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Abstract 

Background  Numerous studies have developed or validated prediction models aimed at estimating the likelihood 
of amputation in diabetic foot (DF) patients. However, the quality and applicability of these models in clinical prac-
tice and future research remain uncertain. This study conducts a systematic review and assessment of the risk of bias 
and applicability of amputation prediction models among individuals with DF.

Methods  A comprehensive search was conducted across multiple databases, including PubMed, Web of Science, 
EBSCO CINAHL Plus, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, Chinese 
Biomedical Literature Database (CBM), and Weipu (VIP) from their inception to December 24, 2023. Two investigators 
independently screened the literature and extracted data using the checklist for critical appraisal and data extraction 
for systematic reviews of prediction modeling studies. The Prediction Model Risk of Bias Assessment Tool (PROBAST) 
checklist was employed to evaluate both the risk of bias and applicability.

Results  A total of 20 studies were included in this analysis, comprising 17 development studies and three validation 
studies, encompassing 20 prediction models and 11 classification systems. The incidence of amputation in patients 
with DF ranged from 5.9 to 58.5%. Machine learning-based methods were employed in more than half of the studies. 
The reported area under the curve (AUC) varied from 0.560 to 0.939. Independent predictors consistently identified 
by multivariate models included age, gender, HbA1c, hemoglobin, white blood cell count, low-density lipoprotein 
cholesterol, diabetes duration, and Wagner’s Classification. All studies were found to exhibit a high risk of bias, primar-
ily attributed to inadequate handling of outcome events and missing data, lack of model performance assessment, 
and overfitting.

Conclusions  The assessment using PROBAST revealed a notable risk of bias in the existing prediction models 
for amputation in patients with DF. It is imperative for future studies to concentrate on enhancing the robustness 
of current prediction models or constructing new models with stringent methodologies.
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Introduction
In recent years, with lifestyle improvements and 
increased life expectancy, the prevalence of diabetes mel-
litus (DM) has surged [1]. Diabetic foot (DF), being one 
of the most prevalent, severe, and costly complications of 
DM, is primarily characterized by skin infections, ulcers, 
or destruction of deep foot tissues below the ankle joint. 
It is commonly associated with neuropathy or vascular 
disorders in the lower extremities, and in severe cases, it 
may involve muscles and bones [2]. It is estimated that 
approximately 537 million people worldwide have dia-
betes, and 19% to 34% of them will experience diabetic 
foot ulcers (DFU) to varying degrees during their lifetime 
[3]. Around 20% of DFU patients may require lower limb 
amputations, which can be either minor (below the ankle 
joint) or major (above the ankle joint), and sometimes 
both [4]. Previous research indicated that every 30 s, one 
lower limb was amputated due to diabetes, with an aver-
age annual cost of $8659 per patient for DF care [5]. The 
5-year mortality rates for DFU, minor amputations, and 
major amputations were reported to be 30.5%, 46.2%, and 
56.6%, respectively [6]. In addition to DFU’s considerable 
impact on mortality, DFU is also associated with devas-
tating financial, emotional, and psychological burden [7].

Recent research suggests that around 75% of DF 
patients ultimately undergo amputation, primarily due 
to lower limb vascular disease, nerve abnormalities, poor 
blood sugar control, and concurrent ulcer complications 
[8]. Various factors, including age, gender, ulcer depth, 
infection severity, local ischemia, osteomyelitis, diabetes 
duration, neuropathy, and blood sugar control, are con-
sidered potential predictors for DFU amputation. How-
ever, there remains a lack of complete understanding 
regarding the most significant factors and their respec-
tive impact on the risk of amputation [9]. A significant 
factor contributing to DF issues is the improper wearing 
of shoes and socks [10]. The management of the unaf-
fected foot emerges as a pivotal aspect of self-care for 
those who have undergone amputation due to DF. Deal-
ing with DF is a prolonged and recurrent treatment pro-
cess, currently lacking an effective cure. Key to successful 
DFU management lies in regular screening, identifying 
all risk factors for DF, and making corrections when-
ever possible [11]. The International Working Group on 
the Diabetic Foot (IWGDF) emphasizes that prevention, 
early diagnosis, active screening, and self-management of 
DFU can potentially avert over 90% of amputations [10]. 
Beyond symptomatic treatment, there is a critical need to 
empower patients with enhanced self-management skills. 
This encompasses taking subjective initiative in disease 
management, health guidance, care coordination, physi-
cal care, blood sugar monitoring, psychological adjust-
ment, nutritional intervention, and exercise compliance. 

Ultimately, this comprehensive approach aims to signifi-
cantly reduce the occurrence of amputations [12].

