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Abstract 

Background  Despite a growing body of observational studies indicating a potential link between metabolic syn-
drome and colorectal cancer, a definitive causal relationship has yet to be established. This study aimed to elucidate 
the causal relationship between metabolic syndrome and colorectal cancer through Mendelian randomization.

Methods  We screened for instrumental variables associated with metabolic syndrome and its diagnostic compo-
nents and with colorectal cancer through the use of a genome-wide association study database, and conducted 
a preliminary Mendelian randomization analysis. To corroborate the dependability of our conclusions, an additional 
dataset was used for replication analysis in a Mendelian randomization method, which was further integrated 
with a meta-analysis.

Results  Preliminary analysis using the inverse variance weighted method revealed positive correlations 
between metabolic syndrome (OR [95% CI] = 1.37[1.15–1.63], P = 5.02 × 10–4) and waist circumference (OR 
[95% CI] = 1.39[1.21–1.61], P = 7.38 × 10–6) and the risk of colorectal cancer. Replication analysis also revealed 
the same results: metabolic syndrome (OR [95% CI] = 1.24[1.02–1.51], P = 0.030) and waist circumference (OR [95% 
CI] = 1.23[1.05–1.45], P = 0.013). The meta-analysis results further confirmed the associations between metabolic 
syndrome (OR [95% CI] = 1.31[1.15–1.49], P < 0.001) and waist circumference (OR [95% CI] = 1.32[1.18–1.47], P < 0.001) 
and colorectal cancer.

Conclusion  Our study indicated that metabolic syndrome increases the risk of CRC, particularly in patients 
with abdominal obesity.

Keywords  Metabolic syndrome, Colorectal cancer, Abdominal obesity, Mendelian randomization, Waist 
circumference

Introduction
Colorectal cancer (CRC) is currently the third most prev-
alent malignancy and the second most deadly malignancy 
worldwide. Annually, CRC accounts for an estimated 
1.8 million new cases and 880,000 fatalities, represent-
ing approximately 10% of the total cancer incidence and 
mortality rates [1, 2]. The CRC is considered an indicator 
of increased human development indices [3]. In recent 
years, as quality of life has improved and dietary habits 
have shifted, the incidence of CRC has steadily increased. 
This trend may be attributed to factors such as unhealthy 
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diets, sedentary lifestyles, and smoking, which are often 
accompanied by overweight or obesity and are closely 
related to metabolic syndrome (MetS) [4].

MetS, as defined by the International Diabetes Federa-
tion, is characterized by the presence of a minimum of 
three out of five diagnostic components: enlarged waist 
circumference (WC), high diastolic blood pressure (DBP) 
or systolic blood pressure (SBP), increased triglycerides 
(TG), low HDL cholesterol (HDL-C), and elevated fast-
ing glucose (FG) [5]. The global prevalence of MetS is on 
the rise, with estimates suggesting that approximately 
one quarter of the global population fulfils the diagnostic 
criteria for MetS. MetS is considered to be a significant 
factor influencing cancer incidence, and in recent years, 
its relationship with CRC has attracted widespread atten-
tion [6, 7]. Previous studies have shown that MetS not 
only affects the incidence of CRC but also influences its 
progression and has even become an independent risk 
factor for the metastasis and recurrence of CRC [8–10]. 
Additionally, many studies have indicated that the diag-
nostic components of MetS are linked to a heightened 
risk of CRC [11]. However, since most of the current evi-
dence is derived from observational studies, these stud-
ies are susceptible to confounding factors, such as small 
sample sizes, selection bias, and limited follow-up dura-
tion, which could lead to biased results. Therefore, it is 
difficult to determine whether MetS is causally related to 
CRC.

Mendelian randomization (MR) represents a method-
ology employed to evaluate causal associations between 
exposures and outcomes, utilizing single nucleotide pol-
ymorphisms (SNPs) linked with the exposure as instru-
mental variables (IVs) [12]. The random allocation of 
SNPs to offspring at conception substantially mitigates 
bias arising from confounding factors [13]. Genome-wide 
association study (GWAS) have identified a multitude 
of SNPs associated with CRC and MetS, including their 
diagnostic components. Consequently, this study utilizes 
MR analysis to explore the causal relationship between 
them.

