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to myocardial structural derangements. Hyperglycemia, 
insulin resistance, neurohormonal dysregulation, auto-
nomic neuropathy, and cellular metabolic disorders col-
lectively form a complex mechanism underlying diabetic 
cardiomyopathy [3–5]. Early recognition of this disorder 
allows the use of therapeutic strategies for better clinical 
management and possible intervention in the progress of 
the disease.

Cardiac magnetic resonance (CMR), with recent 
advancements, allows detailed characterization of car-
diac structures through both anatomical and functional 
analysis. CMR tissue tracking technology, compared to 

Introduction
Type 2 diabetes (T2D) is a robust independent cardiovas-
cular risk factor for major cardiac events and significantly 
increases the likelihood of developing heart failure (HF) 
[1, 2]. While coronary artery disease (CAD) and isch-
emic cardiomyopathy remain the primary causes of HF 
in T2D, other pathophysiological processes contribute 
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Abstract
Background This study investigates myocardial structural changes in stable coronary artery disease (CAD) patients 
with type 2 diabetes (T2D) using cardiac magnetic resonance (CMR) strain and T1 mapping.

Methods A total of 155 stable CAD patients underwent CMR examination, including left ventricular (LV) morphology 
and function assessment, late gadolinium enhancement (LGE), and feature tracking (CMR-FT) for LV global 
longitudinal, circumferential, and radial strain. T1 mapping with extracellular volume (ECV) evaluation was also 
performed.

Results Among the enrolled patients, 67 had T2D. Diabetic patients exhibited impaired LV strain and higher ECV 
compared to non-diabetics. Multivariate analysis identified T2D as an independent predictor of increased ECV and 
decreased strain.

Conclusions CMR-based strain and T1 mapping highlighted impaired myocardial contractility, elevated ECV, and 
potential interstitial fibrosis in diabetic patients with stable CAD. This suggests a significant impact of diabetes on 
myocardial health beyond CAD, emphasizing the importance of a comprehensive assessment in these individuals.

Trial registration http://www.controlled-trials.com/ISRCTN09454308
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echocardiography, offers access to deformation param-
eters in post-processed cine images with simpler appli-
cation and improved image quality [6, 7]. Furthermore, 
T1 relaxation time mapping provides a non-invasive 
approach to assess both cellular and interstitial com-
partments, enabling unique pathological correlation [8]. 
Extracellular volume (ECV) evaluation can detect early 
myocardial tissue changes, reflecting potential intersti-
tial matrix alterations or diffuse fibrosis [9–11]. Studies 
evaluating tissue changes in T2D have shown impaired 
left ventricular global longitudinal strain in non-ischemic 
diabetic patients compared to controls [12, 13]. However, 
findings regarding native T1 and ECV values in diabetic 
patients with preserved left ventricular ejection fraction 
(LVEF) compared to normal controls remain inconsis-
tent, particularly due to the lack of comprehensive CAD 
assessment [14–18].

We hypothesize that T2D, independent of CAD, is 
associated with structural myocardial changes, and that 
CMR strain and T1 mapping can identify these altera-
tions. Therefore, we aim to study patients with stable 
coronary artery disease with and without type 2 diabetes.