Given the high prevalence of DFU, their substantial 
socioeconomic burden, and the profound impact on 
patient autonomy and quality of life, it is imperative to 
identify early predictors of DF amputation and promptly 
recognize populations at risk that may benefit from early 
prevention and targeted interventions. Furthermore, 
efforts should be made to avoid unnecessary amputa-
tions due to variations in clinical expertise and insuffi-
cient judgment, preserving the integrity of the limbs and 
preventing catastrophic consequences [13]. The early 
identification of potential amputations also allows for an 
extended period to implement pre-operative rehabilita-
tion programs, thereby further enhancing patient out-
comes [14]. Evidence indicates that early identification 
may improve patient acceptance of prosthetic limb usage 
and reduce complications on the same side of the leg 
[15]. Moreover, early prediction of amputation can assist 
multidisciplinary teams in offering emotional and psy-
chological support to patients before undergoing surgery. 
This process fosters patient awareness and engagement 
in treatment decisions, ultimately improving disability 
acceptance in diabetic amputees [16]. Many existing DFU 
classification systems [17, 18], such as Wagner’s clas-
sification [19], University of Texas classification (TUC), 
WIFi (Wound, Ischaemia, Foot infection) [20] or site, 
ischaemia, neuropathy, bacterial infection, and depth 
classification, are commonly utilized tools for selecting 
treatment options and predicting the risk of amputa-
tion in DFU patients. Although these DFU classification 
systems have the ability to predict amputation, a widely 
accepted gold standard has yet to be established. These 
systems mostly based on clinical subjectivity experience 
or expert consensus, lacking robust support from objec-
tive data or validation from effective external data. Accu-
rate prediction of amputation in complex clinical Settings 
remains a challenging issue [21]. Additionally, these sys-
tems do not fully assess the impact of demographics, 
clinical or laboratory data, medical history, foot condi-
tion, and other risk factors on amputation rates, making 
them less sensitive and specific.

Risk prediction models amalgamate various factors 
to assess the likelihood of specific conditions (diagnos-
tic model) or events occurring in the future (prognostic 
model). This is primarily achieved through the utiliza-
tion of regression equations, nomographs, or innovative 
approaches grounded in artificial intelligence [22–24]. 
In recent years, an increasing number of studies have 
focused on developing or validating predictive models to 
estimate the risk of DF amputation, however, the qual-
ity and applicability of model development has not been 
systematically evaluated, leaving healthcare professionals 
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uncertain about which model to recommend and for 
whom or under what circumstances. Therefore, this 
study aims to systematically analyze and evaluate predic-
tive models for the occurrence of amputation in DF cases, 
with the aim of providing valuable insights to inform 
future studies in this field.

Materials and methods
Study design
This study was registered in PROSPERO (Registration 
ID: CRD42023493907) prior to commencing the search.

Search strategy
We performed a thorough computerized search of mul-
tiple databases, including PubMed, Web of Science, 
EBSCO CINAHL Plus, Embase, Cochrane Library, China 
National Knowledge Infrastructure (CNKI), Wanfang, 
Chinese Biomedical Literature Database (CBM), and 
Weipu (VIP). The search encompassed the period from 
the inception of the databases to December 24, 2023. The 
search strategy employed in this study involved a com-
prehensive approach. Medical subject headings (MeSH) 
and free words were combined in the titles, abstracts, 
and keywords to ensure a thorough search. Addition-
ally, a retrieval filter based on the prediction model was 
used, along with manual retrieval and citation retrieval 
methods. The following keywords were used to conduct 
a basic search: “diabetes mellitus,” “foot ulcer,” “ampu-
tation,” “Prognostic,” “rule,” “Predict*,” “Validat*,” “risk 
assessment,” “risk score,” and “algorithm”. (Detailed infor-
mation regarding the search strategies can be found in 
the Supplementary materials). Further studies were iden-
tified by reviewing the reference lists of the retrieved 
studies and review articles.

Study selection
Two researchers, HJY and YJ, independently conducted 
the study selection based on titles and abstracts, followed 
by a thorough evaluation of the full texts. All prediction 
modeling studies, whether with or without external vali-
dation, and external validation studies, whether with or 
without model updating, were included if they satisfied 
the predefined inclusion criteria outlined in PICOTS.

P (Population): the population of interest comprises 
patients diagnosed with DF, regardless of whether they 
have type 1 or type 2 diabetes (T2D), and who were aged 
above 18 years old.

I (Intervention model): studies focus on prediction 
models that were internally or externally validated, spe-
cifically for prognostic models predicting the risk of 
amputation after diabetic foot.

C (Comparator): not applicable.

O (Outcome): outcome was defined as amputation, 
including major or minor amputations, following a 
diagnosis of DF or DFU.

T (Timing): outcomes were predicted after the diag-
nosis of DF or DFU, with no restriction on the time 
frame of the prediction.

S (Setting): the intended use of the prediction model 
was to perform risk stratification in the assessment of 
amputation development in medical institutions, such 
that preventive measures could be used.

We incorporated all original and peer-reviewed 
development and validation studies, encompassing 
both English and Chinese publications. Acceptable 
study types included cohort studies, cross-sectional 
studies, randomized controlled trials, and case–control 
studies, with eligibility for studies published in either 
Chinese or English. Exclusion criteria involved studies 
related to animals, non-human samples, and non-first 
amputation scenarios. Additionally, informally pub-
lished literature, limited methodological data avail-
ability, studies conducted at the cellular and molecular 
levels, prediction models based on virtual data, mod-
els with fewer than two predictive variables, repeated 
publications, poor-quality literature, and studies lack-
ing available original data were excluded. The inability 
to access the full text of the literature also served as an 
exclusion criterion.

