-term prognosis in critically ill patients with AF when stress-induced hyperglycemia was represented by the GAR. Moreover, no matter which time point was considered as the observed outcome, the risk of mortality increased with the increase in GAR beyond a certain threshold. Additionally, when the 365day mortality risk was considered as the study outcome, GAR exhibited a protective factor as it decreases below the threshold. These findings hold substantial clinical significance, particularly given the ongoing debate surrounding glycemic management in critically ill patients [30–34]. A recent article in The Lancet Diabetes & Endocrinology underscored the importance of glycemic management in both diabetic and non-diabetic critically ill populations [35].

Considering the high prevalence of AF in ICU settings [2], coupled with the close association between AF and stress-induced hyperglycemia, our study provides valuable insights for guiding future glycemic targets in critically ill patients with AF. Additionally, it aids in identifying critically ill AF patients at high risk of mortality.

Limitations

This is a retrospective study and cannot establish causality. The lowest blood glucose value may not actually represent fasting blood glucose. Additionally, glycated hemoglobin has limitations and is influenced by factors such as ethnicity, blood transfusions, certain hemoglobinopathies, hemolytic anemia, post-splenectomy status, polycythemia, and even iron-deficiency anemia.

	30-day mortality	<i>P</i> value	90-day mortality	<i>P</i> value	365-day mortality	P value
Threshold (K)"	15.915 (15.699,16.132)		17.363 (16.994,17.733)		18.214 (17.755,18.672)	
××	0.959 (0.91,1.011)	0.1193	0.973 (0.939,1.008)	0.1271	0.973 (0.947,0.999)	0.0457

0.0457 < 0.001

< 0.001

1.228 (1.157,1.304)

0.1271 < 0.001 < 0.001

0.973 (0.939,1.008) 1.258 (1.191,1.328)

0.1193 < 0.001 < 0.001

1.272 (1.214,1.333) 0.959 (0.91,1.011)

Log-likelihood ratio test

 $\stackrel{\scriptstyle \scriptstyle \times}{\scriptstyle \times}$ $\stackrel{\checkmark}{\scriptstyle \lor}$

rtality D value
00-dav mo
P value
30-day mortality

Subgroup	Variable	Total	Event (%)	HR(95 CI)	P value	P for interaction
Age						0.348
<65	Tertile1	233	17 (7.3)	1.93 (0.74~5.05)	0.18	
	Tertile2	233	6 (2.6)	1(Ref)		
	Tertile3	239	22 (9.2)	4.32 (1.68~11.08)	0.002	
	Trend test	705	45 (6.4)	1.53 (1.04~2.25)	0.029	
≥65	Tertile1	857	98 (11.4)	1.26 (0.92~1.74)	0.156	
	Tertile2	866	64 (7.4)	1(Ref)		
	Tertile3	857	137 (16)	2.45 (1.81 ~ 3.32)	< 0.001	
	Trend test	2580	299 (11.6)	1.43 (1.24~1.66)	< 0.001	
Gender						0.912
Female	Tertile1	457	58 (12.7)	1.39 (0.91 ~ 2.14)	0.129	
	Tertile2	424	35 (8.3)	1(Ref)		
	Tertile3	407	79 (19.4)	2.67 (1.78~3.99)	< 0.001	
	Trend test	1288	172 (13.4)	1.43 (1.18~1.73)	< 0.001	
Male	Tertile1	633	57 (9)	1.36 (0.88 ~ 2.09)	0.164	
	Tertile2	675	35 (5.2)	1(Ref)		
	Tertile3	689	80 (11.6)	2.79 (1.86~4.2)	< 0.001	
	Trend test	1997	172 (8.6)	1 48 (1 22 ~ 1 79)	< 0.001	
Bace			., 2 (0.0)			0.96
White	Tertile1	692	65 (94)	146 (099~217)	0.059	0.50
White	Tertile?	765	42 (5 5)	1(Ref)	0.000	
	Tertile3	728	84 (115)	2 52 (1 73 ~ 3 69)	< 0.001	
	Trend test	2185	101 (8 7)	$1.34(1.12 \sim 1.62)$	0.007	
Black	Tertile1	61	6 (9.8)	1.68 (0.38 ~ 7.55)	0.002	
Didek	Tertile?	47	3 (6 4)	1(Bef)	0.157	
	Tertile3	1) /1	11 (26.8)	$6.25(1.52 \sim 25.65)$	0.011	
	Trend test	1/0	20 (13 4)	2.09 (1.12 ~ 23.03)	0.077	
Other	Tertile1	337	20 (13.4) AA (13.1)	$1.24 (0.75 \sim 2.05)$	0.022	
other	Tortilo?	287	25 (8 7)	1(Rof)	0.405	
	Tortilo2	207	23 (0.7)	1(ner)	< 0.001	
	Trand tast	051	122 (14)	$2.32(1.37 \sim 4.04)$	< 0.001	
DIM	nenu test	166	155 (14)	1.47 (1.19~1.01)	< 0.001	0.104
< 24.0	Tortilo1	275	20 (12 0)	1 16 (0 7 1 02)	0 5 5 9	0.104
≤24.9	Tortilo2	273	30 (13.0) 37 (10.4)	$1.10(0.7 \sim 1.93)$	0.336	
	Tortilo2	239	27 (10.4)	1(ner)	0.012	
	Trand tast	215	102 (17.2)	1.95 (1.15** 5.20)	0.012	
25.20	Tortilo1	247	102 (13.0)	1.20 (1~1.03)	0.031	
25-50	Tortilo2	276	10 (10.4)	1.9 (1.00~ 3.39)	0.03	
	Tertile2	370	10 (4.0)	1(Ref)	< 0.001	
	Trand tact	1006	47 (12.0)	$3.3(2 \sim 0.13)$	< 0.001	
× 20	Tertile 1	1098	101 (9.2)	1.4 (1.00~ 1.01)	0.01	
> 30	Tortiloo	408	41 (ð.ð)	1.22 (U.73~2.U3)	0.44	
	Tertilo2	404	ZO (0.4)	$1(\Pi \in I)$	< 0.001	
	Translaterat	508	/5 (14.8)	3 (1.9~4./5)	< 0.001	
L hun out	irend test	1440	141 (9.8)	1.00 (1.34~2.05)	< 0.001	0.000
Hypertension	To still 1	C1 4	77 /10 5	1 5 4 (1 0 2 2 2 1)	0.007	0.898
INO	Tertile 1	614	//(12.5)	1.54 (1.03~2.31)	0.037	
	Tertile2	519	35 (6./)	I (KET)	-0.001	
	iertile3	495	/6(15.4)	2.04 (1.76~3.97)	< 0.001	
	Irend test	1628	188 (11.5)	1.31 (1.09~1.56)	0.003	

