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Abstract
Background The relationship between metformin use and prostate cancer (PCa) risk has yet to be clear despite more 
than a decade of debate on this topic. Hence, we aimed to investigate the causal role of metformin in reducing PCa 
risk through an up-to-date comprehensive genome-wide analysis.

Methods We employed validated instrument variables of metformin use derived from a prior high-quality study, 
including five potential targets (AMPK, GCG, GDF15, MCI and MG3). Mendelian randomization (MR) analysis was 
performed to harmonize genetically predicted metformin use and PCa phenotypes. PCa phenotypes were from 
two large genome-wide association studies (GWAS), the Prostate Cancer Association Group to Investigate Cancer-
Associated Alterations in the Genome (PRACTICAL) and the FinnGen cohort. Seven methods were applied to 
generate MR results: the inverse variance weighted (IVW), IVW with multiplicative random effects, MR-Egger, 
MR-Egger (bootstrap), weighted median, simple mode and weighted mode. Strict sensitivity analysis was conducted 
to satisfy core assumptions of MR design.

Results We enrolled 32 significant single nucleotide polymorphisms (SNPs) that involved with metformin use. 
Nearly all targets yielded insignificant primary results (IVW with multiplicative random effects), except that AMPK 
target posed a positive effect on PCa risk from FinnGen cohort [odds ratio (OR): 6.09, 95% confidence interval (CI): 
1.10-33.53, P value: 0.038]. The general effect of metformin use, comprising all 5 targets, also yielded negative results 
(random-effect meta-analysis with OR: 1.09, 95% CI: 0.76–1.58, P value: 0.637 for PRACTICAL; OR: 2.55, 95% CI: 0.58–
11.16, P value: 0.215 for FinnGen). None of the sensitivity analyses provided support for a causal association between 
metformin use and PCa risk.

Conclusion This up-to-date study did not support the protective role of metformin in reducing PCa risk, considering 
each target, overall effect, and sensitivity analysis. It is imperative to reflect on the presumed “almighty medicine” and 
ongoing phase III trials are anticipated to assess the anti-neoplasm effect of metformin.
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Introduction
Metformin is a widely used pharmacological agent for 
the management of type 2 diabetes mellitus, which has 
attracted growing attention due to its potential anti-
tumorigenic characters [1]. Although the contentious 
conclusions have left this matter unresolved, the efficacy 
of metformin in diverse cancer types has been elucidated 
in an escalating number of clinical investigations [2–14].

The association between metformin use and prostate 
cancer (PCa) risk is of great interest to urologists. Previ-
ous studies indicated the protective effect of metformin 
in at least a certain part of population [8, 15–23], while 
some others contradicted the results [24–33]. As obser-
vational studies are rife with numerous disadvantages 
[34], a genetic tool is appropriate to investigate the causal 
association between metformin and PCa. Mendelian ran-
domization (MR) analysis is an effective method to solve 
such issues [35–37]. But the frustrating reality is that only 
one study focused on this topic [38]. The study utilized 
the target of adenosine 5’-monophosphate-activated pro-
tein kinase (AMPK) to proxy metformin effect on HbA1c 
reduction, which was inaccurate and biased due to its 
complicated effect [38].

Recently, a comprehensive research summarized 
the distinct drug target impacts of metformin through 
genome-wide analysis [39]. As a result, we are able to 
exploit such instruments to explore the effect of metfor-
min on PCa, which is the aim of this study.

Methods
The objective of this study is to test the causal effect of 
metformin use on PCa risk through a comprehensive MR 
analysis. Figure 1 showed the study flowchart.

Metformin proxied instrument variables
We utilized the certified variants of metformin use from 
a previous high-quality study [39]. Briefly, the authors 
determined 5 targets (AMPK, GCG, GDF15, MCI, MG3) 
with 32 variants through a series of validation. They con-
ducted a thorough literature review to identify the drug 
targets of metformin (AMPK, GCG, GDF15, MCI, MG3). 
The five metformin-related targets were then mapped 
to the related genes through the ChEMBL database [40, 
41]. Furthermore, the related genes were mapped to the 
related genetic variants based on recent comprehensive 
data [42–48]. The related genetic variants were then 
associated with the glycemic trait HbA1c from 344,182 
UK Biobank participants (served as the exposure vari-
able, Fig. 1) and we provided the summary-level data in 
Table S1.

Prostate cancer outcomes
We selected PCa outcomes from the Prostate Cancer 
Association Group to Investigate Cancer-Associated 
Alterations in the Genome (PRACTICAL) and the Finn-
Gen cohort. PRACTICAL is a consortium to investigate 
the genetic susceptibility of PCa, consisting of 79,148 
cases and 61,106 controls [49]. As for FinnGen cohort, 
we extracted release 5 version data, consisting of 6,311 
cases and 88,902 controls [50]. Only European ancestry 
was included and overlap was avoided between the expo-
sure and outcome variables. Details were provided in 
Table S2.