Data extraction
Two investigators independently conducted the extrac-
tion of data, and a third investigator crosschecked the 
results. Any disparities or differences were resolved 
through discussions among the researchers or by con-
sulting with professionals. The Critical Appraisal and 
Data Extraction for Systematic Reviews of Predic-
tion Modelling Studies (CHARMS) checklist was used 
to guide the data extraction [25]. The collected data 
encompass a range of elements, including key char-
acteristics of all included literature (such as publica-
tion year, study country, study design, population, data 
source, and follow-up time), details about predicted 
outcomes (including diagnostic criteria), information 
about the establishment of prediction models (such 
as the number of candidate variables, the processing 
method for continuous variables, sample size, num-
ber of result events, number of missing data, process-
ing method, model establishment details, and variable 
selection method), as well as insights into model per-
formance and prediction factors (covering model 
performance evaluation, validation methods, main pre-
diction factors, model presentation, applicability, and 
limitations).
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Assessment of methodological quality
Two reviewers (HJY and YJ) independently conducted a 
critical appraisal of each article to assess the risk of bias 
and the applicability of the models to the intended popu-
lation and setting. In the event of any disagreements, a 
third reviewer (XMM) provided input. This assessment 
was performed using an Excel file based on the Prediction 
Study Risk of Bias Assessment Tool (PROBAST) [26]. 
This tool comprises 20 signaling questions distributed 
among four primary domains, including participants, 
predictors, outcome, and analysis. Each signaling ques-
tion can be answered yes (Y), probably yes (PY), no (N), 
probably no (PN), or no information (NI). In a domain, 
all answers must be Y or PY to be considered “low risk.” 
If at least one signaling question is answered N or PN, it 
is categorized as “high risk.” When a signaling question is 
judged as NI and all other signals indicate “low risk,” the 
domain is classified as “unclear.” Applicability is assessed 
as either “good applicability,” “poor applicability,” or 
“unclear applicability.” When all domains are evaluated 
as low risk of bias or good applicability, the overall judg-
ment is low risk of bias or good applicability. If anyone 
domain is rated as high risk of bias or poor applicabil-
ity, the overall assessment becomes high risk of bias or 
poor applicability. In cases where bias risk in a domain or 
applicability is unclear, but the bias risk in other domains 
is low or applicability is good, the overall bias risk is con-
sidered unclear, or the applicability is deemed unclear.

Analysis
The model’s discrimination was assessed using the area 
under the ROC curve (AUC) [27]. Software GraphPad 
Prism 9.0 was utilized for analyzing the AUC values of 
the model. We classified AUC values within the range 
of 0.5–0.7 as indicating poor discrimination, 0.7–0.8 as 
moderate discrimination, 0.8–0.9 as representing good 
discrimination, and 0.9–1.0 as indicating excellent dis-
crimination. Additionally, predictors distribution and 
a percentage stacked chart pertaining to the risk of bias 
and applicability assessment were created using office 
software Excel.

Results
Study selection
Initially, 14,369 records were retrieved through the sys-
tem. After removing duplicated studies, 9181 articles 
remained. Upon reviewing titles and abstracts, 9132 
articles unrelated to the research topic were excluded. 
Furthermore, we identified four studies through cita-
tion searches of relevant systematic reviews and con-
ducted full-text readings for 39 articles. Among these, we 
excluded five studies targeting populations with diabetes 
or peripheral artery disease (PAD), five studies predicting 

outcomes such as re-amputation or considering indica-
tors like death as adverse events, three studies with fewer 
than two predictors, two studies with duplicate sample 
data, and five studies with missing important data or 
lacking model performance evaluations. Ultimately, 20 
articles were included in this review. Figure 1 illustrated 
a flowchart depicting the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 2020 
guidelines, outlining the comprehensive search process 
and its outcomes.

Characteristics of the included studies
Among the included literatures, 17 [17, 18, 22, 23, 28–40] 
were in English and three [24, 41, 42] were in Chinese, 
with 12 publications [22–24, 28–35, 41] within the last 
5 years. Covering studies conducted in nine countries: 10 
[22–24, 28, 29, 31, 32, 34, 41, 42] from China, two each 
from the United States [30, 39] and India [36, 37], and 
one each from Germany [35], the Philippines [33], South 
Korea [17], Portugal [17], the Netherlands [38], and 
Spain [40]. Seven studies [18, 33–36, 38, 42] were pro-
spective, while the remainder were retrospective. Three 
papers [31, 40, 41] focused on predictive models for DF 
amputation in T2D patients. Five studies [28–30, 38, 
39] involved multiple centers, while the remaining were 
conducted at single centers. Two studies [30, 33] concen-
trated on major amputation as the primary outcome, one 
[29] on minor amputation, and four studies [ 18, 23, 35, 
38] simultaneously predicted two different outcome indi-
cators (e.g., amputation and minor amputation, amputa-
tion and major amputation, minor amputation and major 
amputation). The remaining studies focused on any form 
of amputation, with one study [37] reporting simple and 
complex amputation prediction models. Sample sizes 
ranged from 23 to 32,685 participants across the stud-
ies, with follow-up periods ranging from 3  months to 
3.5 years. An overview of the essential study characteris-
tics can be found in Table 1.

Basic features of prediction model
A total of 54,265 DF patients were included in these stud-
ies. Amputation occurred in 3779 patients, with a preva-
lence of 5.9–58.5%. Three of the included papers utilized 
external data to validate the predictive performance of 
existing amputation scoring systems [17, 18, 33], while 
the remaining studies focused on developing new mod-
els. The range of candidate factors considered in each 
study varied from seven to 44, with the events per vari-
able (EPV) spanning from 0.194 to 53.556. Among the 17 
studies dedicated to model development, five opted for 
traditional logistic regression (LR) [31, 36, 38–40], four 
employed a single machine learning (ML) method [23, 
28, 35, 37], and eight utilized multiple ML techniques [22, 
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24, 29, 30, 32, 34, 41, 42]. The most prevalent ML method 
was random forest (RF), used in five studies, followed by 
extreme gradient boosting (XGBoost) and support vector 
machine (SVM), each appearing in four studies. Across 
the 20 papers, a total of 77 prediction models were con-
structed, with 20 optimal models highlighted across 17 
model development studies. Notably, in all five studies, 
data with incomplete clinical information were excluded, 
yet details regarding the number of missing values and 
the handling methods were not explicitly mentioned [22, 
28–30, 37]. Regarding model evaluation, only 11 studies 
appropriately assessed differentiation and calibration. 
Thirteen model development studies employed inter-
nal validation techniques, with seven using Bootstrap or 
K-fold cross-validation methods [23, 24, 29, 32, 41], while 
four lacked a formal model validation process [34, 35, 37, 
39]. In terms of model presentation, Stefanopoulos et al. 
[30] and Wang et al. [29] developed web-based risk cal-
culators for clinical application and dissemination, Li 
[24] created amputation risk assessment and prediction 
software, and Peng et  al. [31] transformed the complex 
regression equation into a visual line graph model. Xie 
et al. [31] utilized SHapley Additive Explanations (SHAP) 
to visually illustrate the contribution of each feature to 
the model’s predictions. Three models were based on 
equations [22, 35, 41] and scoring systems [36, 39, 40], 
whereas in other studies, the model presentation formats 