Table 4 Subgroup analysis of 30-day mortality among patients

Table 4 (continued)

Subgroup	Variable	Total	Event (%)	HR(95 CI)	P value	P for interaction
Yes	Tertile1	476	38 (8)	1.12 (0.7 ~ 1.8)	0.637	
	Tertile2	580	35 (6)	1(Ref)		
	Tertile3	601	83 (13.8)	2.61 (1.74~3.9)	< 0.001	
	Trend test	1657	156 (94)	1 64 (1 32 ~ 2 03)	< 0.001	
Heart failure	field test	1057	130 (9.1)	1.01(1.32 2.03)	< 0.001	0.481
No	Tertile1	522	44 (8.4)	1.05 (0.67 ~ 1.63)	0.835	0.101
	Tertile2	637	39 (6.1)	1(Ref)		
	Tertile3	698	94 (13.5)	2.44 (1.66~3.57)	< 0.001	
	Trend test	1857	177 (9.5)	1.61 (1.32~1.96)	< 0.001	
Yes	Tertile1	568	71 (12.5)	1.59 (1.04 ~ 2.45)	0.033	
	Tertile2	462	31 (6.7)	1(Ref)		
	Tertile3	398	65 (16.3)	2.97 (1.92~4.57)	< 0.001	
	Trend test	1428	167 (11.7)	1.36 (1.12~1.64)	0.002	
Cancer						0.358
No	Tertile1	894	82 (9.2)	1.2 (0.84~1.71)	0.328	
	Tertile2	901	51 (5.7)	1(Ref)		
	Tertile3	938	136 (14.5)	2.78 (2.01 ~ 3.85)	< 0.001	
	Trend test	2733	269 (9.8)	1.6 (1.37~1.86)	< 0.001	
Yes	Tertile1	196	33 (16.8)	1.79 (1~3.18)	0.049	
	Tertile2	198	19 (9.6)	1(Ref)		
	Tertile3	158	23 (14.6)	1.97 (1.05 ~ 3.7)	0.034	
	Trend test	552	75 (13.6)	1 (0.74~1.35)	0.977	
CKD						0.232
No	Tertile1	898	47 (5.2)	1(Ref)		
	Tertile2	769	73 (9.5)	1.54 (1.06~2.24)	0.022	
	Tertile3	910	121 (13.3)	3.03 (2.15~4.26)	< 0.001	
	Trend test	2577	241 (9.4)	1.49 (1.26~1.75)	< 0.001	
Yes	Tertile1	201	23 (11.4)	1(Ref)		
	Tertile2	321	42 (13.1)	1.06 (0.63~1.77)	0.839	
	Tertile3	186	38 (20.4)	1.82 (1.06~3.14)	0.03	
	Trend test	708	103 (14.5)	1.3 (1.02~1.65)	0.032	
AKI						0.44
No	Tertile1	663	39 (5.9)	1.19 (0.75 ~ 1.89)	0.457	
	Tertile2	809	36 (4.4)	1(Ref)		
	Tertile3	869	104 (12)	2.85 (1.95~4.18)	< 0.001	
	Trend test	2341	179 (7.6)	1.7 (1.39~2.09)	< 0.001	
Yes	Tertile1	427	76 (17.8)	1.55 (1.02~2.36)	0.038	
	Tertile2	290	34 (11.7)	1(Ref)		
	Tertile3	227	55 (24.2)	2.62 (1.69~4.07)	< 0.001	
	Irend test	944	165 (17.5)	1.26 (1.04~1.53)	0.02	
Stroke	T	05.4				0.654
NO	Iertile I	954	94 (9.9)	1.32 (0.94~1.86)	0.109	
	lertile2	915	53 (5.8)	I (Ref)	0.001	
	lertile3	920	126 (13.7)	2.76 (1.99~3.82)	< 0.001	
	Trend test	2/89	2/3 (9.8)	1.49 (1.28~1./3)	< 0.001	
Yes	Iertile 1	136	21 (15.4)	1.51 (U.//~2.9/)	0.235	
	Tertile2	184	17 (9.2)	I (KET)	0.000	
	Transdet at	1/6	33 (18.8) 71 (14.3)	2.08 (1.43~5.UT)	0.002	
	irena test	496	/ I (14.3)	1.41 (1.01 ~ 1.96)	0.041	

