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Abstract 

Background Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular 
and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving 
disease awaits elucidation. The purpose of this study was to further explore these potential associations.

Methods We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary fac-
tors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precur-
sor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m2, n = 33), Obese (BMI > 30, n = 27) and Meta-
bolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39).

Results Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3–4 µM; p > 0.05), 
although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also signifi-
cantly reduced in the MetS group (p < 0.05). Exploratory analysis across diverse parameters reveals significant correla-
tions between circulating [TMAO] and seafood intake (p = 0.007), gut microbial diversity (p = 0.017–0.048), and plasma 
[trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic 
disease risk. Most variance in [TMAO] within and between groups remained unexplained.

Conclusions Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA 
substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations 
remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations sug-
gest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later eleva-
tions likely a detrimental sequela of extant disease.
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Introduction
A growing body of evidence implicates gut bacteria in 
the linkages between diet and cardiovascular [1] and 
other chronic diseases [2]. Dietary composition strongly 
influences the gut microbiome profile, owing to vary-
ing micro- and macro-nutrient requirements of differ-
ent bacteria [3]. Resultant shifts in the gut biome may, in 
turn, promote cardiometabolic disease development [4]. 
Recently the microbial metabolite TMAO has garnered 
attention as a mediator of this gut-chronic disease con-
nection, following evidence of significant elevations in 
cardiovascular disease (CVD) [1]. Subsequent studies 
report associations between TMAO and cardiometa-
bolic and renal disorders, including atherosclerosis [1], 
obesity [5], type 2 diabetes mellitus (T2DM) [6], heart 
failure [7] and chronic kidney disease [8]. Whether such 
associations reflect causal involvement in initial dis-
ease development, or a role for TMAO as a disease bio-
marker, remains unclear [9]. Circulating [TMAO] in 
healthy humans ranges from 2 to 5 μM [1, 3, 10–12], and 
although modest elevations up to ~ 10  µM are reported 
in obesity [5], T2DM [6], heart failure [13] or advanced 
age [14], these concentrations appear to fall below patho-
logical thresholds in human and animal cells [9]. Indeed, 
as we have recently reviewed [9], human studies link-
ing TMAO to CVD implicate pathogenic influences at 
or below concentrations observed in healthy cohorts, 
whereas the high [TMAO] shown to induce pathologi-
cal effects experimentally are only achieved in end-stage 
renal failure. Other investigations fail to link [TMAO] 
and coronary disease risk in 33–55  year olds without 
CVD [15], and find no associations between [TMAO], 
infarct history, coronary disease or major adverse cardio-
vascular events over an 8 year follow-up period in those 
with suspected CVD [16].

Contributing to uncertainties regarding possible roles 
of TMAO, regulation of its formation and circulating 
concentrations are poorly understood, in both health and 
disease. Apart from direct absorption from seafood [12, 
17], TMAO is largely formed via microbial metabolism 
of choline [12] and carnitine [3], primarily of animal ori-
gin, and subsequent N-oxidation of generated TMA by 
hepatic flavin-containing monooxygenase 3 (FMO3) [1]. 
Betaine is an additional source, chiefly from betaine-rich 
foods such as wheat brans/germs, fungi and spinach. The 
makeup of the gut microbiome, coupled with dietary pat-
terns, are thus important in determining TMAO genera-
tion [18]. For example, bacterial taxa including Prevotella, 
Deferribacteres and Teneriticutes species can metabolise 
choline and carnitine to TMA [3, 19], and people with 
a Prevotella enriched enterotype may generate higher 
levels of TMAO than those with a Bacteroides enriched 
enterotype [3]. Gene analysis indicates TMA production 

may be favoured in Firmicutes, Proteobacteria and Act-
inobacteria species, but not Bacteroidetes [20, 21]. None-
theless, the interactions between diet and gut bacteria in 
governing TMAO generation remain to be detailed [9]. 
That said, plant-based diets (thus lower TMAO substrate 
intake) are linked to distinct gut microbiota profiles and 
lower circulating [TMAO] [3, 22]. Other work indicates 
red vs. white meat may specifically increase bacterial 
metabolism of carnitine to TMA, and also reduce TMAO 
excretion [23]. Conflicting findings nonetheless exist: for 
example, neither choline supplementation nor egg con-
sumption influences circulating [TMAO] or gut bacte-
rial diversity in patients with MetS [24]. Moreover, while 
seafood is the strongest dietary determinant of circulat-
ing [TMAO], routine consumption is linked to reduced 
rather than increased CVD risk [25].

This study explores relationships between circulat-
ing [TMAO], its substrate concentrations, dietary fac-
tors, gut microbiome diversity, and cardiometabolic 
disease risk across major precursor states for both CVD 
and T2DM, including overweight, obesity and MetS. We 
reasoned that a focus on these underpinning disorders 
better allows a test of TMAO’s potential role in disease 
development, avoiding the complicating influences of 
extant and worsening disease (e.g. via renal, hepatic and 
other dysfunctions) on TMAO generation/handling. 
Our results indicate that circulating [TMAO] remains 
below pathological thresholds in these metabolic disor-
ders, with no significant links between [TMAO] and car-
diometabolic disease risk. This suggests that significant 
elevations in [TMAO] in existing disease may reflect a 
disease sequela (which may in turn promote dysfunction) 
rather than early pathogenic mechanism.

Methods
Human ethics and participants
A retrospective analysis was conducted in plasma sam-
ples (collected between 06:00 and 10:00 following an 
overnight fast) obtained over a 5-year period by the 
Mucosal Immunology Research Group (Griffith Uni-
versity) as part of a series of studies exploring immune, 
inflammation and metabolic signalling in health and 
disease [26, 27]. Parent studies were conducted with 
approval from the Griffith University Human Research 
Ethics Committee (ref# 2013/868, 2014/537, 2015/229, 
2017/646) and in accordance with the Declaration of Hel-
sinki. Concentrations of TMAO and precursor substrates 
were determined in plasma samples, with potential rela-
tionships between patient physical and biochemical 
measures, dietary makeup and gut microbiome composi-
tion explored.

Participants were recruited from the general popu-
lation: inclusion criteria included participants aged 
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between 18 and 76  years; exclusion criteria included 
pregnancy, current infectious illness, history of liver or 
kidney disease, use of immunomodulating medications, 
current consumption of probiotic supplements, or being 
underweight (BMI < 18.5). Participants were initially 
screened (n = 556) and excluded (n = 128) according to 
these criteria. Remaining participant data was accessed 
(n = 428) and individuals further excluded due to missing 
data (n = 268). From the remaining participants (n = 160), 
further exclusions were made based on underweight 
BMI (n = 1) or missing blood samples (n = 19). The final 
140 participants were divided into 4 groups: (i) Healthy 
BMI (18.5 < BMI < 25  kg/m2 n = 41); (ii) Overweight 
(25 < BMI < 30 n = 33); (iii) Obese (BMI > 30 kg/m2 n = 27); 
(iv) and MetS (n = 39). The latter MetS was classified 
based on criteria established in the National Cholesterol 
Education Program Adult Treatment Panel III report 
(ATPIII), which includes the presence of ≥ 3 of: elevated 
triglycerides (≥ 1.7 mmol/L) or drug treatment for hyper-
triglyceridemia; reduced HDL cholesterol (< 1.04 mmol/L 
for men or < 1.30  mmol/L for women) or treatment 
for low HDL; elevated BP (systolic ≥ 130 or dias-
tolic ≥ 85  mmHg) or treatment with anti-hypertensives; 
fasting hyperglycemia (plasma glucose ≥ 5.6  mmol/L); 
and high waist circumference (> 102 cm for men, > 88 cm 
for women) [28]. A consort diagram is provided, detailing 

the flow of participant recruitment, screening and group-
ing (Fig. 1).