Statistical analysis
All the analysis was completed in R (version 4.2.0). 
TwoSampleMR and ieugwasr were the main R pack-
ages. Two-sample MR analysis was the primary results 
in our study. F-statistic, calculated as beta2/se2, was 

Fig. 1 The study flowchart. AMPK: adenosine 5’-monophosphate-activated protein kinase; GCG: glucagon; GDF15: growth differentiation factor 15; MCI: 
mitochondrial complex I; MG3: mitochondrial glycerol 3; PRACTICAL: Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in 
the Genome
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implemented to test the power of instrument variables, 
with F-statistic > 10 thought as strong variants [51]. When 
conducting MR analysis, proxy with r2 > 0.8 was consid-
ered if a single nucleotide polymorphism (SNP) was not 
matched between the exposure and outcome variables. 
We enrolled seven methods to generate MR results: the 
inverse variance weighted (IVW), IVW with multiplica-
tive random effects, MR-Egger, MR-Egger (bootstrap), 
weighted median, simple mode and weighted mode. The 
IVW with multiplicative random effects method was 
considered as our primary result. If there was only one 
SNP in the exposure and outcome variables, Wald ratio 
was calculated as the primary result. We would report 
MR results based on each target mentioned above and 
then give the whole results of the five targets. Addition-
ally, heterogeneity and pleiotropy tests were conducted. 
All results were reported as odds ratio (OR) or beta value 
with 95% confidence interval (95% CI). On the other 
hand, Steiger tests were conducted to certify whether the 
assumption that exposure caused outcome was valid. A 
reverse MR analysis was also performed to examine if the 
reverse causality existed.

Three assumptions should be met during MR analysis 
(Fig. 1). First, all SNPs were associated with the exposure 
variable. Second, any SNP associated with any poten-
tial confounder should be excluded. Third, SNPs should 
not be associated with the outcome variable directly. To 
satisfy all these assumptions, we intended to perform 
the following sensitivity analysis. Sensitivity analysis 1 
removed SNPs with F-statistic < 10. Sensitivity analysis 
2 removed SNPs associated with hypertension addition-
ally. Sensitivity analysis 3 removed SNPs associated with 
hypertension and dyslipidemia additionally. Sensitivity 
analysis 4 removed SNPs associated with hypertension, 
dyslipidemia and body mass index (BMI) additionally. 
Sensitivity analysis 5 removed SNPs associated with 
hypertension, dyslipidemia, BMI and any cancer out-
come additionally.

Results
We enrolled 32 significant SNPs from the previous 
research [39], including five targets (AMPK, GCG, 
GDF15, MCI, MG3) that involved with metformin use. 
Those 32 SNPs were associated with the genome-wide 
association study (GWAS) of a glycemic marker, HbA1c, 
from UK Biobank (18,242 diabetic cases/325,940 con-
trols). To prevent overlap bias between the exposure and 
outcome variables that could induce false positive rate, 
we selected prostate cancer GWAS from another two 
UK Biobank-unrelated cohorts, PRACTICAL (79,148 
cases/61,106 controls) and FinnGen (6,331 cases/88,902 
controls), to perform MR analysis (Fig. 1).

The MR effect of metformin targets on PCa risk
We conducted the MR analysis of metformin use effect 
on PCa cancer risk based on each target (Fig. 2).Nearly all 
targets yielded insignificant primary results (IVW with 
multiplicative random effects), except that AMPK target 
posed a positive effect on PCa risk from FinnGen cohort 
(OR: 6.09, 95% CI: 1.10-33.53, P value: 0.038, Table S3B). 
The effect of AMPK target on PCa risk from PRACTI-
CAL was of no significance (OR: 0.87, 95% CI: 0.23–3.33, 
P value: 0.835, Table S3A). The other four targets, includ-
ing GCG (OR: 1.33, 95% CI: 0.05–34.81, P value: 0.865 for 
PRACTICAL; OR: 4.67, 95% CI: 0.02-1176.74, P value: 
0.585 for FinnGen), GDF15 (OR: 1.13, 95% CI: 0.16–7.78, 
P value: 0.901 for PRACTICAL; OR: 3.17, 95% CI: 0.01-
756.47, P value: 0.680 for FinnGen), MCI (OR: 1.16, 95% 
CI: 0.77–1.74, P value: 0.477 for PRACTICAL; OR: 0.89, 
95% CI: 0.50–1.60, P value: 0.699 for FinnGen) and MG3 
(OR: 0.45, 95% CI: 0.07–2.95, P value: 0.402 for PRACTI-
CAL; OR: 29.76, 95% CI: 0.22-4085.54, P value: 0.177 for 
FinnGen), all showed negative results (Fig. 2, Table S3A 
and Table S3B).