Subgroup	Variable	Total	Event (%)	HR (95CI)	P value	P for interaction
Age						0.334
<65	Tertile1	233	23 (9.9)	1.88 (0.85~4.16)	0.117	
	Tertile2	233	9 (3.9)	1(Ref)		
	Tertile3	239	24 (10)	3.2 (1.44~7.11)	0.004	
	Trend test	705	56 (7.9)	1.3 (0.93~1.83)	0.13	
>65	Tertile1	857	164 (191)	1 34 (1 04 ~ 1 73)	0.022	
200	Tertile?	866	102 (11.8)	1(Ref)	0.022	
	Tertile3	857	172 (20.1)	2 02 (1 58 ~ 2 59)	< 0.001	
	Trend test	2580	438 (17)	1 23 (1 09 ~ 1 39)	0.001	
Condor	field test	2500	150 (17)	1.25 (1.05 1.55)	0.001	0.030
Female	Tertile1	457	96 (21)	1 39 (1 ~ 1 94)	0.052	0.737
Ternale	Tertile?	424	50 (21)	1(Bof)	0.052	
	Tortilo3	407	102 (25 1)	2.16(1.56 - 2.00)	< 0.001	
	Trand tast	100	257 (20)	2.10 (1.30~ 2.93)	0.001	
Mala	Tortilo1	622	237 (20)	1.20 (1.07 ~ 1.47)	0.003	
IVIdle	Tertile2	055	91 (14.4)	1.46 (1.04 ~ 2.09)	0.028	
	Tertile2	075	52 (7.7)	1(Rel)	< 0.001	
	Tertile3	089	94 (13.0)	2.27 (1.0~ 3.22)	< 0.001	
0	Irend test	1997	237 (11.9)	1.24 (1.05 ~ 1.46)	0.009	0.055
Race	T	600	115 (16 6)	1 (2 (1 2 2 2 1)	0.000	0.855
White	Tertile I	692	115 (16.6)	1.63 (1.2~2.21)	0.002	
	Tertile2	/65	68 (8.9)	1(Ref)		
	Tertile3	728	109 (15)	2.12 (1.55 ~ 2.88)	< 0.001	
	Trend test	2185	292 (13.4)	1.13 (0.97 ~ 1.31)	0.104	
Black	Tertile1	61	11 (18)	1.14 (0.4 ~ 3.25)	0.803	
	Tertile2	47	6 (12.8)	1(Ref)		
	Tertile3	41	14 (34.1)	3.18 (1.12~9.05)	0.03	
	Trend test	149	31 (20.8)	1.67 (1.06~2.66)	0.029	
Other	Tertile1	337	61 (18.1)	1.16 (0.77 ~ 1.77)	0.477	
	Tertile2	287	37 (12.9)	1(Ref)		
	Tertile3	327	73 (22.3)	1.99 (1.33 ~ 2.99)	0.001	
	Trend test	951	171 (18)	1.32 (1.1 ~ 1.59)	0.003	
BMI						0.365
≤24.9	Tertile1	275	73 (26.5)	1.58 (1.06~2.35)	0.025	
	Tertile2	259	39 (15.1)	1(Ref)		
	Tertile3	215	53 (24.7)	1.97 (1.28 ~ 3.02)	0.002	
	Trend test	749	165 (22)	1.08 (0.89~1.32)	0.438	
25-30	Tertile1	347	53 (15.3)	1.6 (1.02~2.5)	0.04	
	Tertile2	376	33 (8.8)	1(Ref)		
	Tertile3	373	55 (14.7)	2.35 (1.5~3.68)	< 0.001	
	Trend test	1096	141 (12.9)	1.22 (0.98~1.51)	0.08	
> 30	Tertile1	468	61 (13)	1.18 (0.78 ~ 1.78)	0.432	
	Tertile2	464	39 (8.4)	1(Ref)		
	Tertile3	508	88 (17.3)	2.28 (1.56 ~ 3.35)	< 0.001	
	Trend test	1440	188 (13.1)	1.43 (1.2~1.72)	< 0.001	
Hypertension				. ,		0.527
No	Tertile1	614	123 (20)	1.41 (1.03 ~ 1.92)	0.03	
	Tertile2	519	63 (12.1)	1(Ref)		
	Tertile3	495	99 (20)	1.99 (1.44~2.75)	< 0.001	
	Trend test	1628	285 (17.5)	1.17 (1.01 ~ 1.35)	0.037	

Table 5 Subgroup analysis of 90-day mortality among patients

Table 5 (continued)