Participant characterisation
Anthropometric and physiological data included: height, 
to the nearest half centimetre using a wall-mounted stadi-
ometer (Surgical and Medical Products, NSW, Australia); 
body mass, using a digital body composition scale (mod-
elHBF-202, Omron Australia, Melbourne, Australia); 
waist and hip circumference, assessed in accordance with 
the World Health Organisation Stepwise approach using 
a graduated anthropometric measuring tape (Seca, Ger-
many); and BP and pulse rate, determined using an auto-
matic BP monitor (model HEM-7121, Omron Australia, 
Melbourne, Australia) in seated individuals. Blood pres-
sure was further graded according to American College 
of Cardiology and American Heart Association guide-
lines [29]: normal (systolic BP < 120  mmHg, diastolic 
BP < 80  mmHg); elevated (systolic BP 120–129  mmHg, 
diastolic BP < 80  mmHg); Stage 1 hypertension (sys-
tolic BP 130–139 mmHg or diastolic BP 80–89 mmHg); 
and Stage 2 hypertension (systolic BP ≥ 140  mmHg and 
diastolic BP ≥ 90  mmHg). The Australian Type 2 Diabe-
tes Risk Assessment Tool (AUSDRISK) was also used 
to calculate risk of T2DM development based off a self-
reported questionnaire. Participants are allocated a score 

Participant data accessed

n=428

Healthy BMI

n=41

Overweight

n=33

Obese

n=27

MetS

n=39

Participants to be initially

analysed

n=160 Excluded due to underweight BMI 

(n=1)

Excluded due to missing blood 

samples to further analyse

(n=19)

Excluded due to missing data

(n=268)

Participants to be allocated

n=140

Participants screened

n=556
Failure to meet inclusion criteria

(n=128)

Fig. 1 Consort diagram of participant recruitment and grouping. Participant data was originally accessed and screened with participants excluded 
based on missing data or samples. The remaining participants (n = 140) were then accordingly grouped
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based off their responses to the questions which assess 
age, sex, ethnicity, family history of T2DM, hyperglycae-
mia, medication prescriptions, smoking status, exercise 
habits, and waist measurements. Participants are then 
grouped into either a “low risk”, “intermediate risk”, or 
“high risk” based off their scores. Macro- and micronu-
trient intake was recorded from 3-day self-reported food 
diaries and analysed using FoodWorks Software (Xyris, 
Brisbane, Australia), with daily average intakes estimated.

Blood biomarker assessment
Samples were analysed within 12 h of collection, includ-
ing full blood count, white cell differential and glycated 
haemoglobin (HbA1c). Analysis was outsourced to a 
local pathology provider (QML Pathology, Murarrie, 
Queensland, Australia). Serum samples were analysed 
for cholesterol, triglycerides, HDL cholesterol, glucose, 
and C-reactive protein (CRP) on a COBAS Integra 400 
system using commercially available reagents, calibrators 
and controls (Roche Diagnostics, NSW, Australia). Low 
density lipoprotein (LDL) cholesterol was determined 
using the Friedewald equation [30]. Insulin concentra-
tions were measured using a Diabetes 10-plex multiplex 
assay and Bioplex suspension array system (Bio-rad Lab-
oratories, California, USA).

Gut microbial composition
Participant faecal samples were used for microbial pro-
filing using universal primers for the V3–V4 region of 
microbial 16  s rRNA (341F: 5′-CCT ACG GGNGGC 
WGC AG-3′; 805R: 5′GAC TAC HVGGG TAT CTA ATC 
C-3′), as detailed previously [31]. The PCR products 
were sequenced on an Illumina MiSeq system (Illumina, 
CA, USA) by a commercial provider, with data processed 
according to their established in-house data processing 
pipelines (Macrogen, Seoul, Korea). Briefly, sequence 
data were processed with CD-HIT-OTU [32] to filter out 
erroneous and chimeric reads. Taxonomic classification 
and identity assignment was performed using a refer-
ence-based approach with the NCBI BLAST database of 
16  s rRNA gene sequences. Gut microbial richness and 
diversity were considered using operational taxonomic 
units (OTU), and α-diversity metrics: Chao1, Shannon 
and inverse Simpson.

Liquid chromatography‑tandem mass spectrometry (LC–
MS/MS) analysis
Sample preparation
Blood plasma samples were thawed on ice and kept 
cool at all times. A 200  µL sample was filtered through 
a 3  kD cut-off spin membrane (Amicon Ultra 0.5  mL, 
UFC5003BK) at 14,000  g for 30  min at 4  °C. Internal 
standard (1  µL of 500  µM azidothymidine) was added 

to 100 µL of filtered sample or standard mix in a HPLC 
glass insert. The samples within replicates were fully ran-
domised for analysis to reduce batch effect-based bias, 
forming completely randomised block design analytical 
experiments. Samples were flanked with repeat injections 
of standards and pooled QC samples to monitor instru-
ment stability and ensure data integrity [33].

Instrumentation and metabolite analysis
Targeted LC–MS/MS metabolomics analyses were per-
formed using a Shimadzu ultra-high performance liquid 
chromatography (UHPLC) system coupled to a Shimadzu 
8060 triple quadrupole mass spectrometer. The UHPLC 
(Nexera X2, Shimadzu Corp., Kyoto, Japan) consisted of 
LC-30AD pump units, DGU-20ASR degassing units, a 
SIL-30AC autosampler, a CTO-20AC column oven, a 
CBM-20A communications BUS module and an FCV-
20AH2 diverter valve unit.

Liquid chromatography was performed using a 
Shim-pack Velox SP-C18 UHPLC column (2.7  um, 
2.1 × 150 mm, PN: 227-32009-04, Shimadzu) with a guard 
column (SecurityGuard Gemini-NX C18, 4 × 2 mm, PN: 
AJO-8367, Phenomenex). Solvent A and B were 0.1% 
formic acid in water or acetonitrile (Lichrosolv, PN: 
1142914000, Merck), respectively. Chromatography was 
performed at 300  µL/min flow-rate using the gradient 
detailed in Supplementary Table 1. Samples were kept at 
4 ℃ in the autosampler and the column was operated at 
40 ℃ in the column oven. Sample volumes analysed were 
5 and 10 µL.