Materials and methods
Study design
In the MR study, MetS and its diagnostic components 
were considered as exposure. SNPs related to these expo-
sures were selected as genetic IVs and were sourced from 
publicly accessible GWAS datasets. It was employed to 
assess the causal relationship between exposure and out-
come (e.g., CRC). The selected SNPs, serving as effec-
tive genetic IVs, must satisfy three core assumptions of 
MR [14]: (1) a robust association is observed between 
the selected genetic IVs and the exposure; (2) the genetic 
IVs are independent of any confounders that may affect 

the relationship between the exposure and the outcome; 
and (3) the influence of the genetic IVs on the outcome is 
exerted exclusively through the exposure.

GWAS data resources
The GWAS data on MetS were sourced from the CNCR 
database (https://​ctg.​cncr.​nl/). van Walree et  al. [15], 
selectively included individuals of European ances-
try, ultimately using an effective population size of 
461,920, and identified 235 genomic risk loci correlated 
with MetS. Genetic data on FG were obtained from the 
MAGIC (https://​magic​inves​tigat​ors.​org/). Scott et  al. 
[16], conducted a genome-wide association meta-anal-
ysis of 133,010 individuals of European ancestry with-
out diabetes and identified 64,432 associated SNPs. The 
GWAS ATLAS (https://​atlas.​ctglab.​nl/) was the source 
of the genetic dataset related to SBP. Watanabe et  al. 
[17], aggregated data from 361,402 individuals of Euro-
pean ancestry and identified 257 independent genomic 
risk loci and 10,534,620 SNPs. The GWAS dataset for 
TG was released from the Center for Statistical Genetics 
(https://​csg.​sph.​umich.​edu/). Teslovich et  al. [18], pub-
lished a study in which a total sample size of 96,598 indi-
viduals of European ancestry was included, and 2,625,646 
SNPs were screened. Genetic datasets for WC, DBP, and 
HDL-C were all released through the IEU Open GWAS 
project (http://​gwas.​mrcieu.​ac.​uk/). The datasets for WC 
and DBP originated from MRC-IEU, which involved sta-
tistical analysis of 462,166 and 436,424 individuals of 
European ancestry, respectively, and analyzed 9,851,867 
SNPs in total. The dataset for HDL-C was disclosed in 
research by Howe LJ et  al [19]. This research amalga-
mated data from 178,086 siblings spanning 19 distinct 
cohorts, culminating in the derivation of GWAS esti-
mates for 25 phenotypes, inclusive of HDL-C, sample 
size of 37,120 (Table 1).

Summary data for CRC from GWAS were obtained 
from the GWAS Catalog (http://​www.​ebi.​ac.​uk/​gwas) 
using the accession number GCST012876. This data-
set, encompassing 38,370,461 SNPs, originated from a 
study conducted by Huyghe et al [20]. The study’s cohort 
consisted of 26,554 individuals of European ancestry, 
comprising 11,895 cases and 14,659 controls. This CRC 
dataset was utilized for preliminary analysis. All the data 
samples in the abovementioned studies included both 
male and female individuals.

IVs selection
To adhere to assumption 1, we identified IVs associated 
with exposure through stringent conditions. Initially, 
we selected genetic variant SNPs with genome-wide 
significance (P < 5 × 10–8) that were significantly asso-
ciated with exposure to serve as IVs. Subsequently, to 

https://ctg.cncr.nl/
https://magicinvestigators.org/
https://atlas.ctglab.nl/
https://csg.sph.umich.edu/
http://gwas.mrcieu.ac.uk/
http://www.ebi.ac.uk/gwas
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ensure the independence of each SNP, we employed the 
PLINK algorithm (parameters: r2 < 0.001, clumping win-
dow = 10,000  kb) to clump SNPs, eliminating linkage 
disequilibrium. Furthermore, to address potential biases 
arising from weak IVs, the F-statistics for each SNP were 
calculated using the formula F-statistics = β2/SE2, where 
β represents the effect size of exposure IVs, and SE repre-
sents the standard error of β [21]. If the value of F statis-
tics was less than 10, identifying the variable as a weak IV 
was excluded [22]. Next, we extracted SNPs significantly 
associated with the exposure (P < 5 × 10–8) and further 
harmonized the SNPs for exposure and outcome, also 
eliminating palindromic SNPs, because these can intro-
duce potential linkage flip issues, leading to ambiguity 
in the allele-specific coordination of effects between the 
exposure and outcome. Finally, the remaining SNPs were 
subjected to MR analysis.

