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Abstract 

Diabetic nephropathy (DN) is a critical inflammatory condition linked to diabetes, affecting millions worldwide. This 
study employs Mendelian randomization (MR) to explore the causal relationship between immune cell signatures 
and DN, analyzing over 731 immune signatures and incorporating data from 1400 metabolites to investigate potential 
mediators. Despite no statistically significant influence of DN on immunophenotypes after FDR correction, some phe-
notypes with unadjusted low P-values warranted mention, including CD34 on Hematopoietic Stem Cell (Myeloid cell 
Panel), CD45 on CD33− HLA DR− (Myeloid cell Panel). Furthermore, three immunophenotypes were identified to have 
a significant impact on DN risk: CD16−CD56 on HLA DR+ NK (TBNK Panel), CD45 on HLA DR+ T cell (TBNK Panel), 
and CD33dim HLA DR+ CD11b+ AC (Myeloid cell Panel). Our findings underscore the critical role of immune cells in DN, 
highlighting potential mediators and offering new insights into its underlying mechanisms.
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Introduction
The International Diabetes Federation (IDF) latest sta-
tistical data shows that approximately 537 million adults 
(aged 20–79) worldwide had been diagnosed with diabe-
tes in 2021 [1]. Diabetic nephropathy (DN) is a significant 
microvascular complication that is gaining increasing 
attention from the medical community and society at 
large [2]. With the dramatic increase in the number of 

people with diabetes, the kidneys, as vital target organs, 
are experiencing a growing incidence of damage. Approx-
imately 40% of individuals with diabetes may develop DN 
[3]. Hypertrophy and thickening of the basement mem-
brane, as well as the accumulation of extracellular matrix 
components, are the structural changes in the kidneys 
caused by DN. This ultimately leads to end-stage glomer-
ular occlusion and tubulointerstitial fibrosis [4, 5].

Traditionally, the primary pathogenic mechanisms 
of DN are believed to involve metabolic disturbances, 
hemodynamic changes, oxidative stress, and so on [6]. In 
recent years, more and more evidence has indicated that 
chronic inflammatory reactions caused by immune cells 
are a vital factor in the pathogenesis of DN [7, 8]. Stud-
ies have indicated the widespread presence of various 
immune cells, including macrophages and T cells, in the 
glomeruli or interstitium of the kidneys in patients with 
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DN. Their abnormal infiltration and activation within 
the renal interstitium are considered potential immu-
nopathological mechanisms underlying DN damage [9]. 
Despite numerous studies investigating the essential 
mechanisms by which various immune cells play a role in 
the pathogenesis of DN, DN is a complex disease influ-
enced by multiple factors, making it challenging to isolate 
the specific contributions of immune cells. While there is 
often observed activity of immune cells associated with 
DN, whether immune cell activation is a cause or a result 
of the disease may not always be clear. Additionally, the 
mechanisms by which various immune cells, including 
NK cells and mast cells, contribute to the onset of DN are 
not well-understood, requiring further research to con-
firm the potential mediators through which immune cells 
may influence the complex pathogenesis of DN.

Single nucleotide polymorphisms (SNPs) are not 
affected by postnatal factors (including exposure, con-
founding factors, and outcomes), unlike observational 
studies that struggle to determine the causal sequence 
between exposure and outcome [10, 11]. MR is a 
method of analyzing genetic variables that adheres to 
Mendel’s laws of inheritance. The causal connection 
between observed exposure associations and clinically 
relevant outcomes is determined using SNPs as IVs [12, 
13]. Therefore, to understand the causal link between 
immune cells and DN, we opted for MR, providing a 
more complete understanding of how immune cells con-
tribute to the pathogenesis of DN.

This research aims to assess the causal link between 
731 immune cell types and DN using bidirectional MR 
based on genomic data. Subsequently, to identify poten-
tial mediators linking immune cells and DN, a two-step 
MR method will be utilized.. The aim of this study is to 
provide valuable insights for preventing and treating DN.