The Shimadzu 8060 QqQ system had an electrospray 
ion source, and used  N2 (> 99.999 vol % BOC Australia, 
North Ryde, NSW 2113) and Ar (> 99.999 vol %, UN1006, 
Coregas Pty Ltd, Yennora NSW 2161) as drying and col-
lision gases, respectively. Further instrument details 
include: drying gas flow, 10  L/min; nebulising gas flow, 
3.0  L/min; heating gas flow, 10  L/min; desolvation line, 
250 ℃; heat block temperature, 400 ℃; CID gas, 270 kPa; 
interface temperature, 300  ℃. Interface potential was 
optimised by performing scheduled multiple reaction 
monitoring experiments on the standard mix at 0.5, 0.75, 
1.0, 2.0, 3.0  kV to determine peak response and obtain 
lowest limits of detection (LOD) possible. Data were col-
lected from 0 to 3.5 min and flow diverted to waste from 
5 to 25 min during column clean up and re-equilibration.

Scheduled multiple reaction monitoring transitions 
were optimised on positive ionisation mode (m/z + H) for 
7 compounds including: TMAO, fully deuterium-labelled 
TMAO (TMAO-D9), TMA, betaine, carnitine, choline, 
and azidothymidine. Analytical standards were sourced 
from Sigma-Aldrich. Details of compound and instru-
ment parameters are in Supplementary Table 2.
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Data and statistical analyses
All data were analysed using GraphPad Prism 9 and are 
presented as mean ± SEM. Grubbs’ test was performed 
to identify outliers in the data for removal. Normality 
of data was checked by a Shapiro–Wilk test. To test for 
potential associations with [TMAO], a Pearson’s corre-
lation was performed with all variables against TMAO 
concentrations in initial exploratory analysis.

Student’s t-test was used to determine specific differ-
ences between 2 groups, while 1- or 2-way analysis of 
variance (ANOVA) was used when comparing more than 
2 groups (where participants were appropriately catego-
rised into their study groups). A Dunnet’s post-hoc test 
was employed when comparing data to the Healthy BMI 
group; a Šidák’s post-hoc for 2-ANOVA comparisons 
across groups; and a Tukey’s post-hoc test was used for 
all comparisons. A Cramér’s V was also conducted with a 
corresponding 95% confidence interval to measure asso-
ciation between 2 nominal variables for T2DM risk. A 
p-value of < 0.05 was indicative of statistical significance 
across tests. Values of p < 0.10 are highlighted as poten-
tially relevant biological responses worthy of study, in 
accordance with recommendations of the American 
Statistical Association [34]. To highlight the drawbacks 
to unnecessary correction for multiple comparisons in 
a wide-ranging exploratory analysis with large numbers 
of end-points [35–37], we additionally provide q-values, 
determined via the Benjamini, Krieger and Yekutieli 
method [38], for the correlations in Table 3.

Results
Participant characteristics and T2DM risk
Anthropometry, blood biochemistry and physiological 
data for 140 participants are summarised in Table 1, seg-
regated into 4 groups: Healthy BMI (n = 41), Overweight 
(n = 33), Obese (n = 27) and MetS (n = 39). For the pur-
poses of this study the ’Healthy’ group was based specifi-
cally on BMI criteria, and individuals within the group 
may exhibit disease risk factors. In particular, approxi-
mately half appeared pre- or hypertensive, though 
none exhibited abnormal glucose levels. Three par-
ticipants from the Healthy BMI group exhibited plasma 
LDL > 4.5 mmol/l, and two a CRP level of 10 mg/L (sug-
gesting a pro-inflammatory state [39]). Participants with 
MetS were older (~ 5 yrs) when compared against those 
with obesity, and individuals with either obesity or MetS 
generally exhibited a combination of known risk markers 
for metabolic disease (Table 1).

Lifestyle characteristics and clinical history, including 
existing physician-diagnosis of relevant cardiometabolic 
conditions, (Table 1) were determined from self-reported 
questionnaires. Smoking was more common in people 
with MetS, while alcohol consumption was similar across 

groups. Those with a healthy BMI exercised most. Three 
participants had a history of acute myocardial infarc-
tion (AMI), whilst past irritable bowel syndrome (IBS) 
diagnosis was similar across groups. No participants had 
been previously diagnosed with either MetS or T2DM. 
Diagnosis of hypertension was most prevalent in those 
who were overweight, with hypercholesterolaemia diag-
nosis highest in individuals with MetS. Participants 
with either Obesity or MetS exhibited increased risks of 
developing T2DM (Table 1). A more detailed analysis is 
provided in the supplement (Fig. S1). Participant dietary 
intake and medication details are provided in Supple-
mentary Table 3 and 4, respectively.

Gut microbiome diversity and composition
The OTUs for the gut microbial composition (Fig.  2A) 
were significantly lower in participants with MetS when 
compared to individuals with a healthy (p < 0.01) or over-
weight (p < 0.01) BMI. Phylogenetic diversity using the 
Chao1 measure (Fig.  2B) was also significantly lower in 
people with MetS vs. those with a healthy or overweight 
BMI (p < 0.01). The Shannon Index appeared lower in 
groups that were overweight or with obesity (p < 0.05), 
but not with MetS when compared to those with a 
healthy BMI (Fig.  2C). Likewise the inverse Simpsons 
Index (Fig.  2D) was not dissimilar between the healthy 
BMI and MetS groups, however was decreased for over-
weight (p < 0.01) or obese BMI groups (p < 0.05).

Gut microbial composition of participants is reported 
as a relative abundance (Table 2). The two most abundant 
phyla present were Bacteroidetes and Firmicutes. Of note, 
only a handful of participant microbial compositions con-
tained Cyanobacteria (< 1%), most of which had a healthy 
BMI. Individuals with either obesity (p < 0.0001) or MetS 
(p < 0.05) contained more Bacteroidetes compared with 
those who exhibited a healthy or overweight BMI. Con-
versely, only those with MetS exhibited a reduced Fir-
micutes abundance when compared to all other groups 
(p < 0.05–0.0001). A Firmicutes to Bacteroidetes ratio 
(FBR) may be used in characterizing the bacterial pro-
file (Fig.  3), and was found to not be different between 
groups (p > 0.05). Similarly, visualisation of overall phyla 
composition using a partial least squares discriminant 
analysis (PLS-DA) plot did not reveal marked differences 
between the groups (Supplementary Fig. 2).