Research design and methods
This subanalysis delves into the comprehensive data-
set generated by the prospective trial titled “Accuracy 
of Myocardial Biomarkers in the Diagnosis of Myocar-
dial Infarction After Revascularization as Assessed by 
Cardiac Resonance: The Medicine, Angioplasty, Surgery 
Study V (MASS-V)”. Details on study design and proto-
col are published elsewhere [19]. In summary, a total of 
202 patients were enrolled, meeting the criteria of hav-
ing multivessel CAD with preserverd LVEF, and an 
indication for coronary artery bypass grafting or percu-
taneous coronary intervention. Individuals with recent 
(< 6 months) myocardial infarction, overt or suspected 
infections, active rheumatologic diseases, chronic renal 
failure (creatinine > 2.0 mg/dL), recent (< 6 months) pul-
monary embolism or venous thromboembolism, and 
contraindications to CMR, such as pacemaker implan-
tation or severe claustrophobia, were excluded from the 
study. All enrolled patients underwent CMR within six 
days before the revascularization procedure. The study 
was conducted in accordance with the principles out-
lined in the Helsinki Declaration and received approval 
from the institutional ethics committee at the Heart 
Institute of the University of São Paulo Medical School, 
São Paulo, Brazil. Informed consent was obtained from 
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all participants. Out of the original 202 patients, a subset 
of 155 individuals qualified for this subanalysis, with 35 
excluded due to incomplete T1 mapping phases acquisi-
tion and 12 experiencing CMR image artifacts hinder-
ing proper analysis. The sample size was linked to the 
MASS-V trial and thus not specifically calculated for this 
subanalysis. However, we estimated a medium effect size 
(Cohen’s d = 0.5) based on previous studies on diabetic 
cardiomyopathy and related treatments.

CMR examinations were conducted using a 1.5 Tesla 
Philips Achieva® scanner equipped with a dedicated 
5-element phased-array cardiac surface coil, ensuring 
high-quality imaging. Electrocardiogram (ECG) synchro-
nization was employed throughout the imaging process. 
Acquisition protocols followed current guidelines from 
the Society for Cardiovascular Magnetic Resonance [20, 
21]. Standard steady-state free precession (SSFP) cine 
sequences were acquired in both short (slice thickness: 
8  mm) and long axes (2-, 3- and 4-chamber) of the left 
ventricle, capturing 30 cardiac phases to achieve sub-50 
ms temporal resolution. Parameters such as left ventricu-
lar end-diastolic volume (LVEDV), left ventricular end-
systolic volume (LVESV), LVEF, and left ventricular mass 
(LVM) were measured and indexed to body surface area 
(BSA). Late gadolinium enhancement (LGE) imaging 
was performed using phase-sensitive inversion recovery 
(PSIR). CMR feature tracking (CMR-FT) was conducted 

using short-axis cine images and 2- and 4-chamber long-
axis images. Manual delineation of end-diastolic left 
ventricular endocardial and epicardial contours in all 
images was followed by automated tracking, enabling 
the calculation of left ventricular global longitudinal 
strain (LVGLS), left ventricular global circumferential 
strain (LVGCS), and left ventricular global radial strain 
(LVGRS) (Fig. 1). T1 mapping images were acquired uti-
lizing the Shortened modified Look-Locker Inversion 
recovery (ShMOLLI) technique in three short-axis slices 
(basal, middle, and apical). These images provided native 
T1, post-contrast T1, and extracellular volume (ECV) 
values (Fig. 2) [22, 23]. Native T1 was obtained before the 
administration of gadolinium-based contrast, while post-
contrast T1 was acquired 15–20  min after intravenous 
injection of gadoterate meglumine (0.1 mmol/kg of body 
weight). ECV was calculated using the formula: ECV = λ 
x (1-hematocrit). The partition coefficient (λ) was deter-
mined as λ = ΔR1myocardium/ΔR1blood, where ΔR1 
represents the difference in relaxation rates (1/T1) before 
and after contrast administration. Notably, only segments 
without LGE were included in native T1, post-contrast 
T1, and ECV assessment. Trabeculae and papillary mus-
cles were excluded from myocardial evaluation. All anal-
yses were performed offline using dedicated commercial 
software (Cvi42, Circle Cardiovascular Imaging, Calgary, 
AB, Canada) by two blinded observers. Discrepancies 

Fig. 1 Representative strain images and curves of a diabetic patient. Left ventricular global longitudinal strain (A), left ventricular global circumferential 
strain (B), and left ventricular global radial strain (C)
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were resolved through consensus, or consultation with a 
third blinded observer if necessary.

Statistical analysis
Continuous variables were described using means and 
standard deviations (SD) for normally distributed data or 
medians and interquartile ranges (IQR) for non-normal 
data. Categorical variables were presented as frequencies 
and percentages.