were not specified. Table  2 displayed the overview of 
model constructed for the included prediction models.

Model performance and predictors
The AUC (areas under the curve) values for each model 
were shown in Fig.  2. The reported AUCs in the model 
development research ranged from 0.790 to 0.939. In 
the validation model studies, with the exception of 
SIGN (Scottish Intercollegiate Guidelines Network) and 
SWESS (Saint Elian Wound Score System), which dem-
onstrated AUC values below 0.6 [18], the remaining 
models displayed AUC values exceeding 0.7, signifying 
robust model performance. Kasbekar et  al. [37] exclu-
sively reported model accuracy, while another study 
focused solely on model sensitivity and specificity [18]. 
Remarkably, only one study employed decision curve 
analysis (DCA) to evaluate the threshold probability of 
model benefit [31], while five studies opted for the Hos-
mer–Lemeshow (H–L) goodness-of-fit test or calibra-
tion curve to assess model calibration [23, 28, 31, 39, 41]. 
Across three model validation studies involving 11 scor-
ing systems, Wagner’s Classification and UTC (University 
of Texas classification) emerged as the most frequently 
validated systems, featured in all three studies. The final 
models incorporated between 2 and 37 factors, com-
prising a total of 88 predictive factors across eight cat-
egories: sociodemographic, lifestyle, biomedical factors, 

Fig. 1  PRISMA 2020 flow diagram for systematic review



Page 6 of 16Huang et al. Diabetology & Metabolic Syndrome          (2024) 16:126 

Table 1  Basic characteristics of the included studies

Minor amputation was defined as any amputation below the ankle, whereas major amputation was defined as amputation above the ankle. Amputation was defined 
as a minor or major amputation

DF diabetic foot, EMR electronical medical records, T2D type 2 diabetes, DFU diabetic foot ulcers, NA not applicable, DM diabetes mellitus, HCUP healthcare cost and 
utilization project, HER electronic health records, UTC​ University of Texas classification

Author (year), 
country

Study design Participants Data source Outcomes to be 
predicted

Amputation cases/
sample size (%)

Follow-up time

Chen et al. [22] (2023), 
China

Retrospective cohort DF, unspecified 
diabetes

EMR of one hospital 
(2015–2020) + tel-
ephone

Amputation/death 
related to DF

25/200 (12.5%) 3 years

Li et al. [28] (2023), 
China

Retrospective cohort Inpatients with DF Healthcare Big Data 
Platform of two hos-
pitals (2014–2021)

Amputation/all-cause 
death

15/175 (8.6%) 2 years

Yang [41] (2023), 
China

Retrospective study T2D with DFU EMR of one hospital 
(2015–2020)

Amputation 213/364 (58.5%) –

Stefanopoulos et al. 
[30] (2022), America

Retrospective study Adult inpatients 
with DFU

Nation inpatient 
sample of HCUP 
(2008–2014)

Major lower extrem-
ity amputation

1 928/32 685 (5.9%) –

Wang et al. [29] 
(2022), China

Retrospective study Texas grade 3 (UTC 3) 
DFU patients

EMR of two hospitals 
(2018–2019)

Minor amputation 75/362a (20.7%) –

Xie et al. [23] (2022), 
China

Retrospective cohort Adult inpatients 
with DFU

HER of one hospital 
(2009–2020)

Minor amputation/
major amputation

Minor: 71/618 
(11.5%); major: 
47/618 (7.6%)

–

Du et al. [32] (2021), 
China

Retrospective case 
control

DFU diagnosed 
and conformed 
to WIFI wound clas-
sification, grade 1–3

HER of one hospital, 
COVID-19 pandemic, 
post-lockdown (2020)

In-hospital amputa-
tion/death

6/23 (26.1%) NA

Li [24] (2021), China Retrospective case 
control

DF, unspecified 
diabetes

HER of one hospital Amputation 118/618 (19.1%) NA

Peng et al. [31] (2021), 
China

Retrospective case 
control

Adults with T2D were 
diagnosed DFU

EMR of two depart-
ments in one hospital 
(2015–2019)

Amputation 58/125 (46.4%) NA

Hüsers et al. [58] 
(2020), Germany

Prospective cohort Inpatients or outpa-
tients DM with DFU

EMR of one hospital 
(2013–2019)

Any-amputationb/
major amputation

Any: 75/237 (31.6%)
Major: 29/237 (12.2%)