Circulating TMAO and pre‑cursor concentrations
Circulating [TMAO] together with precursor substrates 
(TMA, betaine, choline, and carnitine) were deter-
mined under fasting conditions (Fig.  4). The TMAO 
concentration did not differ significantly between 
groups (p > 0.05), though a trend for slightly higher lev-
els (~ 20%) was evident in those with obesity (Fig.  4A). 
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Table 1 Study participant characterisation: anthropometry, blood biochemistry, lifestyle and disease history

Healthy BMI Overweight Obese MetS p values

Anthropometric measures

 Number (M/F) 41 (18/23) 33 (14/19) 27 (11/16) 39 (29/10)

 Age (yr) 47.8 ± 1.9 44.0 ± 1.9 45.7 ± 1.7 51.9 ± 1.9* *, p < 0.05 vs. Obese

 Aboriginal, Torres Strait Islander, Pacific 
Islander, or Maori descent (total par-
ticipant)

0 0 1 2

 Body weight (kg) 67.7 ± 1.4 78.2 ± 1.7** 101.1 ± 2.6$,# 99.7 ± 2.8$,# **, p < 0.005 vs. Healthy BMI; $ p < 0.0001 vs. 
Healthy BMI; #, p < 0.0001 vs. Overweight

 MetS criteria (/5) 0.39 ± 0.11 0.82 ± 0.13 1.89 ± 0.08 3.51 ± 0.11

 BMI (kg/m2) 22.7 ± 0.2 26.8 ± 0.2$ 34.1 ± 0.7$,# 32.9 ± 0.7$,# $, p < 0.0001 vs. Healthy BMI; #, p < 0.0001 vs. 
Overweight

 Waist (cm) 79.4 ± 1.0 87.4 ± 1.3** 105.4 ± 2.1$,# 110.4 ± 2.1$,# **, p < 0.005 vs. Healthy BMI; $, p < 0.0001 vs. 
Healthy BMI; #, p < 0.0001 vs. Overweight,

 Systolic BP (mm/Hg) 118.5 ± 2.4 126.0 ± 1.5 134.0 ± 2.3** 137.1 ± 2.2$.* *, p < 0.05 vs. Overweight; **, p < 0.005 vs. 
Healthy BMI; $, p < 0.0001 vs. Healthy BMI

 Diastolic BP (mm/Hg) 76.7 ± 1.2 82.4 ± 1.9* 89.7 ± 1.3**,$ 91.0 ± 1.5+,$ *, p < 0.05 vs. Healthy BMI; **, p < 0.01 vs. 
Overweight; + , p < 0.05 vs. Overweight; $, 
p < 0.0001 vs. Healthy BMI

BP category (%)

 Normal 48.8 24.2 0 2.6

 Elevated 17.1 15.2 3.7 2.6

 Stage 1 29.7 45.5 59.3 56.4

 Stage 2 4.8 15.2 37.0 38.5

 HbA1c Fraction (%) 5.13 ± 0.05 5.16 ± 0.04 5.21 ± 0.06 5.36 ± 0.05*, ** *, p < 0.05 vs. Overweight; **, p < 0.005 vs. 
Healthy BMI

 Glucose (mmol/L) 4.6 ± 0.1 4.8 ± 0.1 5.1 ± 0.1**,$ 5.5 ± 0.1+,$ **, p < 0.005 vs. Healthy BMI; + , p < 0.01 
vs. Obese; $, p < 0.0001 vs. Healthy BMI & 
Overweight

 Insulin 6.1 ± 1.6 5.9 ± 1.1 9.9 ± 2.0 11.8 ± 1.3* *, p < 0.05 vs. Healthy BMI & Overweight

 Cholesterol (mmol/L) 5.18 ± 0.16 5.42 ± 0.16 5.79 ± 0.21* 5.43 ± 0.18 *, p < 0.05 vs. Healthy BMI

 Triglycerides (mmol/L) 0.79 ± 0.05 1.00 ± 0.09 1.30 ± 0.15* 1.77 ± 0.15*,$ *, p < 0.05 vs. Healthy BMI & Obese; $, 
p < 0.0001 vs. Healthy BMI & Overweight

 HDL (mmol/L) 1.71 ± 0.07 1.64 ± 0.06 1.44 ± 0.06 1.22 ± 0.04*,$ *, p < 0.05 vs. Obese; $, p < 0.0001 vs. Healthy 
BMI, Overweight

 LDL (mmol/L) 2.80 ± 0.14 3.00 ± 0.15 3.58 ± 0.18* 3.22 ± 0.21 *, p < 0.05 vs. Healthy BMI

 CRP (mg/L) 1.46 ± 0.42 1.21 ± 0.24 2.78 ± 0.56* 2.19 ± 0.34 *, p < 0.05 vs. Overweight

 Urea (mmol/L) 5.23 ± 0.23 5.49 ± 0.28 5.32 ± 0.22 6.00 ± 0.26 NS

 Creatinine (umol/L) 68.1 ± 1.6 72.5 ± 2.2 68.9 ± 2.3 77.3 ± 2.1*,** *, p < 0.05 vs. Obese; **, p < 0.01 vs. Healthy 
BMI

 eGFR (mL/min) 88.1 ± 0.8 87.9 ± 0.8 88.3 ± 0.9 86.5 ± 1.2 NS

 ALP (U/L) 53.6 ± 1.8 64.2 ± 3.5 72.7 ± 4.0 69.1 ± 2.6 NS

 Gamma GT (U/L) 19.3 ± 1.6 25.2 ± 3.2 25.4 ± 2.0 34.2 ± 3.0* ***, p = 0.0001 vs. Healthy BMI

 ALT (U/L) 21.8 ± 1.2 25.5 ± 2.1 32.3 ± 2.3** 32.5 ± 2.9** **, p < 0.01 vs. Healthy BMI

 AST (U/L) 24.5 ± 1.2 28.7 ± 1.8 30.2 ± 2.3 27.7 ± 1.8 NS

 LDH (U/L) 174.0 ± 5.6 188.1 ± 5.6 181.1 ± 5.7 187.2 ± 3.6 NS

 Total Protein (g/L) 70.6 ± 0.8 70.3 ± 0.7 71.0 ± 0.7 70.9 ± 0.6 NS

 Albumin (g/L) 42.5 ± 0.4 42.2 ± 0.4 42.7 ± 0.4 44.8 ± 0.6*,**,*** *, p < 0.05 vs. Obese; **, p < 0.005 vs. Healthy 
BMI; ***, p < 0.001 vs. Overweight

Lifestyle

 Smoking (total participant) 1 1 2 3

 Average alcoholic drink consumption 
(per week)

6.1 ± 0.7 7.2 ± 1.7 5.1 ± 0.9 5.3 ± 1.0

 Exercise habits (> 2.5 h per week) 34 28 18 29
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Similar concentrations of the pre-cursor TMA (Fig. 4B), 
and substrates betaine (Fig.  4C) and choline (Fig.  4E) 
were evident between groups, whereas plasma [carnitine] 
was significantly elevated (p < 0.01) in those with obesity 
and MetS when compared to individuals with a Healthy 
BMI. The ratio of TMAO to TMA (Fig. 4F) did not dif-
fer between groups. Further analysis was conducted to 
explore potential sex differences (Supplementary Fig. 3), 
with no differences in [TMAO] detected between males 
and females.