Subgroup	Variable	Total	Event (%)	HR (95CI)	P value	P for interaction
Yes	Tertile1	476	64 (13.4)	1.38 (0.94 ~ 2.03)	0.098	
	Tertile2	580	48 (8.3)	1(Ref)		
	Tertile3	601	97 (16.1)	2.21 (1.55~3.14)	< 0.001	
	Trend test	1657	209 (12.6)	1.32 (1.1 ~ 1.57)	0.003	
Heart failure						0.935
No	Tertile1	522	79 (15.1)	1.32 (0.92 ~ 1.88)	0.131	
	Tertile2	637	54 (8.5)	1(Ref)		
	Tertile3	698	114 (16.3)	2.15 (1.54 ~ 2.99)	< 0.001	
	Trend test	1857	247 (13.3)	1.32 (1.12~1.55)	0.001	
Yes	Tertile1	568	108 (19)	1.41 (1.01 ~ 1.95)	0.041	
	Tertile2	462	57 (12.3)	1(Ref)		
	Tertile3	398	82 (20.6)	2.11 (1.5 ~ 2.98)	< 0.001	
	Trend test	1428	247 (17.3)	1.2 (1.02~1.41)	0.025	
Cancer						0.265
No	Tertile1	894	135 (15.1)	1.21 (0.91 ~ 1.6)	0.186	
	Tertile2	901	84 (9.3)	1(Ref)		
	Tertile3	938	171 (18.2)	2.22 (1.7 ~ 2.9)	< 0.001	
	Trend test	2733	390 (14.3)	1.38 (1.22 ~ 1.57)	< 0.001	
Yes	Tertile1	196	52 (26.5)	2.07 (1.28~3.34)	0.003	
	Tertile2	198	27 (13.6)	1(Ref)		
	Tertile3	158	25 (15.8)	1.47 (0.83 ~ 2.59)	0.183	
	Trend test	552	104 (18.8)	0.78 (0.6~1.01)	0.064	
CKD						0.429
No	Tertile1	769	119 (15.5)	1.64 (1.22 ~ 2.2)	0.001	
	Tertile2	898	74 (8.2)	1(Ref)		
	Tertile3	910	142 (15.6)	2.35 (1.77~3.13)	< 0.001	
	Trend test	2577	335 (13)	1.22 (1.06 ~ 1.4)	0.005	
Yes	Tertile1	321	68 (21.2)	1.07 (0.71 ~ 1.61)	0.738	
	Tertile2	201	37 (18.4)	1(Ref)		
	Tertile3	186	54 (29)	1.73 (1.12~2.67)	0.014	
	Trend test	708	159 (22.5)	1.25 (1.03 ~ 1.52)	0.023	
AKI						0.858
No	Tertile1	663	77 (11.6)	1.4 (0.99~1.99)	0.057	
	Tertile2	809	58 (7.2)	1(Ref)		
	Tertile3	869	123 (14.2)	2.17 (1.59~2.98)	< 0.001	
	Trend test	2341	258 (11)	1.3 (1.11 ~ 1.53)	0.001	
Yes	lertile1	427	110 (25.8)	1.47 (1.05 ~ 2.06)	0.025	
	lertile2	290	53 (18.3)	1(Ref)		
	lertile3	227	/3 (32.2)	2.3 (1.59~3.31)	< 0.001	
Ci I	Irend test	944	236 (25)	1.2 (1.02~1.42)	0.027	0.557
Stroke	T	054	152 (16)	1 41 (1 00 1 06)	0.012	0.557
INO	Tertile	954	153 (16)	1.41 (1.08~1.86)	0.013	
	Tertile2	915	83 (9.1)	1 (Kel)	< 0.001	
	Tertile3	920	153 (10.0)	2.24 (1.71 ~ 2.93)	< 0.001	
Voc	Tortile 1	2789	389 (13.9)	1.20 (1.11 ~ 1.43)	< 0.001	
res	Tertiloo	130	34 (ZS)	1.53 (U.9~2.58)	0.115	
	Tortilo2	104 176	20 (13.2) 12 (21 1)	1 (NEL) 2 11 (1 27 - 2 52)	0.004	
	Trand test	170	+3 (24.4)	$2.11(1.27 \sim 3.52)$	0.10	
	irend test	490	105 (21.2)	1.2 (0.92~1.50)	0.18	