6 months

Lin et al. [34] (2020), 
China

Prospective cohort Inpatients with DF EMR of one hospital 
(2018) + telephone

Amputation/death 
related to DF

–/200 (–) 3 years

Vera-Cruz et al. [33] 
(2020), Philippines

Prospective cohort 19 years or older 
and diagnosed 
with DF

Interview + physical 
examination + EMR

Major amputation 17/63 (27.0%) 1 year

Chetpet et al. [36] 
(2018), India

Prospective cohort Adult inpatients 
or outpatient 
with DFU

One hospital 
(2015–2016)

Amputation 44/150 (29.3%) 1 year

Chen [42] (2018), 
China

Prospective cohort Inpatients with DF EMR of one hospital 
(2014–2016) + tel-
ephone

Amputation/death 
related to DF

37/273 (13.6%) 3 years

Jeon et al. [17] (2017), 
Korea

Retrospective cohort Inpatients with DFU 
(at least to Wagner 
stage 1)

Chart + photo-
graphic + EMR 
(2010–2014)

Amputation 67/137 (48.9%) –

Kasbekar et al. [37] 
(2017), India

Retrospective cohort Inpatients with DF EMR of one hospital 
(2011–2013)

Amputation 83/301 (27.6%) –

Monteiro-Soares [18] 
(2015), Portugal

Prospective cohort Outpatients with DM 
and active foot ulcer

One DF outpatient 
clinic (2010–2013)

Amputation/major 
amputation

68/293 (23.2%)
19/29 3(6.5%)

≥ 3 months

Pickwell et al. [38] 
(2015), Netherlands

Prospective cohort DM presenting 
with a new foot ulcer

14 DF clinics in 10 
European countries 
(2003–2004)

Amputation/minor 
amputationc

159/575 (27.7%)
103/575 (17.9%)

1 year

Lipsky et al. [13] 
(2011), America

Retrospective case 
control

Inpatients with DF 
infection

A database of 97 
acute-care hospitals 
(2003–2007)

In-hospital amputa-
tion

647/3018 (21.4%) NA

Barberan et al. [40] 
(2010), Spain

Retrospective cohort Inpatient T2D 
with acute DF infec-
tion

Clinical records 
of one hospital

Amputation 26/78 (33.3) ≥ 3.5 year
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diabetes-related factors, foot examination, microvascu-
lar complications, cardiovascular disease, and others. 
Noteworthy risk factors, recurring more than 5 times in 
multivariate models, included age, gender, HbA1c, hemo-
globin (HGB), white blood cell count (WBC), low-density 
lipoprotein cholesterol (LDL-C), diabetes duration, and 
Wagner’s Classification. The distribution of predictors 
was illustrated in Fig. 3. For further details, please refer to 
Supplementary material (Table S1).

Risk of bias and applicability evaluation
All studies were evaluated to have a high risk of bias, 
indicating methodological issues in either the devel-
opment or validation of the model. In the participant 
domain, eight studies were identified as having a high 
risk of bias, primarily due to their reliance on retrospec-
tive data or the potential lack of full representation of 
the model’s target population within the selected subject 
[17, 24, 29–32, 39, 41]. Some studies exclusively enrolled 
patients with DFU, potentially leading to an overestima-
tion of the model’s performance [17, 29, 32]. In terms of 
predictors, six studies were classified as having a high 
risk of bias, while two were deemed unclear. The primary 
factors contributing to bias were identified as follows: 
in studies utilizing data from multicenter healthcare 
institutions, subjective predictors such as peri-wound 
edema, ulcer size, and ulcer depth necessitate measure-
ments from personnel with varying clinical experience or 
qualifications, thereby increasing the risk bias within the 
predictors [38]. Retrospective studies often lacked speci-
fication regarding the type of specification [29, 30, 41] or 
failed to ensure blinding of predictor evaluators [24, 31, 
32], resulting in classifications of “unclear” or “high risk 
of bias.” Additionally, certain predictors, such as culture 
report and osteomyelitis, may exhibit a time lag in their 
results compared to other information [30, 37], which 
fails to meet the requirement of having “all predictors 
available at the time the model is intended to be used.” In 
the realm of outcomes, three studies included the history 
of amputation as predictors [23, 36, 39], leading to poten-
tial duplication in outcome indicators, thereby possibly 
inflating the model’s performance and warranting a rat-
ing of “high risk”. Furthermore, six studies had uncertain 
forecast times. Given that the criteria for DF amputation 
typically involve a comprehensive evaluation of multi-
ple factors, including clinical symptoms, signs, imag-
ing examinations, and blood circulation, which often 
require subjective judgment, the utilization of data from 

multicenter retrospective studies may lack unified crite-
ria for outcome indicators. Therefore, the signal problem 
“Was the outcome defined and determined in a similar 
way for all participants?” for the four studies was ruled 
“PN” [28–30, 39].