Comparisons between groups for categorical variables 
were performed using chi-squared tests, Fisher’s exact 
tests, or likelihood ratio tests, depending on the num-
ber of expected cells per category. The Shapiro-Wilk test 
assessed normality of distribution for continuous vari-
ables. Normally distributed data were compared using 
Student’s t-tests, while Mann-Whitney U tests were used 
for non-normal data. Univariate associations were evalu-
ated with Pearson or Spearman correlation coefficients, 
depending on data normality.

Multivariate linear regression analysis explored the 
relationship between native T1, ECV, LVGLS, LVGCS, 
LVGRS, and the presence of T2D, additionally consid-
ering other relevant factors. Variables included in the 
model were clinically relevant or demonstrated statistical 
significance (P < 0.2 in univariate analysis).

All analyses were conducted using R software (version 
3.6.2), with statistical significance set at P < 0.05.

Results
Baseline characteristics of the 155 patients are summa-
rized in Table  1. Patients were classified as either T2D 
(n = 67) or controls (n = 88). While clinical, laboratory, 
and angiographic data were generally similar between 
groups, T2D patients had a lower prevalence of current 

Table 1 Baseline characteristics of the study population
T2D patients
(n = 67)

Controls
(n = 88)

P value

Age, yrs 62 ± 9 62 ± 10 0.57
Male, (%) 48 (72) 58 (66) 0.45
BMI, kg/m2 28.8 ± 4.2 27.4 ± 4.1 0.05
BSA, m2 1.8 ± 0.4 1.8 ± 0.2 0.57
Heart rate, bpm 60 ± 8 57 ± 7 0.01
Current or past smoker, (%) 12 (20) 29 (33) 0.03
Hypertension, (%) 59 (88) 73 (83) 0.38
Previous myocardial infarct, (%) 23 (34) 30 (34) 0.97
3-vessel CAD, (%) 48 (72) 55 (63) 0.23
SYNTAX score 20 ± 8 20 ± 9 0.77
LABORATORY
Hematocrit, % 43 ± 4 43 ± 4 0.80
Creatinine, mg/dl 1.07 ± 0.2 1.02 ± 0.2 0.17
Cholesterol, mg/dl 171 ± 47 175 ± 48 0.55
LDL, mg/dl 99 ± 36 105 ± 39 0.42
HDL, mg/dl 38 ± 11 38 ± 13 0.86
Triglyceride, mg/dl 167 ± 110 167 ± 103 0.99
Hemoglobin A1C, % 7.7 ± 1.2 5.3 ± 0.7 < 0.01
MEDICATIONS
Acetylsalicylic acid, (%) 67 (100) 88 (100) 1
Statin, (%) 66 (98) 84 (95) 0.77
Other hypolipidemic drug, (%) 7 (10) 9 (10) 0.97
Beta blocker, (%) 60 (89) 80 (90) 0.86
ACE inhibitor, (%) 37 (55) 44 (50) 0.22
Angiotensin receptor blocker, (%) 23 (34) 28 (32) 0.42
Calcium channel blocker, (%) 20 (30) 30 (24) 0.38
Metformin, (%) 54 (81) 4 (4) < 0.01
Sulfonylurea, (%) 29 (43) -
Insulin, (%) 22 (33) -
Abbreviations: BMI, body mass index; BSA, body surface area; CAD, coronary 
artery disease; LDL, low density lipoprotein; HDL, high density lipoprotein; ACE, 
angiotensin-converting enzyme