Subgroup	Variable	Total	Event (%)	HR (95CI)	P value	P for interaction
Age						0.548
<65	Tertile1	233	37 (15.9)	1.45 (0.84 ~ 2.51)	0.187	
	Tertile2	233	21 (9)	1(Ref)		
	Tertile3	239	27 (11.3)	1.62 (0.9~2.94)	0.11	
	Trend test	705	85 (12.1)	1.03 (0.78 ~ 1.36)	0.819	
>65	Tertile1	857	239 (27.9)	1.35 (1.1~1.66)	0.004	
	Tertile2	866	157 (18.1)	1(Ref)		
	Tertile3	857	222 (25.9)	1 72 (1 4~2 12)	< 0.001	
	Trend test	2580	618 (24)	$1.13(1.02 \sim 1.25)$	0.022	
Gender		2300	010(21)	(102 1123)	0.022	0 795
Female	Tertile1	457	136 (29.8)	1 29 (0 98 ~ 1 69)	0.068	0.755
Ternale	Tertile?	474	92 (21.7)	1(Ref)	0.000	
	Tertile3	407	124 (30.5)	$1.68(1.28 \sim 2.21)$	< 0.001	
	Trand tast	100	252 (272)	1.14 (0.00 - 1.2)	0.061	
Mala	Tortilo1	622	332 (27.3) 140 (22.1)	1.14 (0.99 ~ 1.5)	0.001	
IVIAIE	Tortilo2	675	140 (22.1)	1.40 (1.15 ~ 1.95)	0.005	
	Tertile2	675	80 (12.7)	1 (Ref)	< 0.001	
	Translaterat	089	125 (18.1)	1.82 (1.38~2.41)	< 0.001	
2	Irend test	1997	351 (17.6)	1.1 (0.96~1.26)	0.169	
Kace	T	600	104 (26.6)	1 51 (1 10 1 0)	0.001	0.784
White	lertile1	692	184 (26.6)	1.51 (1.19~1.9)	0.001	
	lertile2	/65	120 (15.7)	1(Ref)		
	Tertile3	728	148 (20.3)	1.58 (1.24 ~ 2.02)	< 0.001	
	Trend test	2185	452 (20.7)	1.01 (0.89~1.14)	0.895	
Black	Tertile1	61	18 (29.5)	1.4 (0.57 ~ 3.43)	0.465	
	Tertile2	47	8 (17)	1(Ref)		
	Tertile3	41	18 (43.9)	2.91 (1.17 ~ 7.22)	0.021	
	Trend test	149	44 (29.5)	1.44 (0.98 ~ 2.1)	0.062	
Other	Tertile1	337	74 (22)	1.08 (0.75 ~ 1.57)	0.675	
	Tertile2	287	50 (17.4)	1(Ref)		
	Tertile3	327	83 (25.4)	1.71 (1.19~2.45)	0.004	
	Trend test	951	207 (21.8)	1.26 (1.07 ~ 1.5)	0.007	
BMI						0.481
≤24.9	Tertile1	275	96 (34.9)	1.45 (1.03 ~ 2.02)	0.031	
	Tertile2	259	58 (22.4)	1(Ref)		
	Tertile3	215	64 (29.8)	1.61 (1.11~2.32)	0.011	
	Trend test	749	218 (29.1)	1.02 (0.86~1.22)	0.789	
25-30	Tertile1	347	83 (23.9)	1.44 (1.01 ~ 2.04)	0.041	
	Tertile2	376	56 (14.9)	1(Ref)		
	Tertile3	373	76 (20.4)	1.75 (1.23 ~ 2.5)	0.002	
	Trend test	1096	215 (19.6)	1.1 (0.92~1.31)	0.294	
> 30	Tertile1	468	97 (20.7)	1.2 (0.86~1.66)	0.282	
	Tertile2	464	64 (13.8)	1(Ref)		
	Tertile3	508	109 (21.5)	1.76 (1.29 ~ 2.41)	< 0.001	
	Trend test	1440	270 (18.8)	1.23 (1.05 ~ 1.43)	0.008	
Hypertension			(.0.0)		0.000	0.3
No	Tertile1	614	181 (295)	1,29 (1 01 ~ 1 65)	0.041	0.5
	Tertile?	519	106 (20.4)	1(Ref)	0.011	
	Tertile3	495	128 (25.1)	1 52 (1 17~1 98)	0.002	
	Trend toct	1678	115 (25.5)	1.07 (0.04 - 1.21)	0.002	
	nenu test	1020	+15(25)	1.07 (0.94~1.21)	0.301	

Table 6 Subgroup analysis of 365-day mortality among patients

Table 6 (continued)