MR analysis and sensitivity analysis
In this study, we estimated the causal relationship 
between MetS, its diagnostic components, and CRC 
using five distinct MR methods which included the 
inverse variance weighted (IVW), MR‒Egger, weighted 
median, simple mode, and weighted mode methods. 
IVW aggregates the Wald ratio of each SNP, and under 
the assumption of valid IVs, it can provide the most 
accurate estimates [23]. If genetic IVs affect the outcome 
through pathways other than exposure, the IVW method 
may identify biased results. Therefore, the MR-Egger 
method can serve as a supplement to IVW, introducing 
an intercept term in the regression model to adjust for 
biases in genetic IVs, thereby yielding more stable conclu-
sions [24]. As long as more than 50% of the IVs are valid, 
the weight median can offer accurate causal effect esti-
mations [25]. The simple mode is particularly affected by 
the heterogeneity of IVs. This method selects the mode 
of the distribution of causal estimates, providing robust-
ness against a subset of invalid IVs. On the other hand, 
weighted mode improves upon simple mode by weight-
ing each IVs’ estimate by its inverse variance, making it 

ideal for datasets where IVs vary significantly in their reli-
ability. This method is beneficial when some pleiotropy 
is present. In brief, simple mode and weighted mode can 
provide better casual estimates when dealing with instru-
mental variables of varying reliability, yet their effective-
ness remains limited [26]. Overall, we primarily assess 
the causal relationship between MetS and its diagnostic 
components and CRC using the IVW method, with the 
other four MR methods serving as supplementary analy-
ses. The causal effect estimations and confidence inter-
vals of the five methods are displayed in a forest plot.

Furthermore, to ascertain the robustness of our find-
ings, several sensitivity analyses were conducted. These 
included Cochran’s Q test, the MR‒Egger intercept test, 
MR-PRESSO, leave-one-out (LOO) analysis, and fun-
nel plots. Cochran’s Q test was used to evaluate het-
erogeneity among the IVs; significant heterogeneity was 
indicated by a P value of less than 0.05, necessitating the 
adoption of a random-effects IVW model over a fixed-
effect IVW model [27]. We calculated the MR-Egger 
intercept to evaluate the potential pleiotropic effects 
exerted by the IVs, where a P value less than 0.05 indi-
cated the likelihood of horizontal pleiotropy [24]. Sub-
sequently, we used the MR-PRESSO global test, which 
provides a higher level of evidence, to further evaluate 
horizontal pleiotropy. Additionally, the MR-PRESSO out-
lier and distortion test was applied to identify and adjust 
for any outliers, thereby correcting for horizontal pleiot-
ropy by excluding outlier SNPs, thus fulfilling assumption 
2 of MR [28]. LOO analysis was conducted by sequen-
tially removing each SNP associated with the exposure 
and repeating the IVW analysis to evaluate whether the 
results were heavily influenced by individual SNPs [29]. 
A funnel plot was used to assess the robustness of the 
results.

Replication and meta‑analysis
To evaluate the reliability of the causal relationship 
between MetS and its diagnostic components with CRC, 
we replicated the MR and sensitivity analyses in another 

Table 1  Overview of GWAS data related to exposure

ICD international classification of diseases

Exposure (ICD) Ancestry Simple size Author Institution PMID

Metabolic syndrome (E88.81) European 461,920 van Walree et al CNCR database 35983957

Fasting glucose European 133,010 Scott et al MAGIC 22885924

HDL cholesterol European 37,120 Howe LJ et al Within family GWAS consortium 35534559

Triglycerides European 96,598 Teslovich et al Center for Statistical Genetics 20686565

Systolic blood pressure European 361,402 Watanabe et al GWAS ATLAS 31427789

Diastolic blood pressure European 436,424 Ben Elsworth et al MRC-IEU /

Waist circumference European 462,166 Ben Elsworth et al MRC-IEU /
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CRC cohort. The datasets for this cohort were also 
sourced from the GWAS Catalog, with the GWAS acces-
sion number GCST012877. This GWAS dataset included 
a total sample of 23,691 individuals of European ancestry, 
including 11,835 cases and 11,856 controls, and identi-
fied a total of 12,313,483 SNPs. In brief, GWAS datasets 
bearing the accession number GSCT012876 were uti-
lized for preliminary analysis. For the replication analysis, 
GWAS datasets with the accession number GCST012877 
were used. The causal relationship between MetS and its 
diagnostic components in different CRC datasets were 
combined with meta-analyses, which quantified the het-
erogeneity between different dataset estimates using the 
I2 statistic and corresponding P value from Cochran’s 
Q test. In instances where significant heterogeneity 
was observed (I2 > 50% and P < 0.05), a random-effects 
model was used for the meta-analysis. Conversely, in the 
absence of significant heterogeneity, a fixed-effects model 
was applied.