In the analysis domain, all 20 studies were found to 
have a high risk of bias. Among them, 16 out of 17 model 
development studies had insufficient sample sizes, with 
only one study meeting the recommended guideline of 
having more than 20 EPV [30]. Additionally, one model 
validation study had a sample size of less than 100 [33]. 
Eight studies converted continuous variables into cat-
egorical ones, either entirely or partially, using arbitrary 
rules for categorization [29, 30, 32, 33, 36, 38, 39, 42]. 
This approach simplified the relationship between vari-
ables, potentially introducing subjective bias or infor-
mation loss and reducing the model’s flexibility. Li [24] 
employed Z-score standardization to preprocess con-
tinuous variables, aiding in dimensionality reduction, 
mitigating the influence of outliers, and enhancing the 
model’s convergence speed. Regarding missing data han-
dling, six studies reported the number of missing per-
sons or values [17, 18, 24, 35, 36, 41], but only two of 
them detailed specific treatment methods. Specifically, 
Yang [41] removed cases with over 40% missing values 
and imputed missing quantitative data using the median. 
Conversely, Li’s strategy involved deleting features with 
more than 60% missing data and filling remaining gaps 
using the median, mean, mode, and K-Nearest Neighbor 
(KNN) algorithm [24]. Moreover, two studies proceeded 
with modeling without conducting variable screen-
ing, opting instead for the full set of predictors [23, 32]. 
Another study failed to avoid selecting variables solely 
based on univariate analysis, overlooking potential inter-
actions between features and possibly omitting key fac-
tors [40]. Additionally, nine studies did not consider 
competitive risk and time analysis in their models, poten-
tially disregarding data complexity [17, 24, 29–32, 39, 40]. 
In terms of model performance evaluation, there’s a nota-
ble absence of standardized calibration assessment, with 
most studies concentrating solely on discrimination dur-
ing both model development and validation stages. Nota-
bly, 75% of the studies did not report model calibration 
results, while only two studies omitted reporting model 
AUC values [18, 37]. Furthermore, four studies failed to 
address concerns related to model overfitting, underfit-
ting, and optimism when evaluating model performance 
[35, 36, 38, 40, 41]. Additionally, six studies relied solely 

a Oversampling was used to expand the sample to 573 cases
b Excluding lesser toes; “–” indicated not report
c Amputations proximal to and including the hallux

Table 1  (continued)
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on internal validation methods, utilizing a single ran-
domly split sample of participant data [22, 30, 34, 37, 39, 
42]. Lastly, six studies did not provide clarity on whether 
the predictors and their weights in the final model were 
consistent with the reported multivariate analysis results 
[28, 32, 34, 37, 38, 42].

Overall, five studies were deemed to have a high risk 
of applicability, while 11 were considered to have a low 
risk. In terms of participant domains in applicability, nine 
studies were categorized as high risk, primarily due to a 
lack of emphasis on DF across all degrees of ulceration 
groups. Concerning predictor domains, three studies 
were marked as unclear because the timing of predic-
tion was not clearly reported, and there were uncertain-
ties regarding the timing of predictor measurements. 

Regarding the outcome domain, five studies did not pro-
vide information on the predicted time of the outcome. 
Table 3 and Fig. 4 showed the included literature’s risk of 
bias and applicability according to PROBAST analysis.

Discussion
The reported amputation incidence varies widely, mainly 
due to differences in ulcer severity among the study popu-
lations. Studies focusing on DFU patients typically report 
a higher amputation incidence compared to those focus-
ing on DF patients alone. This discrepancy underscores 
the complexity of the disease progression, as the devel-
opment of DF complications is influenced by numerous 
factors [43]. Therefore, early diagnosis and intervention 
are imperative. Previous studies have shown that many 

Fig. 2  The values of area under the curve. Study a AUC values based on multiple machine methods; Study b AUC values of a single model 
development method and model validation study. AUC in the figure indicated model validation; without validation, assess modeling performance. 
Bold font referred to the preferred model by the study. We considered AUC = 0.5–0.7 as poor discrimination, 0.7–0.8 as moderate discrimination, 0.8–
0.9 as good discrimination, and 0.9–1.0 as excellent discrimination. AUC​ area under the curve, GA-BPNN Genetic Algorithm-Based Backpropagation 
Neural Network, SVM support vector machine, RFE recursive feature elimination, RF Random Forest, XGBoost extreme gradient boosting, GBDT 
gradient boosting decision tree, ANN artificial neural network, DT decision tree, Amp amputation, CNN convolution neural network, LightGBM Light 
Gradient Boosting Machine, BLR Bayesian logistic regression, scoring system SIGN, Scottish Intercollegiate Guidelines Network, SEWSS Saint Elian 
Wound Score System, SINBAD site, ischemia, neuropathy, bacterial infection, and depth, DUSS diabetic ulcer severity score, DEPA depth of the ulcer, 
extent of bacterial colonization, phase of ulcer and association aetiology, CHS curative health services wound grade scale
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Fig. 3  Map of final predictors distribution. PLT platelet, PDW platelet distribution width, RBC red blood cell, PMN neutrophil, SCr serum creatinine, 
BUN blood urea nitrogen, UA uric acid, URO urobilinogen, PRO urine protein, LDL-C low-density lipoprotein cholesterol, HDL-C high-density 
lipoprotein cholesterol, AST aspartate aminotransferase; SSI surgical site infection, IDSA infectious diseases society of America, ABI ankle-brachial 
index, TcPO2 percutaneous oxygen partial pressure, AO arterial occlusion

Table 3  PROBAST results of included studies

ROB: risk of bias; D: development only; D + V: development and validation in the same publication; V: external validation; +: indicated low ROB/low concern regarding 
applicability; −: indicated high ROB/high concern regarding applicability; ?: indicated unclear ROB/unclear concern regarding applicability

Study
Author (year)

Study type ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Chen 2023 D + V + + + − + + + − +

Li 2023 D + + − − + + + − +

Yang 2023 D + V − ? ? − + ? ? − ?

Stefanopoulos 2022 D + V − − − − + ? ? − ?

Wang 2022 D + V − ? − − − ? ? − −

Xie 2022 D + V + + − − + + ? − ?

Du 2021 D + V − − − − − + + − −

Li 2021 D + V − − − − + + + − +

Peng 2021 D + V − − − − + + + − +

Hüsers 2020 D + + + − + + + − +

Lin 2020 D + V + + + − + + + − +

Vera-Cruz 2020 V + + + − + + + − +

Chetpet 2018 D + + − − + + + − +

Chen 2018 D + V + + + − + + + − +

Jeon 2017 V − + ? − − + + − -

Kasbekar 2017 D + V + − ? − + + ? − ?