Yes Tertile1 476 95 (20) 1.45 (1.06 - 1.98) 0.022 Tertile2 580 72 (12.4) 1(Ref) 0.001 0.001 Tertile3 601 121 (20.1) 1.85 (1.38 - 2.49) < 0.001 Tertile3 601 121 (20.1) 1.85 (1.38 - 2.49) < 0.001 Mo Tertile1 522 120 (23) 151 (1.12 - 2.02) 0.006 Mo Tertile2 637 78 (12.2) 1(Ref) 0.947 No Tertile3 698 133 (19.1) 1.75 (1.31 - 2.33) < 0.001 Tertile3 698 133 (19.1) 1.75 (1.31 - 2.33) < 0.001 Tertile3 698 133 (19.1) 1.75 (1.31 - 2.33) < 0.001 Tertile3 165 (27.5) 1.22 (0.95 - 1.57) 0.127 Tertile3 398 116 (29.1) 1.67 (1.27 - 2.19) < 0.001 Tertile3 398 105 (29.1) 1.67 (1.27 - 2.19) < 0.001 Tertile4 894 207 (23.2) 1.23 (0.98 - 1.54)	
Interlie 580 72 (12.4) IRef) Interlie3 601 121 (20.1) 1.85 (1.38 – 2.49) <0.001	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Heart failure 0.000 No Tertile1 522 120 (23) 1.51 (1.12~2.02) 0.006 Tertile2 637 78 (12.2) 1(Ref) 0.001 Tertile3 698 133 (17.8) 1.09 (0.95~1.25) 0.237 Yes Tertile1 568 156 (27.5) 1.22 (0.95~1.57) 0.127 Tertile2 462 100 (21.6) 1(Ref) 0.001 Tertile3 398 116 (29.1) 1.67 (1.27~2.19) <0.001	
No Tertile1 522 120 (23) 1.51 (1.12~2.02) 0.006 Tertile2 637 78 (12.2) 1(Ref) Tertile3 698 133 (19.1) 1.75 (1.31~2.33) < 0.001	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
YesTertile1Tertile1Tertile1Tertile2Tertile2Tertile3 <td></td>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Cancer 0.515 No Tertile1 894 207 (23.2) 1.23 (0.98 ~ 1.54) 0.069 Tertile2 901 136 (15.1) 1(Ref) 1000000000000000000000000000000000000	
No Tertile1 894 207 (23.2) 1.23 (0.98 - 1.54) 0.069 Tertile2 901 136 (15.1) 1(Ref) 1 Tertile3 938 209 (22.3) 1.73 (1.39 ~ 2.15) < 0.001	
NoTertile2901136 (15.1)11.8 (0.5 T.3 (1.39 ~ 2.15)6.005Tertile3938209 (2.3)1.73 (1.39 ~ 2.15)<0.001	
Iterative Join (150 (12.1)) Iteration Tertile3 938 209 (22.3) 1.73 (1.39~2.15) <0.001	
Yes Trend test 2733 552 (20.2) 1.19 (1.07 ~ 1.33) 0.001 Yes Tertile1 196 69 (35.2) 1.85 (1.25 ~ 2.75) 0.002 Tertile2 198 42 (21.2) 1(Ref) 0.083 Tertile3 158 40 (25.3) 1.49 (0.95 ~ 2.33) 0.083 Trend test 552 151 (27.4) 0.85 (0.68 ~ 1.05) 0.137 CKD Tertile2 898 119 (13.3) 1(Ref) No Tertile3 910 180 (19.8) 1.84 (1.45 ~ 2.32) <0.001	
Yes Tertile1 196 69 (35.2) 1.19 (1.07 × 1.33) 0.001 Yes Tertile1 196 69 (35.2) 1.85 (1.25 ~ 2.75) 0.002 Tertile2 198 42 (21.2) 1(Ref) 1 Tertile3 158 40 (25.3) 1.49 (0.95 ~ 2.33) 0.083 Trend test 552 151 (27.4) 0.85 (0.68 ~ 1.05) 0.137 CKD Tertile1 769 171 (22.2) 1.55 (1.23 ~ 1.97) <0.001	
Test Tertile1 Type Type Tube	
Tertile2 190 42 (21.2) 1(0er) Tertile3 158 40 (25.3) 1.49 (0.95 ~ 2.33) 0.083 Trend test 552 151 (27.4) 0.85 (0.68 ~ 1.05) 0.137 CKD 0.516 No Tertile1 769 171 (22.2) 1.55 (1.23 ~ 1.97) <0.001	
Intervited 138 40 (2.5.3) 1.49 (0.93 ~ 2.53) 0.0083 Trend test 552 151 (27.4) 0.85 (0.68 ~ 1.05) 0.137 CKD 0.516 No Tertile1 769 171 (22.2) 1.55 (1.23 ~ 1.97) <0.001	
CKD 0.516 No Tertile1 769 171 (22.2) 1.55 (1.23 ~ 1.97) <0.001	
No Tertile1 769 171 (22.2) 1.55 (1.23 ~ 1.97) < 0.001 Tertile2 898 119 (13.3) 1(Ref) Tertile3 910 180 (19.8) 1.84 (1.45 ~ 2.32) < 0.001	
No Tertile1 709 177 (22.2) 1.53 (1.25 ~ 1.97) < 0.001	
Ifertile2 898 119 (15.5) 1(kel) Tertile3 910 180 (19.8) 1.84 (1.45 ~ 2.32) <0.001	
Itertiles 910 180 (19.8) 1.84 (1.45 ~ 2.32) < 0.001	
Yes Tertile1 321 105 (32.7) 1.09 (0.97~1.23) 0.145 Yes Tertile1 321 105 (32.7) 1.09 (0.79~1.52) 0.587 Tertile2 201 59 (29.4) 1(Ref) 1145 1145 1107~2.08) 0.043 Tertile3 186 69 (37.1) 1.45 (1.01~2.08) 0.043 0.131 AKI 0.403 No Tertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) 0.403 0.01 Tertile3 869 155 (17.8) 159 (124~2.05) < 0.001	
Yes Tertile1 321 105 (32.7) 1.09 (0.79~1.52) 0.387 Tertile2 201 59 (29.4) 1(Ref) Tertile3 186 69 (37.1) 1.45 (1.01~2.08) 0.043 Trend test 708 233 (32.9) 1.13 (0.96~1.33) 0.131 AKI O.403 No Tertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) 0.01 0.01	
Iterule2 201 59 (29.4) Iterul Tertile3 186 69 (37.1) 1.45 (1.01 ~ 2.08) 0.043 Trend test 708 233 (32.9) 1.13 (0.96 ~ 1.33) 0.131 AKI 0.403 No Tertile1 663 129 (19.5) 1.43 (1.09 ~ 1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) 0.01 Tertile3 869 155 (17.8) 1.59 (124 ~ 2.05) < 0.001	
Iertile3 186 69 (37.1) 1.45 (1.01~2.08) 0.043 Trend test 708 233 (32.9) 1.13 (0.96~1.33) 0.131 AKI 0.403 No Tertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) (1.11) (1.12) <0001	
Irend test 708 233 (32.9) 1.13 (0.96~1.33) 0.131 AKI 0.403 No Tertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) Tertile3 869 155 (17.8) 159 (124~205) < 0.001	
AKI 0.403 No Tertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1(Ref) Tertile3 869 155 (17.8) 1.59 (124~205) < 0.001	
No Iertile1 663 129 (19.5) 1.43 (1.09~1.86) 0.01 Tertile2 809 100 (12.4) 1 (Ref) Tertile3 869 155 (17.8) 1 59 (124~2.05) < 0.001	
lertile2 809 100 (12.4) 1 (Kef) Tertile3 869 155 (17.8) 1 59 (1.24~2.05) < 0.001	
lertile3 869 155 (178) 159 (174~2.05) <0.001	
Irend test 2341 384 (16.4) 1.08 (0.95 ~ 1.22) 0.269	
Yes lertile1 42/ 14/ (34.4) 1.35 (1.02 ~ 1./9) 0.036	
Tertile2 290 78 (26.9) 1 (Ref)	
Tertile3 227 94 (41.4) 2 (1.47~2.72) < 0.001	
Trend test 944 319 (33.8) 1.17 (1.02 ~ 1.35) 0.027	
Stroke 0.951	
No Tertile1 954 226 (23.7) 1.34 (1.08 ~ 1.67) 0.008	
Tertile2 915 136 (14.9) 1(Ref)	
Tertile3 920 192 (20.9) 1.7 (1.36~2.12) <0.001	
Trend test2789554 (19.9)1.11 (1~1.24)0.045	
Yes Tertile1 136 50 (36.8) 1.52 (0.99~2.33) 0.054	
Tertile2 184 42 (22.8) 1(Ref)	
Tertile3 176 57 (32.4) 1.84 (1.21 ~ 2.81) 0.004	
Trend test 496 149 (30) 1.11 (0.89~1.38) 0.359	