Correlation analysis
Broader relationships between all variables were ini-
tially explored (Supplementary Fig.  4). However, evi-
dence of clear relationships between most other variables 
were modest and as such, we chose to feature specific 
relationships with [TMAO], as the focus of this study. 
Exploratory correlation analysis was undertaken to test 
for potential relationships between circulating [TMAO] 
and a variety of parameters, spanning levels of precur-
sor substrates, together with age, anthropometric and 
biochemical measures, disease risk and gut microbiome 
profiles (Table  3). Of the variables explored, circulating 
[TMAO] was only significantly correlated (p < 0.05) with 
dietary α-tocopherol, iron and intake of seafood (with 
low long chain N-3 polyunsaturated fatty acid content), 
gut microbiome diversity, and circulating [TMA]. Cor-
relations at a p < 0.10 level were also evident for circulat-
ing [choline], markers of liver function (ALP, AST), and 
dietary energy and polyunsaturated fat intakes. Further 
work is warranted to test specific hypotheses regarding 

causal relationships between these parameters. To high-
light the drawback to unnecessarily correcting for mul-
tiple comparisons in an exploratory analysis such as this 
[35–37], we additionally present q-values for these asso-
ciations. Note that this form of correction eliminates the 
ability of exploratory analysis to identify any potential 
relationships with [TMAO] (Table  3). It is also notable 
that no parameter individually explains more than 7% of 
the variance in TMAO levels (TMA 7%, seafood 5%, iron 
5%, bacterial diversity 3–4%), leaving much of the vari-
ance in [TMAO] to be explained by other factors. A sys-
tems biology or network approach (with multi-regression 
modelling) is ultimately required to investigate how these 
(and additional) determinants may interact in an inte-
grated manner to regulate circulating [TMAO].

Discussion
In testing the potential role of TMAO in promoting car-
diometabolic disease we assessed relationships between 
circulating [TMAO] and its substrates, chronic disease 
risk and phenotypic profiles in major precursor disor-
ders (overweight, obesity and MetS) for CVD and T2DM. 
Somewhat unexpectedly, mean plasma [TMAO] and 
concentrations of its substrates were largely compara-
ble across these conditions and remained within nor-
mal bounds, although plasma [carnitine] was elevated in 
those with obesity or MetS. Circulating [TMAO] corre-
lated with seafood intake, dietary iron and α-tocopherol, 
gut microbial diversity, and plasma [TMA], together with 
a trend for a correlation with circulating [choline]. How-
ever, no associations were evident between TMAO and 

Table 1 (continued)

Healthy BMI Overweight Obese MetS p values

Patient History (prior physician diagnosis):

 AMI 0 0 0 3

 IBS (total participant) 5 5 3 3

 MetS (total participant) 0 0 0 0

 T2DM (total participant) 0 0 0 0

 Hypertension (total participant) 2 5 3 4

 Hypercholesterolaemia (total partici-
pant)

5 5 5 11

T2DM Risk

 Low (Total participant) 19 11 1 5

 Medium (Total participant) 17 15 6 9

 High (Total participant) 2 9 25 22

Anthropometric and blood biochemistry data were acquired on entry into the study. Lifestyle and patient history were acquired via questionnaires. Data is reported as 
mean ± SEM. P-values shown for different inter-group comparisons

ALP alkaline phosphatase, ALT, alanine transaminase, AMI Acute myocardial infarction, CRP C-reactive protein, eGFR estimated glomerular filtration rate, IBS Irritable 
bowel syndrome, Gamma GT gamma-glutamyl transferase, HDL high-density lipoprotein, LDL low-density lipoprotein, MetS Metabolic syndrome, NS not significant, 
T2DM Type 2 diabetes mellitus
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Fig. 2 Gut microbiome diversity metrics. A Operational taxonomic unit diversity (*, p < 0.05 vs. Overweight; **, p < 0.01 vs. Healthy BMI). B Chao1 
measure of diversity (**, p < 0.01 vs. Healthy BMI & Overweight). C Shannon diversity metric (*, p < 0.05 vs. Healthy BMI). D) Inverse Simpson Index 
(*, p < 0.05 vs. Healthy BMI; **, p < 0.01 vs. Healthy BMI). Data are presented as mean ± SEM (n = 27–41 for all groups) and compared with a one-way 
ANOVA using an initial Tukey’s post hoc analysis for all comparisons as an exploratory measure to look for changes between all groups. 
A subsequent one-way ANOVA was also used to compare all means against the Healthy BMI group in conjunction with a Dunnet’s post-hoc test 
to increase statistical sensitivity



Page 9 of 16Naghipour et al. Diabetology & Metabolic Syndrome          (2024) 16:133  

cardiometabolic disease risk, given that there were no 
substantial changes in [TMAO] between these metabolic 
disorder groups, nor a significant correlation between 
traditional CVD markers and [TMAO]. Considering the 
critical roles of obesity and MetS in CVD and T2DM, 
these findings appear inconsistent with a causal role for 
TMAO in the genesis of cardiometabolic disease, though 
do not exclude a detrimental role for markedly elevated 
TMAO in advanced disease.

Pro‑disease phenotypes in groups that are overweight, 
with obesity and with MetS
A range of known CVD risk factors were assessed here. 
Observations included: higher prevalence of hyperten-
sion in groups with obesity and MetS, in agreement with 
well-established links between obesity and blood pres-
sure dysregulation [40]; higher prevalence of dyslipidae-
mia in individuals with MetS, consistent with criteria of 
elevated triglycerides and decreased HDL cholesterol; 
and importantly, no differences in markers of renal func-
tion (urea, eGFR), with the exception of a modest eleva-
tion in plasma creatinine in MetS, broadly supporting 
maintained renal function across groups. This discounts 
the potentially strong influences of renal (dys)function on 
TMAO excretion and concentrations.

Gut microbiome diversity declines with obesity and MetS
Overall, a pattern of lower microbial diversity was noted 
when comparing those with MetS against individuals 
with a healthy or overweight BMI (using OTU and Chao1 

Table 2 Gut microbiota phyla composition of participants

Bacterial profiles were determined via 16 s rRNA sequencing on faecal content. Data are presented as mean ± SEM and compared with a one-way ANOVA using an 
initial Tukey’s post hoc analysis for all comparisons as an exploratory measure to look for changes between all groups. A subsequent one-way ANOVA was also used 
to compare all means against the Healthy BMI group in conjunction with a Dunnet’s post-hoc test to increase statistical sensitivity. P-values shown for different inter-
group comparisons

Phyla Healthy BMI Overweight Obese MetS p values

Actinobacteria 0.98 ± 0.33% 0.84 ± 0.21% 2.68 ± 1.12% 1.23 ± 0.28% NS

Bacteroidetes 35.16 ± 1.55% 36.03 ± 2.23% 39.32 ± 1.81%* 41.68 ± 1.80%$ *, p < 0.05 vs. Healthy 
BMI; $ p < 0.0001 vs. 
Healthy BMI and Over-
weight

Cyanobacteria 0.00 ± 0.00% 0.00 ± 0.00% 0.00 ± 0.00% 0.00 ± 0.00% NS

Firmicutes 53.96 ± 1.43% 57.13 ± 1.90% 54.64 ± 1.91% 50.41 ± 1.71%*,$ *, p < 0.05 vs. Healthy 
BMI & Obese; $ 
p < 0.0001 vs. Over-
weight