Materials and methods
Study design
To investigate the causal connection between 731 
immune cell features categorized into seven groups and 
DN, a two-sample MR analysis was performed. Further-
more, we utilized a two-step MR method to examine if it 
has possible mediators that connect immune cells to DN. 
Effective IVs must satisfy three key assumptions when 
using genetic variation as a representation for risk fac-
tors in MR studies. (1) Genetic variation and exposure 
have a direct correlation. (2) Genetic variation does not 
have any connection to potential confounding factors 
that may arise between exposure and outcomes. (3) The 
results through alternative pathways are not influenced 
by genetic variation, except for exposure [14, 15]. All the 
data used in our study come from rigorously reviewed 
GWAS datasets published in public databases and had 

been approved by the institutional review council for 
their studies.

Genome‑wide association study (GWAS) data sources 
for DN
We analyzed the data for MR from the Open GWAS 
database of the Integrative Epidemiology Unit (IEU), 
which was predominantly composed of publicly acces-
sible GWAS summary datasets. Five European cohorts 
of 213,746 individuals (3283 DN cases and 210,463 con-
trols) were included in a GWAS, where statistics of DN 
traits were obtained.

Immunity‑wide GWAS data sources
The immune cell GWAS data was obtained from a study 
on genetic characteristics of immune cells, which has 
accession numbers that range from GCST0001391 to 
GCST0002121 [16]. In this study, researchers used flow 
cytometry to analyze 389 median fluorescence inten-
sities (MFI) that indicated surface antigen levels, 192 
relative cell counts (RC), 118 absolute cell counts (AC), 
and 32 morphological parameters (MP). In addition, 
the researchers also used flow cytometry to analyze the 
immune cell data obtained from donors based on their 
cell phenotypes, dividing them into seven groups: TBNK 
panel, Treg panel, Matura stages of T-cell panel, DC 
panel, B-cell panel, Monocyte panel, and Myeloid cell 
panel. The original GWAS on immune traits was con-
ducted on a population of 3757 Sardinians. Subsequently, 
approximately 22 million high-quality markers were 
retained for association analysis, wherein adjustments 
were made for gender, age, and age2 as covariates [17].

GWAS data sources for metabolites
The GWAS Catalog, located at https://​www.​ebi.​ac.​uk/​
gwas/, was utilized to obtain the summary statistics for 
the GWAS. The accession numbers assigned to European 
GWASs ranged from GCST90199621 to GCST90201020, 
while the accession numbers assigned to non-European 
GWASs ranged from GCST90201021 to GCST90204063. 
This study encompassed a genome-wide association anal-
ysis of 1091 blood metabolites and 309 metabolite ratios, 
the research suggested that the discovery of associations 
between 690 molecules at 248 locations and 143 metabo-
lite ratios at 69 locations. Furthermore, a careful analysis 
of metabolite genes and gene expression data resulted in 
the identification of 94 effector genes and 48 metabolite 
ratios linked to 109 metabolites [18].

Selection of IVs
According to recent studies [16, 19], a statistical signifi-
cance threshold of 1 × 10−5 was determined for IVs linked 
to each immune trait. Standardization of direction of 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


Page 3 of 9Shen et al. Diabetology & Metabolic Syndrome          (2024) 16:164 	

effect ensured that SNP effects on each immune trait and 
DN were related to the same allele. In addition, our study 
excluded SNPs showing linkage disequilibrium (LD) from 
the results data set, LD needs to satisfy r2 < 0.001 and 
genetic distance within a 10  Mb window. We excluded 
IVs with low F statistics (F > 10) from our analysis to 
ensure their robustness. An F statistic greater than 10 is 
generally considered indicative of a strong instrument, 
reducing the risk of weak instrument bias. In addition, 
in order to meet the second condition of Mendel’s ran-
domization hypothesis, we also used the LDTrait tool 
to analyze confounding factors, and removed SNPs that 
may directly affect diabetes nephropathy. The same data 
processing steps were applied to the metabolite data. 
Additionally, we identified 21 IVs for DN for further MR 
analysis. The same data processing steps were applied to 
the metabolite data. We performed the same processing 
on the metabolite data. Additionally, we identified 21 IVs 
for DN for further MR analysis.