Fig. 2 Representative color maps of a non-diabetic patient at the left ventricle middle short-axis slice. Native T1 mapping (A) and extracellular volume 
(ECV) mapping (B)
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or past smoking (20% vs. 33%, P = 0.03) and significantly 
higher hemoglobin A1c levels (7.7 ± 1.2% vs. 5.3 ± 0.7%, 
P < 0.01). CMR analysis on left ventricular volumes, mass, 
and LVEF did not differ between T2D and control groups 
(Table  2). However, T2D patients exhibited significantly 
lower global longitudinal strain (LVGLS), circumferential 
strain (LVGCS), and radial strain (LVGRS) compared to 
controls (-16.5% ± 2.3% vs. -17.5% ± 2.7%, P = 0.03; -16.4% 
± 2.6% vs. -17.4% ± 3.0%, P = 0.04; 26.9% ± 5.9% vs. 29.5% 
± 7.2%, P = 0.02, respectively) (see Fig. 3 for illustration). 
Despite similar native T1 and post-contrast T1 values 
between groups, T2D patients had significantly higher 
ECV (25.7% ± 2.6% vs. 23.5% ± 2.3%, P < 0.01) (see Fig. 4 
for illustration). Relationship between CMR parameters 
and T2D in univariate analysis revealed no significant 
associations between native T1 or ECV and LVGLS, 
LVGCS, or LVGRS. Multivariate linear regression 

Table 2 Cardiac magnetic resonance findings
T2D
(n = 67)

Controls
(n = 88)

P value

LVEDVi, ml/m2 74.3 ± 16.0 73.0 ± 16.3 0.45
LVESVi, ml/m2 39.9 ± 8.3 40.9 ± 9.9 0.54
LVEF, % 54.9 ± 9.6 56.2 ± 9.0 0.42
LVMi, g/m2 53.4 ± 11.4 51.7 ± 11.8 0.40
LVGLS, % -16.5 ± 2.3 -17.5 ± 2.7 0.03
LVGCS, % -16.4 ± 2.6 -17.4 ± 3.0 0.04
LVGRS, % 26.9 ± 5.9 29.5 ± 7.2 0.02
Native T1, ms 1015.5 ± 46.0 1003.8 ± 42.8 0.10
Post-contrast T1, ms 507.3 ± 35.9 516.8 ± 44.5 0.15
ECV, % 25.7 ± 2.6 23.5 ± 2.3 < 0.01
Abbreviations: LVEDVi, left ventricular end-diastolic volume indexed to body 
surface area; LVESVi, left ventricular end systolic volume indexed to body 
surface area; LVEF, left ventricular ejection fraction; LVMi, left ventricular mass 
indexed to body surface area; LVGLS, left ventricular global longitudinal strain; 
LVGCS, left ventricular global circumferential strain; LVGRS, left ventricular 
global radial strain; ECV, extracellular volume

Fig. 4 Box plots comparing native T1, post-contrast T1, and extracellular volume (ECV) in type 2 diabetes and controls patients

 

Fig. 3 Box plots comparing left ventricular global longitudinal (LVGLS), circumferential (LVGCS) and radial (LVGRS) strain in type 2 diabetes and controls 
patients

 



Page 6 of 8Boros et al. Diabetology & Metabolic Syndrome          (2024) 16:156 

analysis, adjusting for clinically relevant covariates (age, 
sex, BMI, hypertension) and statistically significant 
covariates (heart rate, smoking status, creatinine, LVEF), 
confirmed that T2D was an independent predictor for 
increased ECV (β = 2.24, P < 0.01), impaired LVGLS 
(β = 0.72, P = 0.02), impaired LVGCS (β = 0.82, P = 0.01), 
and impaired LVGRS (β  =  -2.22, P < 0.01) (Table  3). As 
expected, LVEF was also correlated with reduced LVGLS 
(β  =  -0.19, P < 0.01), LVGCS (β  =  -0.23, P < 0.01), and 
LVGRS (β = 0.52, P < 0.01).

Discussion
The present study demonstrated that patients with type 2 
diabetes exhibit decreased strain and higher extracellular 
volume values in a stable coronary artery disease setting, 
compared to controls, without notable differences in left 
ventricular structural parameters assessed by cardiac 
magnetic resonance. This association persisted even after 
adjusting for potential covariates. These findings may 
have implications for understanding and detecting dia-
betic cardiomyopathy.