Monteiro-Soares 2015 V + + + − − + + − −

Pickwell 2015 D + + + − + + + − +

Lipsky 2011 D + V − − − − + + + − +

Barberan 2010 D + + + − − + + − −
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major amputations can be prevented through timely 
risk interventions, including optimal glycemic control, 
multidisciplinary cooperation, timely revascularization, 
active DF care and education, regular foot assessments, 
and early referrals for ulcerative lesions [44, 45]. Predic-
tive models play a crucial role in stratifying the risk of DF 
amputation, enabling medical staff to prioritize interven-
tions for high-risk patients and optimize resource allo-
cation. With an increasing number of predictive models 
available, it’s crucial to select high-quality ones based on 
evidence recommendations to provide reliable screening 
tools for clinical practice. This study included 17 model 
development studies, comprising three minor ampu-
tation models, four major amputation models, and 13 
any-amputation models. These models demonstrated 
moderate to good predictive performance in internal 
validation, with AUC values ranging from 0.790 to 0.939. 
Furthermore, 11 DF classification systems were evaluated 
in three external validation studies, reporting AUC values 
ranging from 0.560 to 0.899. Nonetheless, all the studies 
were appraised to have a high risk of bias, and five studies 
were considered of high concern with regard to applica-
bility in line with PROBAST. The current landscape indi-
cates a scarcity of robust prediction models, emphasizing 
the imperative for further high-quality studies to drive 
progress in this field.

The predictive model quantifies the degree of corre-
spondence between the estimated probability and the 
potential probability of an event, with a primary focus 
on early risk identification and intervention. In con-
trast, the classification system places emphasis on a 
thorough evaluation of existing foot ulcers and offers 

guidance for treatment decisions, albeit susceptible to 
subjective assessment bias [46]. However, these two 
methodologies can synergistically complement each 
other in the comprehensive management of DF, ulti-
mately enhancing the efficacy of both prevention and 
treatment measures [23]. Within the realm of clinical 
risk management, the integration of the classification 
system with other objective variables has shown poten-
tial in enhancing the predictive performance related to 
patient amputation. This review underscores the adop-
tion of a combined approach in which nine developed 
models integrated the foot ulcer classification system 
for joint prediction, showcasing its superior perfor-
mance compared to individual classification systems 
[22, 23, 32, 35–37, 40, 41]. Wagner’s classification (0–5 
grade), renowned for its simplicity and ease of appli-
cation, has historically received significant attention 
in earlier research endeavors [19]. Nonetheless, con-
temporary guidelines from the IWGDF now advocate 
for the consideration of the WIFi system, particularly 
for DF patients accompanied by PAD [46]. This frame-
work serves as a tool for stratifying both the likeli-
hood of healing and the risk of amputation. The WIFi 
system offers a more holistic assessment by evaluating 
the extent of tissue loss, ischemia, and foot infection 
across a spectrum ranging from none to severe. This 
systematic approach facilitates clinicians in accurately 
discerning and communicating the severity of DFU. 
Remarkably, the study conducted by Vera-Cruz et  al. 
[33] highlighted the superior predictive performance of 
the WIFi system compared to Wagner’s Classification. 
It is imperative to underscore that the implementation 

Fig. 4  Percentage stacked chart regarding risk of bias and applicability assessment
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of these assessment frameworks necessitates the exper-
tise and training of specific assessors to ensure consist-
ency in evaluation outcomes. In the clinical setting, 
healthcare professionals are afforded the flexibility to 
select the most suitable classification system tailored 
to the unique circumstances of each patient. This per-
sonalized approach enhances their ability to effectively 
predict DF amputation outcomes.

In addition to the classification system for DFU, com-
monly observed biomedical factors include HGB, LDL-
C, HbA1c, and WBC. Previous studies have shown that 
elevated levels of WBC, C-reactive protein (CRP), and 
erythrocyte sedimentation rate (ESR) were associated 
with an increased risk of amputation [9, 47]. These mark-
ers of infection are often elevated in cases of foot infec-
tion or gangrene, with osteomyelitis also being a robust 
predictor of amputation, suggesting their potential indi-
rect role in predicting amputation occurrence [48]. From 
another perspective, increased levels of acute-phase 
inflammatory markers may indicate impaired immune 
response, worsening peripheral circulation, or inflam-
matory processes and infections triggered by high blood 
sugar levels, contributing to the development of PAD and 
ultimately amputation [1]. Elevated HbA1c levels typi-
cally indicate poor blood sugar control, leading to micro-
vascular and neuropathic complications that affect foot 
circulation and nerve supply, resulting in sensory loss, 
autonomic nerve dysfunction in the feet, and acceler-
ated formation and deterioration of foot ulcers, thereby 
increasing amputation risk [43]. Similarly, an increase in 
LDL-C concentration in the blood may lead to abnor-
mal deposition on cardiovascular artery walls, forming 
atherosclerotic plaques, vessel blockage, and subsequent 
peripheral arterial obstructive disease, all contribut-
ing to increased amputation risk [23]. Among sociode-
mographic variables, gender, age and diabetes duration 
emerged as frequent predictors, consistent with findings 
from systematic reviews by Shin et  al. [49]. Behavioral 
differences between genders are believed to explain the 
higher risk of amputation among males [50]. Addition-
ally, estrogen’s protective effect on females, particularly 
concerning cardiovascular factors, and potential gender 
differences in immune response may contribute to this 
disparity [51]. With advancing age, individuals experience 
a gradual decline in physiological functions, including 
metabolic capacity, immune function, and tissue repair, 
increasing the risk of amputation. Prolonged exposure 
to high blood sugar levels in diabetic patients results in 
damage to multiple systems and organs, including the 
nervous, vascular, and immune systems, elevating the 
risk of foot complications and ultimately leading to the 
formation of foot ulcers, which may necessitate ampu-
tation [1]. Overall, the consistent inclusion of predictive 

factors in the model provides readily accessible tools for 
healthcare professionals to promptly assess amputation 
risk.