Statistical power and genetic directionality assessment
Additionally, when the direction of causality or potential 
pleiotropy is unclear, genetic variations affecting multiple 
traits may influence outcomes through pathways other 
than exposure. Therefore, the Steiger test was used to 
satisfy assumption 3 of MR and refute reverse causality, 
ensuring that the genetic IVs primarily affect exposure 
and not directly the outcome [30].

In summary, during the MR analysis process, we identi-
fied MetS and its diagnostic components having poten-
tial causal effects on CRC through strict criteria: (1) IVW 
P < 0.05 and meta-analysis P < 0.05. (2) The direction of 
the five MR methods is consistent, i.e., the odds ratios 
(OR) are either greater than 1 or less than 1. (3) After 
removing outlier SNPs, the MR results show no hetero-
geneity or horizontal pleiotropy. (4) MR estimates are 
not significantly affected by individual SNPs. (5) There 
is no reverse causality. To ensure that MR studies have 
sufficient statistical power to detect the estimation of 
the causal effects of IVs on the exposure and outcome, 
we calculated statistical power using an online website 
(https://​sb452.​shiny​apps.​io/​power/) [31]. Overall, we set 
the Type I error rate at 0.05 and calculated the statistical 
power using the outcome’s sample size, case odds ratio, 
the proportion of variance explained (PVE) of selected 
IVs, and the OR from the IVW method. When the sta-
tistical power exceeds 80%, we consider the MR analysis 
results to be highly reliable.

MR analysis was conducted using the ’TwoSampleMR’ 
and ’MR-PRESSO’ packages in R software version 4.3.1, 
and meta-analysis was conducted using the ’meta’ pack-
age. The data utilized in our research were exclusively 
sourced from publicly available genetic databases. 

Consequently, the necessity of obtaining ethical approval 
from the affiliated ethics committees of the authors was 
waived.

Results
Preliminary analysis
We used the PLINK algorithm to clump SNPs, exclud-
ing palindromic SNPs and weak SNPs (F statistic < 10). 
However, in the subsequent MR-PRESSO global test, 
we detected horizontal pleiotropy in the FG (P < 0.001), 
TG (P = 0.003), and DBP (P = 0.016). Through the MR-
PRESSO outlier and distortion test, we recognized 
and removed all outliers in the FG (P = 0.574; outli-
ers: rs1260326, rs174576, rs2191349), TG (P = 0.707; 
outliers: rs12678919, rs174546, rs1260326), and DBP 
(P = 0.122; outliers: rs10774625, rs41475048). Ulti-
mately, we identified SNPs strongly associated with MetS 
(N = 166), FG (N = 27), HDL-C (N = 31), TG (N = 21), 
SBP (N = 191), DBP (N = 221), and WC (N = 321) as 
genetic IVs. Subsequently, a preliminary MR analy-
sis was conducted (Figs. 1 and 2). The IVW results (OR 
[95% CI] = 1.37[1.15–1.63], P = 5.02 × 10–4, statistical 
power = 99.3%) revealed a significant association between 
genetic susceptibility to MetS and increased CRC risk. 
This association was further confirmed by simple mode 
analysis (OR [95% CI] = 2.14[1.07–4.28], P = 0.033). 
Concurrently, the IVW (OR [95% CI] = 1.39[1.21–1.61], 
P = 7.38 × 10–6, statistical power = 100%), weight median 
(OR [95% CI] = 1.29[1.01–1.66], P = 0.044), and simple 
mode (OR [95% CI] = 2.20[1.09–4.41], P = 0.027) all indi-
cated statistically significant and directionally consistent 
results, suggesting that an increase in WC raises the risk 
of CRC. According to the MR analyses of MetS and WC, 
the direction and magnitude of the estimates from all five 
MR methods were consistent (OR > 1). The remaining 
diagnostic components of MetS (e.g., FG, HDL-C, DBP, 
SBP, and TG) showed no statistically significant associa-
tion with CRC risk (IVW: P > 0.05), however, it is note-
worthy that their calculated statistical power values are 
all less than 80%, with FG at 51.5%, HDL-C at 7.1%, TG 
at 22.6%, SBP at 2.5%, and DBP at 6.1%. Furthermore, 
Cochran’s Q test indicated heterogeneity in the HDL-C 
results (MR‒Egger: P = 0.040, IVW: P = 0.045). This het-
erogeneity may be attributed to genetic interactions, 
environmental factors, or sample sizes, among other fac-
tors. To exclude the impact of heterogeneity, we substi-
tuted the fixed-effects IVW with a random-effects IVW 
model. No heterogeneity was indicated in the remaining 
six results (P > 0.05). After the removal of outliers, the 
MR-PRESSO results also indicated no horizontal pleiot-
ropy. Furthermore, the Steiger test indicates that there 
is no reverse causality between MetS and its diagnostic 
components and CRC (Table 2). LOO analysis confirmed 