Fusobacteria 0.00 ± 0.00% 0.50 ± 0.50% 0.00 ± 0.00% 1.27 ± 0.92% NS

Lentisphaerae 0.00 ± 0.00% 0.00 ± 0.00% 0.00 ± 0.00% 0.00 ± 0.00% NS

Proteobacteria 4.21 ± 1.08% 1.43 ± 0.29% 1.37 ± 0.37% 3.05 ± 0.67% NS

Synergistetes 0.15 ± 0.11% 0.01 ± 0.01% 0.00 ± 0.00% 0.01 ± 0.00% NS

Tenericutes 0.05 ± 0.03% 0.02 ± 0.02% 0.00 ± 0.00% 0.01 ± 0.00% NS

Verrucomicrobia 5.16 ± 1.15% 3.72 ± 1.18% 1.87 ± 0.69 2.06 ± 0.85% NS
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Fig. 3 The Firmicute/Bacteroidetes ratio (FBR). The ratio 
of Firmuicutes:Bacteroides bacterial phyla in the gut microbiome 
was determined for each group. Data are presented as mean ± SEM 
(n = 27–41 for all groups) and compared with a one-way ANOVA 
using an initial Tukey’s post hoc analysis for all comparisons 
as an exploratory measure to look for changes between all groups. 
A subsequent one-way ANOVA was also used to compare all means 
against the Healthy BMI group in conjunction with a Dunnet’s 
post-hoc test to increase statistical sensitivity
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metrics), and participants with an overweight and obese 
BMI (using Shannon and Simpson indices) relative to 
individuals with a healthy BMI. Differences in the propor-
tion of Bacteroidetes and Firmicutes in people with obe-
sity or MetS were noted, although no consistent change 
in the FBR was detected. A diverse microbiome is gener-
ally linked to healthy phenotypes [41], and an increase in 
FBR is a mooted hallmark of obesity [42], though studies 
also report no change [43] or a decline [44] in this ratio 
with obesity. Firmicutes are more effective than Bacte-
roidetes at extracting energy from food intake, favouring 
caloric excess and obesogenesis [45]. Data here indicate 
a decrease in Firmicutes and increase in Bacteroidetes 

with obesity and MetS, in agreement with prior analy-
sis in obesity [44]. However, the noted high variability in 
microbial abundance (ranges of 11–95% for Firmicutes, 
and 1–87% for Bacteroidetes) presents a major challenge 
in identifying relevant and consistent shifts in microbial 
composition in studies such as this [42], where relation-
ships between downstream microbial-derived and sec-
ondary metabolites and disease are explored.

Limited variance in circulating [TMAO] in metabolic 
disorders
A fasting plasma [TMAO] of 3–4  μM agrees well with 
prior measures of 2–5  μM in healthy people [10], and 
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Fig. 4 TMAO pathway metabolites in human plasma. TMAO and its precursor substrates measured from fasting plasma. A TMAO. B TMA. C 
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Table 3 Correlations between plasma [TMAO], anthropometric 
measures, disease risks and microbiome profiles

Parameters Correlation with circulating [TMAO] 
(µM)

r r2 p‑value q‑value

Age (years) 0.038 0.001 0.657 0.878

Anthropometric Measures 0.029 0.001 0.739 0.879

BMI (kg/m2) 0.051 0.003 0.555 0.790

Waist (cm) − 0.005 0.000 0.950 0.962

Systolic BP (mm/Hg) − 0.055 0.003 0.525 0.786

Diastolic BP (mm/Hg) − 0.085 0.007 0.318 0.707

Cardiometabolic Profile

 HbA1c Fraction (%) − 0.063 0.004 0.460 0.786

 Glucose (mmol/L) 0.008 0.000 0.927 0.962

 Insulin − 0.093 0.009 0.275 0.707

 Diabetes risk score − 0.012 0.000 0.887 0.962

 Cholesterol (mmol/L) − 0.034 0.001 0.691 0.879

 Triglycerides (mmol/L) − 0.088 0.008 0.304 0.707

 HDL (mmol/L) − 0.029 0.001 0.737 0.879

 LDL (mmol/L) − 0.027 0.001 0.750 0.880

 CRP (mg/L) − 0.010 0.000 0.906 0.962

 Urea (mmol/L) 0.052 0.003 0.543 0.786

 Creatinine (umol/L) − 0.103 0.011 0.226 0.684

 eGFR (mL/min) 0.023 0.001 0.783 0.883

 ALP (U/L) 0.159 0.025 0.063 0.547

 Gamma GT (U/L) − 0.064 0.004 0.461 0.786

 ALT (U/L) 0.071 0.005 0.405 0.758

 AST (U/L) 0.144 0.021 0.092 0.615

 LDH (U/L) 0.005 0.000 0.952 0.962

 Total Protein (g/L) − 0.140 0.019 0.103 0.639

 Albumin (g/L) − 0.083 0.007 0.333 0.707

Nutritional Parameters

 Energy (kJ) 0.162 0.026 0.060 0.547

 Protein (g) 0.091 0.008 0.292 0.707

 Total fat (g) 0.133 0.018 0.123 0.673

 Saturated fat (g) 0.044 0.002 0.614 0.847

 Trans Fatty Acids (g) 0.099 0.010 0.252 0.684

 Polyunsaturated fat (g) 0.152 0.022 0.078 0.565

 Monounsaturated fat (g) 0.162 0.026 0.059 0.547

 Cholesterol (mg) 0.054 0.003 0.531 0.786

 Carbohydrate (g) 0.060 0.004 0.486 0.786

 Sugars (g) 0.090 0.008 0.295 0.707

 Starch (g) 0.009 0.000 0.919 0.962

 Alcohol (g) 0.133 0.018 0.124 0.673

 Dietary fibre (g) 0.123 0.015 0.154 0.684

 Thiamine (mg) 0.022 0.001 0.793 0.883

 Riboflavin (mg) 0.011 0.000 0.903 0.962

 Niacin (mg) 0.008 0.000 0.931 0.962

 Vitamin C (mg) 0.103 0.011 0.233 0.684

 Vitamin E (mg) 0.110 0.012 0.204 0.684

 Tocopherol α (mg) 0.184 0.034 0.032 0.463

 Vitamin B6 by analysis (mg) 0.054 0.003 0.534 0.786

 Vitamin B12 (µg) 0.036 0.001 0.678 0.879

Data shown for correlation analyses, including: R (Pearsons correlation 
coefficient) and  R2, P-values for correlations are shown. To highlight limitations 
of multiple comparison correction in exploratory analysis of diverse parameters 
(with no a priori hypotheses), we also provide adjusted Q-values, determined via 
the Benjamini, Krieger and Yekutieli method [38]. Data analysed using GraphPad 
Prism 9. A p-value in italicised bold denotes significant correlations at the 
p < 0.05 level (bold values denote a trend at the p < 0.10 level)

L-C N3 long chain N-3 polyunsaturated fatty acids

Table 3 (continued)