Statistical analysis
The process of performing MR analysis was carried out 
through the use of R software (http://​www.​Rproj​ect.​org) 
and the ’Two-Sample MR’ package (version 0.5.8) [20]. 
Various statistical methods were used to evaluate the 
causal connection between 731 immunophenotypes and 
DN, including IVW, MR‒PRESSO, weighted mode, MR-
Egger, weighted median and simple mode [21–24]. The 
best way to use valid IVs is by utilizing the IVW analy-
sis, which is widely acknowledged as the most efficient 
approach. The IVW estimate is consistently efficient and 
close to the true value when the genetic IVs do not have 
pleiotropic effects and the sample size is sufficient [25]. 
As a result, the IVW approach was selected as the main 
method for carrying out MR analysis. The heterogeneity 

among selected IVs was tested using Cochran’s Q statistic 
and corresponding p values. The multiplicative random 
effects IVW method is used instead of the default fixed-
effects IVW when there is heterogeneity in the selected 
IVs [21]. The utilization of MR-Egger, a method that is 
commonly utilized, was employed to test the impact of 
horizontal multiplicity. The significance of its intercept 
term indicates the presence of horizontal multiplicity 
[26]. Moreover, scatter plots and funnel plots were uti-
lized in this study. The outcome was unaffected by any 
outliers as indicated by the scatter plots. Furthermore, 
the funnel plots were used to show how strong the cor-
relation was and that there was no heterogeneity in this 
study. Moreover, this research also introduced a two-step 
MR approach for intermediary analysis, aiming to eluci-
date the potential existence of an intermediary pathway 
between immune cells and DN.

Result
The impact of DN on immunophenotypes
DN’s impact on immunophenotypes was determined 
through an MR analysis. Despite using the FDR method 
to adjust multiple tests, there were no immune traits that 
were significant at a level below 0.05. After applying the 
FDR adjustment with a significant level of less than 0.2, 
our investigation revealed that DN can cause an increase 
in CD34 on hematopoietic stem cells (Myeloid cell 
Panel) (OR = 1.170, 95% CI = 1.064 to 1.286, P = 0.001, 
PFDR = 0.122) by using the IVW method. Three additional 
methods yielded similar outcomes. CD45 on CD33− 
HLA DR− (Myeloid cell Panel) was also found to be 
increased (OR = 1.162, 95%CI = 1.056 ~ 1.279, P = 0.002, 
PFDR = 0.172). Similar results were observed by using 
weighted median and MR-PRESSO (Fig.  1 and Supple-
mentary Table S1, S2).

Fig. 1  Forest plots showed the causal associations between DN and immune cell traits

http://www.Rproject.org
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In addition, the observed causal associations were con-
firmed to be robust through detailed information from 
the sensitivity analysis (Supplementary Table  S1, S3). 
Meanwhile, we used two methods, including the inter-
cept of MR Egger and the global test of MR-PRESSO, to 
examine the potential level of pleiotropy in the results, 
which proved that no level of pleiotropy was found in our 
study (Supplementary Table S1). Scatter plots and funnel 
plots also indicated the stability of the results (Supple-
mentary Fig. S1, 2).

The impact of immunophenotypes on DN
Three immunophenotypes had promoting effects on DN 
after FDR adjustment (PFDR < 0.05): CD16− CD56 on HLA 
DR+ NK (TBNK Panel), CD45 on HLA DR+ T cell (TBNK 
Panel), and CD33dimHLA DR+CD11b+AC (Myeloid cell 
Panel). Specifically, the odds ratio (OR) of CD16−CD56 
on HLA DR+ NK on DN risk was estimated to be 1.072 
by using the IVW method (95% CI = 1.033 ~ 1.112, 
P = 2.5 × 10−4, PFDR = 0.01), which was consistent with 
the MR Egger, Weighted Mode and MR-PRESSO. The OR 
of CD33dim HLA DR+ CD11b+ AC on DN risk was esti-
mated to be 1.101 (95% CI = 1.051 ~ 1.154, P = 5.84 × 10−5, 
PFDR = 0.003) by using the IVW method. Using another 
method, similar results were observed: MR-PRESSO 
(OR = 1.101, 95% CI = 1.052 ~ 1.152, P = 3 × 10–4). The OR 
of CD45 on HLA DR+ T cell on DN risk was estimated to 
be 1.092 (95% CI = 1.035 ~ 1.152, P = 0.001, PFDR = 0.033) 
by using the IVW method. Other methods resulted in 

similar findings (Fig.  2 and Supplementary Table  S4).
Moreover, neither the intercept of MR-Egger nor the 
global MR-PRESSO test showed any evidence of horizon-
tal pleiotropy for either of these associations. The robust-
ness of the observed causal associations was validated by 
the sensitivity analysis through the provision of detailed 
information (Supplementary Table  S5). In addition, the 
results’ stability was verified through scatter plots and 
funnel plots ( Supplementary Fig. S3).