According to previous studies, blood lipids and are significant confounding factors for AF. However, due to over 30% missing data for these indicators, they had to be excluded, which may impact the study results.

Conclusion

The GAR levels exhibited a "J-shaped" linear correlation with both short-term and long-term outcomes in critically ill AF patients. Elevated or reduced GAR levels may indicate adverse prognoses for these patients. This conclusion provides a basis for glucose management in critically ill AF patients.

Abbreviations

GAR	Glucose-to-glycated hemoglobin ratio
AF	Atrial fibrillation
HbA1c	Glycosylated hemoglobin
ICU	Intensive care unit
MIMIC-IV	Medical Information Mart for Intensive Care IV
AMI	Acute myocardial infarction
HF	Heart failure
CKD	Chronic kidney disease
WBC	White blood cells
HGB	Hemoglobin
SOFA	Sepsis-organ failure assessment score
OASIS	Oxford acute severity of illness score
RCS	Restricted cubic spline
HR	Hazard ratio
SHR	Stress hyperglycemia ratio
EAT	Epicardial adipose tissue

Acknowledgements

We wish to show our gratitude to all those who were involved in this study.

Author contributions

Author FYQ collected and processed the data, as well as wrote this article. XC and WX provided language help and writing assistance. WGF proofread the article. WX helped review the revised manuscript. All authors read and approved the final manuscript.

Funding

There were no external funding sources for this study.

Availability of data and materials

Data used can be obtained upon a reasonable request to the corresponding author.

Declarations

Ethics approval and consent to participate

The review boards of the Massachusetts Institute of Technology (MIT) and Beth Israel Deaconess Medical Center approved the use of the MIMIC-IV database. Since the participants in the study were anonymized and deidentified, this study was exempt from the requirements for ethical approval and informed consent.

Consent for publication

All authors agree to publish this work.

Competing interests

The authors have no competing interests.

Received: 3 May 2024 Accepted: 2 July 2024 Published online: 22 July 2024

References

- Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–47.
- 2. Bosch NA, Cimini J, Walkey AJ. Atrial fibrillation in the ICU. Chest. 2018;154(6):1424–34.
- Carrera P, Thongprayoon C, Cheungpasitporn W, Iyer VN, Moua T. Epidemiology and outcome of new-onset atrial fibrillation in the medical intensive care unit. J Crit Care. 2016;36:102–6.
- Roberts GW, Quinn SJ, Valentine N, Alhawassi T, O'Dea H, Stranks SN, Burt MG, Doogue MP. Relative hyperglycemia, a marker of critical illness: introducing the stress hyperglycemia ratio. J Clin Endocrinol Metab. 2015;100(12):4490–7.
- Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;373(9677):1798–807.
- Lorenzo-Almorós A, Casado Cerrada J, Álvarez-Sala Walther LA, Méndez Bailón M, Lorenzo González Ó. Atrial fibrillation and diabetes mellitus: dangerous liaisons or innocent bystanders? J Clin Med. 2023;12(8):2868.
- Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.
- 8. Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124(8):1160-2.
- Amiel SA, Aschner P, Childs B, Cryer PE, Galan BE, Frier BM, Gonder-Frederick L, Heller SR, Jones T, Khunti K, Leiter LA, Luo Y, McCrimmon RJ, Pedersen-Bjergaard U, Seaquist ER, Zoungas S. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019;7(5):385–96.
- Su YW, Hsu CY, Guo YW, Chen HS. Usefulness of the plasma glucose concentration-to-HbA(1c) ratio in predicting clinical outcomes during acute illness with extreme hyperglycaemia. Diabetes Metab. 2017;43(1):40–7.
- Merlino G, Pez S, Gigli GL, Sponza M, Lorenzut S, Surcinelli A, Smeralda C, Valente M. Stress hyperglycemia in patients with acute ischemic stroke due to large vessel occlusion undergoing mechanical thrombectomy. Front Neurol. 2021;12:725002.
- Merlino G, Smeralda C, Gigli GL, Lorenzut S, Pez S, Surcinelli A, Marini A, Valente M. Stress hyperglycemia is predictive of worse outcome in patients with acute ischemic stroke undergoing intravenous thrombolysis. J Thromb Thrombolysis. 2021;51(3):789–97.
- Brundel B, Ai X, Hills MT, Kuipers MF, Lip GYH, de Groot NMS. Atrial fibrillation. Nat Rev Dis Primers. 2022;8(1):21.
- 14. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.
- 15. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):120.
- Cinti F, Leccisotti L, Sorice GP, Capece U, D'Amario D, Lorusso M, Gugliandolo S, Morciano C, Guarneri A, Guzzardi MA, et al. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes. Cardiovasc Diabetol. 2023;22(1):349.
- Zhang Q, Liu T, Ng CY, Li G. Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies. Cardiovasc Ther. 2014;32(5):233–41.
- Yuan M, Gong M, Zhang Z, Meng L, Tse G, Zhao Y, Bao Q, Zhang Y, Yuan M, Liu X, et al. Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes, and mitofusin-2 downregulation prevents mitochondrial dysfunction and subsequent cell death. Oxid Med Cell Longev. 2020;2020:6569728.
- Uemura K, Kondo H, Ishii Y, Kobukata M, Haraguchi M, Imamura T, Otsubo T, Ikebe-Ebata Y, Abe I, Ayabe R, et al. Mast cells play an important role in the pathogenesis of hyperglycemia-induced atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27(8):981–9.
- Koracevic GP, Petrovic S, Damjanovic M, Stanojlovic T. Association of stress hyperglycemia and atrial fibrillation in myocardial infarction. Wien Klin Wochenschr. 2008;120(13–14):409–13.