Parameters Correlation with circulating [TMAO] 
(µM)

r r2 p‑value q‑value

 Total folate (µg) 0.082 0.007 0.342 0.707

 Folic acid (µg) 0.024 0.001 0.780 0.883

 Retinol (µg) 0.100 0.010 0.243 0.684

 Beta carotene (µg) 0.048 0.002 0.581 0.814

 Sodium (mg) 0.088 0.008 0.306 0.707

 Potassium (mg) 0.099 0.010 0.252 0.684

 Magnesium (mg) 0.079 0.006 0.363 0.720

 Calcium (mg) 0.086 0.007 0.317 0.707

 Phosphorus (mg) 0.103 0.011 0.231 0.684

 Iron (mg) 0.228 0.052 0.008 0.232

 Zinc (mg) 0.101 0.010 0.241 0.684

 Selenium (µg) 0.082 0.007 0.340 0.707

 Iodine (µg) 0.111 0.012 0.199 0.684

 Fruit (serve) 0.078 0.006 0.369 0.720

 Vegetables (serve) 0.067 0.004 0.448 0.786

 Red meats (serve) 0.042 0.001 0.625 0.848

 Poultry (serve) 0.029 0.001 0.735 0.879

 Eggs (serve) 0.064 0.004 0.462 0.786

 Seafood (high LC N3 serve) 0.022 0.000 0.780 0.883

 Seafood (low LC N3 serve) 0.231 0.053 0.007 0.232

 Caffeine (mg) − 0.006 0.003 0.511 0.786

Gut Microbial Diversity

 OTU 0.204 0.042 0.017 0.369

 Chao1 0.183 0.033 0.032 0.463

 Shannon 0.170 0.029 0.048 0.547

 Inverse Simpson 0.117 0.014 0.177 0.684

Bacterial Phyla

 Actinobacteria − 0.114 0.013 0.187 0.684

 Bacteroidetes − 0.102 0.010 0.234 0.684

 Cyanobacteria − 0.033 0.001 0.706 0.879

 Firmicutes 0.113 0.013 0.189 0.684

 Fusobacteria 0.077 0.006 0.373 0.720

 Lentisphaerae 0.109 0.012 0.207 0.684

 Proteobacteria 0.030 0.001 0.725 0.879

 Synergistetes − 0.031 0.001 0.716 0.879

 Tenericutes − 0.057 0.003 0.513 0.786

 Verrucomicrobia 0.055 0.003 0.522 0.786

 FBR 0.061 0.004 0.481 0.786

TMAO Substrates

 TMA (μM) 0.267 0.072 0.001 0.087

 Betaine (μM) − 0.071 0.005 0.410 0.758

 Choline (μM) − 0.155 0.024 0.070 0.553

 Carnitine (μM) − 0.116 0.014 0.173 0.684
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did not vary substantially across the metabolic disor-
ders studied. Elevations beyond this concentration range 
have been reported in different disease states, though 
the basis of such elevations is unknown [9]. In addition 
to dietary makeup [11] and gut microbial composition 
[3], circulating [TMAO] is influenced by hepatic FMO3 
expression [1] and renal function [8], among other fac-
tors. However, variance in circulating [TMAO] is only 
partially explained by these determinants [46], implicat-
ing important roles for as yet unidentified mechanisms. 
This is reflected in the present findings, with the influ-
ences of microbial diversity, circulating levels of TMA 
and its precursors unable to explain most of the variance 
in [TMAO].

Although there is evidence of associations between 
TMAO and adipose dysfunction [47], we detect no major 
differences in [TMAO] between groups with widely vary-
ing BMI. This stability of [TMAO] across participants 
with a healthy or obese BMI contrasts studies in animal 
models of diet-induced obesity, which report circulating 
[TMAO] as high as 20 μM [48, 49]. Relevance to human 
obesity remains to be established, however, given twofold 
higher baseline [TMAO] in rodents compared to humans 
[9], and extremely high saturated fat and caloric intakes 
in these models which are not representative of the 
human diet. Our observations are also at odds with out-
comes from a meta-analysis implicating a positive asso-
ciation between [TMAO] and risk of obesity (indicated 
by BMI) [50], and a reported relation between degree of 
obesity and increasing [TMAO] [47].

Despite individual elements of MetS being linked with 
circulating [TMAO], there is relatively little informa-
tion available regarding relationships between TMAO 
and MetS. Here a circulating [TMAO] of ~ 3  μM was 
observed in those with MetS, not differing substantially 
from other groups. Prior work suggests that [TMAO] 
is elevated in patients with MetS, however concentra-
tions nonetheless remained relatively low (2 µM vs. 1 μM 
in those without MetS) [16] and fell well within ranges 
reported in healthy populations [9, 10] (and below that 
observed here).

Circulating [carnitine] was elevated in individuals 
with Obesity or MetS, which might favour increased 
TMAO generation. Similar to our observations, others 
report increased levels of carnitine and an insignificant 
trend for increased [TMAO] in patients with nascent 
MetS [51]. Whether this elevation in carnitine reflects 
increased intake and/or altered transport and metabo-
lism is unclear, requiring detailed analysis of intakes and 
excretion. Importantly, estimates of dietary intake (based 
on reported red meat intake, a strong source of carnitine 
[3]) did not differ between people with obesity or MetS 
(Supplementary Table  3). Whether shifts in carnitine 

transport and gut metabolism may thus contribute to ele-
vated circulating levels, with saturation of small intestine 
uptake [3, 17] influencing carnitine delivery to distal sites 
of microbial metabolism [3], awaits further study.

Factors significantly linked to circulating [TMAO]
The question of what biological factors are linked to or 
determine circulating [TMAO] under different con-
ditions remains. We thus undertook an exploratory 
correlation analysis across a diversity of potentially rel-
evant parameters, with no a priori hypotheses. As such, 
multiple test correction is not required in the search 
for potential relationships [35–37]. This analysis indi-
cates circulating [TMAO] is not strongly related to age, 
anthropometric measures, MetS score, T2DM risk or 
overall cardiometabolic risk profiles. This is not dissimi-
lar to a prior report that TMAO concentrations are not 
significantly linked to MetS in adults or children [52]. 
However, the current findings contrast earlier reports 
indicating that [TMAO] is significantly associated with 
anthropometric and metabolic profile markers (though 
not age) [47, 53]. It has also been suggested that TMAO 
is associated with an unfavourable MetS profile, specifi-
cally in subjects with hyperglycaemia [54]. While further 
inquiry into the current data might be achieved to cor-
relate [TMAO] with similar parameters within study 
groups, lack of statistical power would render interpreta-
tion inappropriate. Nonetheless, we find no evidence of 
an association between TMAO and MetS profile; given 
little evidence of CVD or major metabolic disruption 
in the MetS group, the lack of a relationship between 
[TMAO] and MetS (and the low levels detected) suggests 
TMAO may not be causal in the early development of 
CVD.

Trends for positive associations (p < 0.01) were evident 
between [TMAO] and liver enzymes (ALP and AST) 
in the unadjusted analyses, suggesting a link between 
hepatic dysfunction and TMAO generation (poten-
tially via hepatic FMO3 activity). Others confirm a posi-
tive albeit weak association between TMAO and AST 
[55], and TMAO is also elevated in non-alcoholic stea-
tohepatitis patients [55]. Indeed, TMAO itself can up-
regulate FMO3 expression [56], suggesting a positive 
feedback loop within disease states [9]. Evidence that 
FMO3 expression is increased by hepatic damage indi-
cates a localised feedback loop which may explain posi-
tive associations with liver enzymes observed here.