Exploration of potential mediators between immune cells 
and DN
Our research focused on analyzing mediation using a 
two-step MR design to explore potential causal path-
ways mediated by immune cells that can lead to diabetic 
nephropathy outcomes. The overall effect of immune 
cells on DN is divided into two parts: one of the ways 
immune cells affect DN is directly, and the other way is 
indirectly through mediators (Fig. 3). To make our analy-
sis more comprehensive, we used additional statistical 
methods like MR-Egger regression, weighted median, 
simple mode, weighted mode, and MR-PRESSO. These 
methods were utilized to rigorously assess the quadratic 
relationship, thereby offering a sensitivity analysis to 
complement our IVW findings (Figs. 4, 5, 6 and Supple-
mentary Table S6).

The result shows that the 1-stearoyl-GPI (18:0) levels 
were found to mediate CD45 on HLA DR+ T cell on Dia-
betic nephropathy and The N-acetyl-isoputreanine levels 

Fig. 2  Forest plots showed the causal associations between immune cell traits and DN incidence
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were found to mediate CD16−CD56 on HLA DR+ NK on 
DN (Figs.  7, 8). Moreover, the 1-palmitoyl-GPG (16:0) 
levels were found to have suppressing effect between 
CD33dim HLA DR+ CD11b+ AC and DN, which means 
after reducing the 1-palmitoyl-GPG (16:0) levels, the 
force of the CD33dim HLA DR+ CD11b+ AC on the DN 
will increase (Fig. 9).

Discussion
DN is the main culprit of End-Stage Kidney Disease 
(ESKD) worldwide [27]. ESKD is a severe and complex 
condition with poor prognosis that has a significant 
impact on the quality of life and life expectancy of those 
affected, and it is associated with a high mortality rate. 
Current treatments for DN rely on multifactorial inter-
ventions, including lifestyle changes, and primarily target 
the simultaneous control of blood sugar, blood pressure, 
and lipid levels [28]. However, the clinical benefits of 

Fig. 3  Diagrams illustrating associations examined in this study. A 
The total effect between immune cells and Diabetic nephropathy 
(DN).c is the total effect using genetically predicted immune cells 
as exposure and DN as outcome. d is the total effect using genetically 
predicted DN as exposure and immune cells as outcome. B The 
total effect was decomposed into: (i) indirect effect using a two-step 
approach (where a is the total effect of immune cells on Metabolite, 
and b is the effect of Metabolite on DN) and the product method 
(a × b) and (ii) direct effect (c′ = c – a × b). Proportion mediated 
was the indirect effect divided by the total effect

Fig. 4  Forest plot to visualize the causal effects of 1-stearoyl-GPI (18:0) levels with CD45 on HLA DR+ T cell and Diabetic nephropathy (DN)

Fig. 5  Forest plot to visualize the causal effects of 1-palmitoyl-GPG (16:0) levels with CD33dim HLA DR+ CD11b+ AC and Diabetic nephropathy
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existing treatment strategies are limited, and many 
patients still progress to ESKD, highlighting the need for 
new treatment strategies.

An increasing body of research demonstrates the piv-
otal role of immune cells in the pathogenic mechanisms 
of DN. As far as we’re aware, this is the very first MR 
analysis that focuses on the causal connections between 
different immune phenotypes and DN. According to this 
study, the CD33dim HLA DR+ CD11b+ AC (Myeloid cell 

Panel), CD16−CD56 on HLA DR+ NK cell (TBNK Panel) 
and CD45 on HLA DR+ T cell (TBNK Panel) among 
four immune traits (MFI, RC, AC, and MP) have signifi-
cant causal effects on DN (FDR < 0.05), which is impor-
tant in exploring the pathogenesis of DN. Additionally, 
DN was found to have causal effects on the CD34 on 
hematopoietic stem cells and CD45 on CD33− HLA DR− 
(FDR < 0.2), potentially offer new directions for diagnos-
ing DN and its subsequent complications in the future.