- Luo J, Li Z, Qin X, Zhang X, Liu X, Zhang W, Xu W, Liu B, Wei Y. Association of stress hyperglycemia ratio with in-hospital new-onset atrial fibrillation and long-term outcomes in patients with acute myocardial infarction. Diabetes Metab Res Rev. 2024;40(2):e3726.
- 22. Terauchi Y, Inoue H, Yamashita T, Akao M, Atarashi H, Ikeda T, Koretsune Y, Okumura K, Suzuki S, Tsutsui H, et al. Impact of glycated hemoglobin on 2-year clinical outcomes in elderly patients with atrial fibrillation: sub-analysis of ANAFIE Registry, a large observational study. Cardiovasc Diabetol. 2023;22(1):175.
- Jia S, Yin Y, Mou X, Zheng J, Li Z, Hu T, Zhao J, Lin J, Song J, Cheng F, et al. Association between triglyceride-glucose index trajectories and radiofrequency ablation outcomes in patients with stage 3D atrial fibrillation. Cardiovasc Diabetol. 2024;23(1):121.
- Wang Z, He H, Xie Y, Li J, Luo F, Sun Z, Zheng S, Yang F, Li X, Chen X, et al. Non-insulin-based insulin resistance indexes in predicting atrial fibrillation recurrence following ablation: a retrospective study. Cardiovasc Diabetol. 2024;23(1):87.
- 25. Liu X, Abudukeremu A, Jiang Y, Cao Z, Wu M, Ma J, Sun R, He W, Chen Z, Chen Y, et al. U-shaped association between the triglyceride-glucose index and atrial fibrillation incidence in a general population without known cardiovascular disease. Cardiovasc Diabetol. 2023;22(1):118.
- Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, Radermacher P, Calzia E. Glucose metabolism and catecholamines. Crit Care Med. 2007;35(9 Suppl):S508-518.
- Zauner A, Nimmerrichter P, Anderwald C, Bischof M, Schiefermeier M, Ratheiser K, Schneeweiss B, Zauner C. Severity of insulin resistance in critically ill medical patients. Metabolism. 2007;56(1):1–5.
- Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079–86.
- Hu Y, Zhao Y, Zhang J, Li C. The association between triglyceride glucosebody mass index and all-cause mortality in critically ill patients with atrial fibrillation: a retrospective study from MIMIC-IV database. Cardiovasc Diabetol. 2024;23(1):64.
- Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, Freire AX, Geehan D, Kohl B, Nasraway SA, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40(12):3251–76.
- Ichai C, Cariou A, Léone M, Veber B, Barnoud D. Expert's formalized recommendations. Glycemic control in ICU and during anaesthesia: useful recommendations. Ann Fr Anesth Reanim. 2009;28(7–8):717–8.
- Mitchell I, Finfer S, Bellomo R, Higlett T. Management of blood glucose in the critically ill in Australia and New Zealand: a practice survey and inception cohort study. Intensive Care Med. 2006;32(6):867–74.
- Mackenzie I, Ingle S, Zaidi S, Buczaski S. Tight glycaemic control: a survey of intensive care practice in large English hospitals. Intensive Care Med. 2005;31(8):1136.
- 34. Krinsley JS, Egi M, Kiss A, Devendra AN, Schuetz P, Maurer PM, Schultz MJ, van Hooijdonk RT, Kiyoshi M, Mackenzie IM, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care. 2013;17(2):R37.
- von Loeffelholz C, Birkenfeld AL. Tight versus liberal blood-glucose control in the intensive care unit: special considerations for patients with diabetes. Lancet Diabetes Endocrinol. 2024;12(4):277–84.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.