Most dietary macro- and micronutrients were not 
linked to [TMAO], although there was evidence of posi-
tive associations in the unadjusted analyses with seafood, 
α-tocopherol and iron intakes, and trends for associations 
with energy and polyunsaturated fat intake (p < 0.10). 
Total energy intake and circulating [TMAO] have been 
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linked previously [47], though only a weak trend was evi-
dent here. This may reflect in part the relatively small dif-
ferences in both circulating TMAO and energy intakes 
across the 4 groups studied (Supplementary Table  3), 
noting that modest differences in energy intake align with 
known limitations of self-reported dietary intakes. Prior 
studies indicate that seafood has the greatest potential 
to increase post-prandial [TMAO] [12], though as previ-
ously reviewed by Evans et al. [57] this is highly depend-
ent on fish species, with deep-sea fish having the highest 
TMAO content. The current data suggests intake of sea-
food low in long-chain N3 fatty acids are positively asso-
ciated with [TMAO] (Table 3). Examples of this seafood, 
consumed and reported by study participants, include 
squid, prawns/shrimp and white flesh fish. In contrast, 
shallow-living seafood reportedly have low endoge-
nous TMAO and produce lower post-prandial spikes in 
TMAO when compared to deep-sea fish, though choline 
and carnitine were not accounted for [58]. While a diet 
enriched in red (not white) meat may also increase fast-
ing [TMAO] [23], the present data indicate no associa-
tions between circulating [TMAO], fruit and vegetable, 
red meat, poultry or egg intakes.

In agreement with the importance of gut bacteria, 
[TMAO] initial unadjusted analysis revealed modest 
associations with gut microbial diversity. Such asso-
ciations would suggest somewhat paradoxically, that 
TMAO generation may increase with greater gut micro-
bial diversity, potentially reflecting distinct roles of select 
species in TMAO generation. Studies in humans show 
that TMAO “high producers” have increased Shannon 
and Chao1 diversity measures, with an increase in FBR 
[59]. Despite these trends in the unadjusted analyses, 
no significant association was found between [TMAO] 
and any of the major phyla or FBR in the current study. 
Recent work also demonstrates a weak albeit significant 
association between circulating TMAO and microbi-
ome composition in individuals with obesity presenting 
with MetS features, but not overt T2DM or ischaemic 
heart disease [60]. Members from the Firmicutes phylum 
were most strongly associated with TMAO, compared to 
other phyla [60]. Curiously, we find a decreased Firmi-
cutes abundance in those with MetS, and no association 
between this phylum and circulating TMAO within the 
overall study population. One prior study reports that 
high TMAO producers have gut microbiomes enriched 
with Firmicutes vs. Bacteroidetes and a lower overall 
diversity, whilst low producers have a near equal ratio 
of the two phyla [12]. Contrasting our findings, a recent 
study in a Hispanic community in the USA found no 
association between α-diversity metrics and TMAO 
[61]. Differences in geography, ethnicity, socioeconomic 
and lifestyle factors could contribute to this difference, 

though further work is needed to resolve. Fennema 
et al. [62] provide a comprehensive review and summary 
detailing bacterial species involved in TMA formation. It 
is important to note that no study, thus far, has identified 
microbes within the human microbiome that are specifi-
cally responsible for TMA production [63], and that most 
association studies are confounded by gut transit time.

The potential for positive and negative associations 
between [TMAO] and circulating TMA and choline, 
respectively, were also noted in the unadjusted analy-
ses. The former might be predicted given TMA is the 
immediate substrate for TMAO generation [1]. On the 
other hand, TMA (thus TMAO) generation is also partly 
dependent on microbial metabolism of choline [1, 11], 
which appeared negatively correlated with [TMAO]. 
Other work indicates that circulating choline does not 
correlate with TMAO [64, 65]. Although untested, a 
negative association could also indicate highly efficient 
net conversion of choline to TMA and TMAO, effec-
tively lowering choline levels as these products increase 
in the circulation. Given that physiological processes are 
regulated by multiple interacting factors in an integrated 
manner, as opposed to the influences of a single media-
tor, future work would benefit from integrative or biolog-
ical network based analyses [60].

Study limitations
There are several constraints to note in the present analy-
sis. Self-reported questionnaires for diet and other risk 
factors may often under-report intakes. This could con-
tribute to a lack of clear differences in macro- and micro-
nutrient intakes subjects with obese or MetS, despite 
evident metabolic and phenotypic differences. Given that 
the study was also conducted in community-dwelling 
volunteers at a university campus, disease phenotypes 
may not have been as severe as participants recruited 
from clinical or other settings. It is also noted that the 
healthy comparator group (Healthy BMI) was defined 
solely on BMI in this analysis. As detailed in the Results, 
some in the Healthy BMI cohort exhibit individual meas-
ures outside of normal ranges, including hypertension 
together with a handful of subjects with elevated CRP 
or LDL. This highlights the challenges in identifying 
‘control’ groups devoid of risk factors in modern popu-
lations. While such heterogeneity may cloud differences 
between sub-groups, any influences of these parameters 
or risk factors should nonetheless be revealed in multi-
regression analysis. The number of final participants 
recruited were limited for this study, which unfortunately 
prohibited more detailed multi-regression modelling and 
mediation analysis. Finally, gut microbial composition 
was assessed here for major bacterial phyla, and a deeper 
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interrogation may provide additional insight, particularly 
for regression and correlation analysis, though this would 
necessarily increase variable numbers and thus influence 
statistical power.

Conclusions
In summary, the current study indicates that circulat-
ing [TMAO] is not substantially elevated in obesity or 
MetS beyond levels in those with a healthy BMI. While 
circulating [TMAO] correlated with gut microbial diver-
sity, seafood, iron and α-tocopherol intakes, circulat-
ing [choline] and [TMA], most variance in [TMAO] 
remains unexplained. Future investigations may address 
specific hypotheses regarding the roles of these candi-
date determinants under different metabolic conditions. 
Importantly, [TMAO] did not appear linked to cardio-
metabolic disease risk, suggesting that changes in this 
metabolite may not be mechanistically important in 
the development of metabolic disorders underpinning 
CVD and T2DM. We have previously suggested that 
TMAO may act as a secondary driver of disease in indi-
viduals with underlying pathophysiology [9], and recent 
evidence TMAO exacerbates renal fibrotic injury with 
co-morbidities such as hypertension or T2DM supports 
this hypothesis [60]. Nonetheless, contrasting studies in 
spontaneously-hypertensive-heart-failure rats suggest 
that TMAO may improve mortality and systemic pheno-
types associated with heart failure [66]. Further work is 
needed to resolve these fundamental questions, however 
our findings suggest that TMAO elevations may reflect a 
detrimental disease sequela, potentially participating in 
later disease progression.
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