According to our study, a rise in the number of Mye-
loid-Derived Suppressor Cells (MDSCs) that express 
CD33dim HLA DR+ CD11b+ is linked to the onset of DN. 
MDSCs have two representative subtypes: polymorpho-
nuclear MDSCs have an immunophenotype of CD33dim, 
while monocytic MDSCs often express higher levels of 
CD33 [29]. Observational studies have indicated that pol-
ymorphonuclear MDSCs increase in Type 2 DN patients, 
and associated with kidney disease progression [30]. At 
present, Hua et al. found that HLA-DR expression results 
in myeloid cells with a phenotype and functional char-
acteristics similar to fibroblasts [31]. Many studies also 
suggest a potential association between immune cells and 
renal fibrosis in DN. Combining our research results, it is 

Fig. 6  Forest plot to visualize the causal effects of N-acetyl-isoputreanine levels with CD16−CD56 on HLA DR+ NK and DN

Fig. 7  Schematic diagram of 1-stearoyl-GPI (18:0) levels mediation 
effect

Fig. 8  Schematic diagram of N-acetyl-isoputreanine levels mediation 
effect

Fig. 9  Schematic diagram of 1-palmitoyl-GPG (16:0) levels mediation 
effect
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speculated that CD33dim HLA DR+ CD11b+ MDSCs may 
be related to renal fibrosis in the development of DN. 
Unfortunately, there is currently no specific research on 
CD33dim HLA DR+ CD11b+ MDSCs.

Up to now, research on DN and immune cells has pri-
marily focused on macrophages and T cells, with lit-
tle knowledge about NK cells. It is noteworthy that we 
observed an increased level of CD56+CD16−HLA-DR+ 
NK cells, which is associated with an elevated incidence 
of DN. HLA-DR positive NK cells produce more IFN-γ 
and undergo more degranulation when exposed to vari-
ous stimuli than HLA-DR-negative cells [32], which 
induces renal fibrosis by promoting collagen deposition 
[33]. Combining our research findings, we speculate that 
this could be a potential factor contributing to the pro-
gression of DN, which requires further exploration. NK 
cells expressing CD16− CD56 primarily express gran-
zyme A (GZMA), an inflammatory protease [34]. GZMA, 
as an inflammatory molecule, regulates the production 
of inflammatory cytokines such as IL-1β, TNFα, and IL6 
[35], all associated with DN [33]. Elevated GZMA levels 
correlate with increased DN risk and reduced glomerular 
filtration rate [36], suggesting GZMA as a potential ther-
apeutic target for DN, warranting further investigation.

Our research found that an increased number of HLA-
DR+ T cells expressing CD45 is associated with the 
onset of DN. CD45, a type of protein called a receptor-
type tyrosine phosphatase, is found abundantly in T cell 
membranes [37]. The Src family kinase Lck is induced 
by CD45, which results in phosphorylation of the T-cell 
antigen receptor complex, a pivotal component in the 
transduction of T-cell antigen receptor signals [38]. In 
fact, the crucial role of T cells in the onset of DN has 
been extensively studied. However, the role played by 
CD45 on HLA-DR T cells in DN onset remains ambigu-
ous. We speculate that the downstream reaction acti-
vated by CD45 is an important target for T cells causing 
the onset of DN.

Through reverse MR, we have also discovered that 
the onset of DN leads to an increase in the quanti-
ties of two immune cell types: CD34 hematopoietic 
stem cells (HSC) (Myeloid cell Panel) and CD45 on 
CD33−HLA-DR−MDSCs (Myeloid cell Panel). Although 
we relaxed the significance threshold to 0.2 after FDR 
correction, it is noteworthy that these results already 
demonstrated strong statistical significance in the pre-
liminary analysis before correction, suggesting their 
potential key role in the pathogenesis of DN.

Observational studies have previously found a signifi-
cant reduction in the number of CD34+ HSC in diabetic 
nephropathy, with the microalbumin/creatinine ratio of 
patients moderately negatively correlated with the num-
ber of these cells [39]. This is inconsistent with the results 

obtained through MR. We speculate that the increase in 
CD34 on Hematopoietic Stem Cells may be related to the 
development of subsequent diseases in diabetic nephrop-
athy, warranting further exploration.