Although some models demonstrated excellent pre-
dictive capabilities across the 20 studies, our assessment 
using PROBAST revealed that all studies were flagged 
for a high risk of bias, largely stemming from inad-
equate reporting in the outcome and analysis domains. 
Firstly, the majority of studies relied on retrospective 
data sources. While a few employed a prospective design, 
a significant number failed to implement a blinded 
approach to outcome determination and predictor 
information. To ensure objectivity in evaluation, results 
should be assessed by an independent evaluator. Addi-
tionally, patients with a history of amputation should be 
excluded from the study population to prevent overes-
timation of the model’s predictive performance. These 
individuals face a heightened risk of re-amputation due 
to various factors, including compromised blood vessels, 
exacerbated vascular lesions, increased infection risk, 
altered pain perception, and restricted mobility [52]. Sec-
ondly, adopting a uniform definition and measurement 
of predictors is essential to ensure consistent assess-
ment among subjects. Particularly in subjective assess-
ments, different assessors may introduce bias. This also 
applies to defining outcome indicators; where subjective 
judgments are involved, such as imaging or pathological 
findings, uniform evaluator training is necessary to miti-
gate individual differences. Finally, limited sample size 
posed another common issue, with an EPV of at least 10 
widely accepted to minimize overfitting [53]. According 
to PROBAST standards, an EPV higher than 20 indicates 
lower overfitting risk in the model [26]. However, predic-
tive models developed using ML techniques may require 
a larger sample size (EPV > 200) to adjust for overfitting 
[26]. Given the relatively low incidence of amputation 
and numerous candidate predictors, only one study in 
this review met the EPV criteria of PROBAST [30], while 
two studies met the EPV criteria of 10–20 [35, 39]. Fur-
thermore, within the existing evidence base, many model 
studies inadequately report or mishandle missing data, 
with failure to report being more common than simply 
excluding missing data. Future research should employ 
appropriate missing data processing methods, such as 
multiple imputation, and ensure their transparent report-
ing in studies [26].

In summary, the lack of calibration evaluation in most 
models highlights a common issue in predictive mod-
eling research and contributes to the high risk of bias in 
these models. Therefore, the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) statement recommends employ-
ing calibration diagrams, calibration curves, or H–L tests 
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to assess model calibration [54]. Despite most research 
models have good predictive performance built by differ-
ent algorithms, having the best predictive performance 
indicator does not necessarily mean good clinical appli-
cability [55]. In this study, only Peng et al. [31] assessed 
the actual application effect of the DCA assessment 
model under different risk thresholds. Consequently, the 
clinical utility and scalability of these models have been 
called into question. Moving forward, emphasis should 
be placed on the generalizability of the models. While 
considering model accuracy, selecting the appropriate 
model based on clinical applicability and practical con-
venience is crucial, while avoiding excessive pursuit of 
statistical optimization.

Study limitation
There are certain potential limitations to this study. 
Firstly, our inclusion criteria encompassed studies pub-
lished in English or Chinese, potentially constraining 
the applicability of the findings to populations that speak 
different languages. This limitation might necessitate 
adaptations when implementing these models in diverse 
regions with varying linguistic backgrounds. Secondly, 
the study focused on a population of patients with DF 
or DFU and did not include predictions of amputation 
due to only the diabetic stage or peripheral arterial dis-
ease. In addition, quantitative synthesis and analysis of 
the overall model performance were not conducted due 
to methodological differences of original literature and 
transparency of data reporting. Finally, the complexity of 
the internal structure of the included literature, mostly 
based on ML methods, presents a challenge in explain-
ing the prediction basis of the model, limiting its inter-
pretability in clinical practice to some extent. Future 
research can utilize visual tools or employ local interpre-
tative approaches to demonstrate or explain key features, 
weights, and decision paths of the model, enhancing trust 
and understanding of the model’s predictions and mak-
ing them more applicable to clinical practice. Moreover, 
ML algorithms represent a novel and rapidly emerging 
approach for predicting patient outcomes. Unfortunately, 
reproducing these predictive models was not feasible in 
this study. Nevertheless, these findings are promising and 
warrant further investigation in future research.

Conclusion
DF amputation risk prediction models demonstrated 
good discrimination and reasonable applicability. How-
ever, they were hindered by significant methodological 
limitations, introducing high bias risks that may poten-
tially undermined model performance and clinical util-
ity. Future model development studies should adhere 
to PROBAST guidelines as much as possible to reduce 

bias risks, and Hosmer should be employed to regu-
late the reporting process of predictive models [56]. 
Machine learning-based models could benefit from 
upcoming TRIPOD-AI [57] guidelines to further stand-
ardize scientific rigor in this field. Additionally, future 
research should focus on assessing the clinical util-
ity of prediction models, balancing the pros and cons 
of medical interventions, and conducting multicenter, 
large-sample external validation to evaluate model 
applicability.
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