The general effect of metformin use, comprising all 
5 targets, also yielded negative results when we utilized 
methods of IVW with multiplicative random effects (OR: 

Fig. 2 The MR effect of metformin use on PCa risk from PRACTICAL and FinnGen, based on each target and general effect. MR: Mendelian randomiza-
tion; PCa: prostate cancer risk; PRACTICAL: Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome; SNP: single 
nucleotide polymorphism; OR: odds ratio; CI: confidence interval; SD: standard deviation
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1.12, 95% CI: 0.78–1.60, P value: 0.542 for PRACTICAL; 
OR: 1.09, 95% CI: 0.62–1.91, P value: 0.760 for FinnGen), 
fixed-effect meta-analysis (OR: 1.09, 95% CI: 0.76–1.58, 
P value: 0.637 for PRACTICAL; OR: 1.16, 95% CI: 0.68–
2.01, P value: 0.584 for FinnGen) and random-effect 
meta-analysis (OR: 1.09, 95% CI: 0.76–1.58, P value: 0.637 
for PRACTICAL; OR: 2.55, 95% CI: 0.58–11.16, P value: 
0.215 for FinnGen; Fig. 2; Table 1, Table S3A and Table 
S3B). Steiger analysis showed correct causal direction 
from metformin use to PCa risk (Table S4A and Table 
S4B). In addition, the reverse MR analysis to examine if 
the reverse causality existed indicated no causal associa-
tion between PCa and metformin use (P value of IVW 
with multiplicative random effects: 0.383 for PRACTI-
CAL and 0.779 for FinnGen, Table S5A and Table S5B).

Sensitivity analysis
To meet the three core assumptions of MR analysis, we 
performed five sensitivity analysis mentioned in the 
method section. There were 23, 22, 18, 16 and 16 SNPs 
enrolled in sensitivity analysis 1–5 respectively. The 
detailed SNPs information was provided in Table S6A-E.

All the sensitivity analysis did not support a causal 
association between metformin use and PCa risk. The 
effect sizes based on the IVW with multiplicative ran-
dom effects were: sensitivity analysis 1 (OR: 1.08, 95% CI: 
0.73–1.60, P value: 0.698 for PRACTICAL; OR: 1.03, 95% 
CI: 0.63–1.70, P value: 0.901 for FinnGen), sensitivity 

analysis 2 (OR: 1.11, 95% CI: 0.74–1.67, P value: 0.614 for 
PRACTICAL; OR: 1.00, 95% CI: 0.59–1.67, P value: 0.991 
for FinnGen), sensitivity analysis 3 (OR: 1.47, 95% CI: 
0.84–2.56, P value: 0.174 for PRACTICAL; OR: 1.24, 95% 
CI: 0.60–2.58, P value: 0.567 for FinnGen), sensitivity 
analysis 4 (OR: 1.10, 95% CI: 0.73–1.67, P value: 0.649 for 
PRACTICAL; OR: 0.96, 95% CI: 0.49–1.87, P value: 0.905 
for FinnGen) and sensitivity analysis 5 OR: 1.10, 95% CI: 
0.73–1.67, P value: 0.649 for PRACTICAL; OR: 0.96, 95% 
CI: 0.49–1.87, P value: 0.905 for FinnGen; Fig.  3, Table 
S7A and Table S7B).

Discussion
In this study, we confirmed that no protective effect of 
metformin use on PCa risk. The association between 
metformin use and PCa risk reduction has been debated 
for over fifteen years [52, 53]. Most results were derived 
from in vitro or observational studies, as randomized 
controlled trials were impractical and the follow-up time 
was too long to gain enough events. Contradictory results 
were expected due to potential known or unknown con-
founders. Therefore, we conducted such a genetic epide-
miological study to examine the hypothesis that whether 
metformin use causally reduced PCa risk, which had 
the advantage of test causality if all assumptions were 
satisfied. Unfortunately, we were unable to validate the 
preventive effect of metformin on PCa risk based on 
MR analysis of each target, all five targets and all the 

Table 1 The general effect of metformin use on prostate cancer risk
Exposure Target Outcome SNP Method OR LCI_OR UCI_OR Pval
HbA1c All_five_targets Prostate cancer

(PRACTICAL)
31 Inverse variance weighted 1.117343843 0.782122926 1.596241744 0.5420757

Inverse variance weighted
(multiplicative random effects)