In T2D, myocardial tissue is susceptible to higher rates 
of myocyte necrosis, collagen deposition, and interstitial 
fibrosis. Multiple factors contribute to the development 
of progressive myocardial damage and subsequent fibro-
sis, including hyperglycemia, increased oxidative stress, 
fatty acid availability, and activation of the renin-angio-
tensin-aldosterone system [3, 28]. By utilizing CMR fea-
ture tracking and T1 mapping, we explored potential and 
accessible techniques for identifying patients at risk for 
adverse LV remodeling.

It is widely demonstrated that diabetes causes inter-
stitial fibrosis and microvascular dysfunction. A general 
understanding is that these are the underlying factors 
causing diastolic dysfunction, which is highly prevalent 
in patients with T2D [29].

Our findings revealed impaired LV global longitu-
dinal strain (LVGLS), LV global circumferential strain 
(LVGCS), and LV global radial strain (LVGRS) in dia-
betic patients, with no significant differences in mass or 
volumes, independently of T1 mapping analysis. These 
abnormalities in myocardial contractility may indicate 
a higher risk of heart failure development, as LV strain 
can be employed to detect early subclinical myocar-
dial dysfunction. We prioritized global strain evaluation 
instead of regional assessment due to their greater vali-
dation and reproducibility in our population [30, 31]. It 
is known that there is significant overlap in strain values 
between LGE and non-LGE areas, particularly in cases 
with LVEF > 40%, as well as influence of multiple factors 
must be considered, such as LV remodeling and the time 
elapsed since the previous myocardial infarction [31, 32].

Although not statistically significant, there was a trend 
toward higher native T1 and lower post-contrast T1 in Ta
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the myocardium of diabetic patients. As ECV depends 
on pre- and post-contrast T1 in the tissue, hematocrit, 
and pre- and post-contrast T1 in the blood, it can amal-
gamate slight differences in T1 values and better reflect 
changes in the extracellular matrix. Notably, higher ECV 
is associated with increased collagen volume fraction 
and myocardial fibrosis in histological comparison [33, 
34]. LGE areas were excluded in the ECV analysis in this 
CAD patients study to assess only interstitial fibrosis in 
otherwise normal tissue. Furthermore, stable CAD is not 
known to affect the interstitial matrix in the absence of 
infarct.

While recent study demonstrated correlation between 
higher ECV and lower strain values in diabetic patients 
without clinical evidence of CAD, in our sample we did 
not find this direct association [18]. This suggests the 
contribution of other factors that impair myocardial con-
tractility besides the increased ECV, given that subtle dif-
ferences in LVEF and LGE are known to further reduce 
LV strain [24, 26].

Overall, our results emphasize that T2D patients have 
impaired myocardial contractility and increased myocar-
dial interstitial fibrosis compared to matched controls. 
This could be used as a potential early assessment of 
adverse left ventricle remodeling in these patients, as well 
as guide therapy strategies [25].

However, this study has limitations. Firstly, it was a sin-
gle-center study with 155 subjects, a substantial number 
for CMR studies but possibly considered small for certain 
statistical analyses. Secondly, CMR has undergone exten-
sive study in recent years, but differences in magnetic 
strengths, acquisition protocols, contrast agent, and stan-
dardized methods can yield varied results. We attempted 
to mitigate these limitations by selecting a homogeneous 
study sample. Thirdly, the addition of T2 mapping could 
enhance the assessment of myocardial inflammation and 
edema, data not available in our sample because of differ-
ent acquisition protocols. Furthermore, while the inclu-
sion criteria specifically targeted patients with preserved 
LVEF, it’s crucial to acknowledge the limitation posed by 
the absence of specific data on diastolic dysfunction from 
echocardiography. Finally, being a cross-sectional study, 
inherent limitations are present, and a prospective study 
with clinical follow-up could provide additional data to 
support the development of diabetic cardiomyopathy fol-
lowing our results.

Conclusion
In this study, diabetic patients, when compared to control 
subjects with stable coronary artery disease, presented 
impaired myocardial contractility, with decreased left 
ventricular global strain (longitudinal, circumferential, 
and radial), as well as increased myocardial interstitial 
fibrosis assessed by T1 mapping ECV.
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