It is noteworthy that Xian H et  al. identified CD45 as 
a specific STAT3 phosphatase in MDSCs and further 
discovered that CD45 is a sumoylated protein [40]. The 
SUMO pathway regulates various cellular processes, 
activating NF-κB, TGF-β, MAPK, and inhibiting Nrf2 to 
exacerbate oxidative stress-induced DN [41]. SUMO1/
sentrin-specific protease 1 (SENP1) can deconjugate 
SUMOylated CD45. Studies have found that SENP1 defi-
ciency increases CD45 SUMOylation, and SENP1 inhib-
its the proliferation and function of MDSCs through the 
CD45-STAT3 signaling axis [40]. Whether SENP1 can 
slow down the progression of DN remains worth explor-
ing, and our research provides new insights for treating 
DN.

To further explore how the three aforementioned 
immune cells contribute to DN, we employed a two-step 
MR to investigate their potential mediators. We identi-
fied mediators for each of the three immune cells, namely 
1-palmitoyl-GPG (16:0) levels, 1-palmitoyl-GPG (16:0) 
levels, and N-acetyl-isoputreanine. Unfortunately, there 
is currently no reported research on the two metabo-
lites, 1-palmitoyl-GPG (16:0) levels and 1-palmitoyl-GPG 
(16:0) levels. N-acetyl-isoputreanine is an amino acid that 
plays a role in polyamine metabolism and acts as the final 
product of this process [42]. Polyamines are essential bio-
molecules widely present in cellular metabolism. High 
glucose levels may cause abnormal polyamine metabo-
lism in rat kidney tissues, inducing podocyte apoptosis 
and reduced autophagy, which could be a crucial mecha-
nism in DN [43]. The content of polyamines and the gly-
colytic supply play a pivotal role in the immune activity 
of NK cells [44]. However, there is no related research 
on the toxic effects of polyamine metabolism end prod-
ucts on diabetic nephropathy. Our findings provide new 
insights into the pathogenesis of DN.

Our study’s findings have significant clinical value. Per-
sonalized immunomonitoring using flow cytometry can 
aid in early detection and intervention for DN patients 
by monitoring CD33dim HLA DR + CD11b + AC, 
CD16-CD56 on HLA DR + NK cell and CD45 on HLA 
DR + T cell. This allows for early identification of abnor-
mal immune responses and the development of tailored 
immunosuppressive treatments, such as anti-CD45 anti-
bodies. Early intervention could slow DN progression and 
improve patient outcomes. Targeting specific immune 
cells, like reducing CD33dim HLA DR + CD11b + AC 
MDSCs to lower renal fibrosis risk and inhibiting gran-
zyme A (GZMA) in NK cells to reduce inflamma-
tion, shows promise. Combining these therapies with 
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standard treatments may enhance efficacy. Personalized 
treatment plans based on immunoprofiles can optimize 
outcomes and minimize side effects. These insights sup-
port the development of novel, individualized treatment 
strategies, with future large-scale studies needed to vali-
date immune markers and integrate multi-omics data to 
uncover underlying mechanisms.

The findings of this research are derived from genetic 
IVs, and causal inference is accomplished through vari-
ous magnetic resonance analysis methods. The outcomes 
are dependable and not subject to horizontal pleiotropy 
and other factors. Nevertheless, our research has limita-
tions too. First, the assessment of horizontal pleiotropy is 
not complete even with multiple sensitivity analyses. Sec-
ond, our inability to conduct more stratified analyses on 
the population was a result of the lack of individual infor-
mation. Third, our study’s findings cannot be generalized 
to other ethnicities because they are based on European 
databases, which limits the universality of our results. 
Fourth, the genetic predictions of DN mediated by the 
three identified mediators in our study are all below 10%, 
indicating a low genetic prediction accuracy. To quan-
tify the role of other mediators, there is a need for more 
research.

Conclusion
In summary, our comprehensive bidirectional MR analy-
sis has revealed causal relationships between multiple 
immune phenotypes and DN, pointing out the complex 
interaction patterns between the immune system and 
DN. Our study may give researchers a new way to exam-
ine the biological mechanisms of DN, which could lead to 
more effective intervention and treatment. Furthermore, 
we used a two-step MR to examine the possible pathways 
that link immune cells and DN, with a small proportion 
of the effect mediated by some metabolites, but a major-
ity of the effect of immunophenotypes on DN remains 
unclear. Further investigation into additional risk factors 
as potential mediators is required.
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