1.117343843 0.782122926 1.596241744 0.5420757

MR Egger 0.65899054 0.327302272 1.326811846 0.2523115
MR Egger (bootstrap) 0.815780953 0.528775051 1.258566496 0.1830000
Weighted median 0.761102225 0.513982634 1.127035349 0.1729054
Simple mode 0.855173933 0.423197232 1.728088942 0.6660282
Weighted mode 0.763888686 0.524522126 1.11249058 0.1705234
Fixed-effect meta-analysis 1.093080656 0.755028335 1.582490703 0.6368
Random-effect meta-analysis 1.093080656 0.755028335 1.582490703 0.6368

HbA1c All_five_targets Prostate cancer
(FinnGen)

31 Inverse variance weighted 1.090991505 0.588571936 2.02228885 0.7821014

Inverse variance weighted
(multiplicative random effects)

1.090991505 0.624023547 1.90739992 0.7599560

MR Egger 0.595829742 0.17958971 1.976800791 0.4043435
MR Egger (bootstrap) 0.598592167 0.234780011 1.526163067 0.1410000
Weighted median 0.737403756 0.303724106 1.790323153 0.5008806
Simple mode 0.915505818 0.183291609 4.572772907 0.9150478
Weighted mode 0.694637925 0.290906462 1.658683839 0.4184030
Fixed-effect meta-analysis 1.164160236 0.675028748 2.007720502 0.5844
Random-effect meta-analysis 2.547213458 0.581002627 11.15625135 0.2151

SNP: single nucleotide polymorphism; PRACTICAL: Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome; MR: Mendelian 
randomization
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sensitivity analysis. Maybe we should re-examine the 
relationship between metformin use and PCa risk.

An early study has explored the impact of genetic-
predicted metformin use on PCa risk [38]. However, the 
research just utilized the AMPK-proxied HbA1c reduc-
tion as a substitute of metformin, which was obsolete and 
far from comprehensive, as metformin exerted its effect 
not only through AMPK pathway activation. Also, the 
way it included SNPs in the MR analysis was with infe-
rior priority to the recent study [39]. Au Yeung and col-
leagues found no causal association between metformin 
use and PCa risk in their conclusion [38], which was sim-
ilar with our results. From this point of view, the utiliza-
tion of metformin for PCa prevention should be cautious, 
at least metformin might not reduce PCa risk in a blood 
sugar dependent way.

Interestingly, one randomized controlled trial regard-
ing the protective effect of metformin on anthropometric 
and metabolic complications in patients receiving radi-
cal radiotherapy and androgen deprivation therapy was 
completed and reported its preliminary results [20]. This 
phase II trial discovered that metformin did not attenu-
ate the complication rate, which was frustrating. Never-
theless, metformin is currently under investigation in the 
further phase 3 trial to evaluate its potential anti-tumor 
effects. As far as we know, this is the first randomized 
controlled trial to investigate only the effect of metformin 
in prostate disease, although the aim is to evaluate its 
preventive impact in decreasing complication rate. But it 
did provide some information. Maybe metformin actu-
ally does not have the potency as we expected in antago-
nizing PCa. We ought to be vigilant when considering the 
effect of such an “almighty medicine”. We are also looking 
forward to the further results of the phase 3 trial [20].

The study tried to solve the long discussed issue. 
We utilized the design of MR to avoid confounder bias 
and and intended to establish a causal association. We 

incorporated an up-to-dated comprehensive genetic 
proxy of metformin into our study to explore its role in 
PCa risk. Apart from the above advantages, we divided 
the metformin effect into several targets and calculated 
the specific effect of each target. Nearly all targets yielded 
no significant results, which indeed confirmed no causal 
relationship between metformin use and PCa risk. More-
over, all the three key assumptions of MR analysis were 
met and we conducted several sensitivity analysis to 
validate our results. We believe our research could offer 
information to those urologists who are interested in 
medical treatment of PCa.

Some limitations should be admitted. First, we just 
enrolled European ancestry in this study resulting from 
a lack of summary statistics from other ancestries. Addi-
tionally, there might be some other targets through which 
metformin functioned, but we have not discovered till 
now. Notwithstanding, we summarized the current evi-
dence of metformin effect on PCa. The results might alter 
as further targets of metformin are found.

To conclude, the study did not find a reliable causal-
ity between metformin use and PCa risk, based on each 
target, general effect or sensitivity analysis. We should 
reflect on the “almighty medicine” and doubt its protec-
tive effect of PCa risk. Perhaps metformin influences PCa 
through other rather than glycemic pathway. The ongo-
ing phase III trial is anticipated as it would assess the 
anti-neoplasm effect.
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