https://sb452.shinyapps.io/power/)
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that individual SNPs do not cause bias in MR, and fun-
nel plots demonstrated the stability of the results (Sup-
plementary Figures. S1 and S2).

Replication and meta‑analysis
To enhance the credibility of our preliminary analysis, 
we replicated an MR analysis of CRC using an additional 
GWAS dataset. Initially, we still selected IVs of rigor-
ous quality. In the replication cohort, FG (P = 0.008) and 
DBP (P = 0.014) exhibited horizontal pleiotropy, and the 
MR-PRESSO outlier and distortion test identified and 
removed all outliers in FG (P = 0.891; outliers: rs1260326, 
rs174576) and DBP (P = 0.862; outliers: rs41475048, 
rs7744284). Ultimately, in the replication cohort, SNPs 
strongly associated with MetS (N = 166), FG (N = 28), 
HDL-C (N = 31), TG (N = 23), SBP (N = 189), DBP 
(N = 221), and WC (N = 321) were selected as genetic 
IVs. This was followed by an MR replication analysis 
(Fig.  3 and 4). The IVW results indicated a significant 
correlation between genetic susceptibility to MetS and 
increased CRC risk (OR [95% CI] = 1.24[1.02–1.51], 
P = 0.030, statistical power = 81.8%), while an increase 
in WC was associated with an increased risk of CRC 
(OR [95% CI] = 1.23[1.05–1.45], P = 0.013, statistical 
power = 89.7%). According to the MR analyses of MetS 
and WC, the direction and magnitude of the estimates 

from the five MR methods were consistent (OR > 1). 
Consistent with the preliminary analysis, no significant 
causal relationships were detected between the other 
diagnostic components and CRC (IVW: P > 0.05), with 
statistical power of FG at 12.1%, HDL-C at 34.5%, TG 
at 4.1%, SBP at 3.4%, and DBP at 39.9%. Additionally, 
after removing outliers, both the MR‒Egger intercept 
term and MR-PRESSO results excluded the possibil-
ity of horizontal pleiotropy associated with MetS and its 
diagnostic components, and Cochran’s Q test (P > 0.05) 
also confirmed the absence of heterogeneity between 
them. The Steiger test also confirmed that there was no 
reverse causality between MetS and its diagnostic com-
ponents and CRC (Table  3). LOO analysis and funnel 
plots confirmed the stability of the results (Supplemen-
tary Figures. S3 and S4 online). Finally, we used a meta-
analysis of the IVW results from both cohorts (Fig.  5). 
The results of the meta-analysis further proved that MetS 
and its diagnostic component WC can influence CRC 
incidence. Specifically, genetic susceptibility to MetS (OR 
[95% CI] = 1.31[1.15–1.49], P < 0.001) and WC (OR [95% 
CI] = 1.32[1.18–1.47], P < 0.001) increased the risk of 
CRC. A meta-analysis of the remaining diagnostic com-
ponents also revealed no causal relationship with CRC 
(P > 0.05). Moreover, Cochran’s Q test demonstrated the 
absence of heterogeneity (I2 < 50% and P > 0.05).

Fig. 1  In the preliminary analysis, scatter plot demonstrated the impact of MetS and its diagnostic components on CRC. A Scatter plot of metabolic 
syndrome and colorectal cancer; B Scatter plot of fasting glucose and colorectal cancer; C Scatter plot of HDL cholesterol and colorectal cancer; D 
Scatter plot of Triglycerides and colorectal cancer; E Scatter plot of systolic blood pressure and colorectal cancer; F Scatter plot of diastolic blood 
pressure and colorectal cancer; G Scatter plot of waist circumference and colorectal cancer. SNP single nucleotide polymorphism, MR Mendelian 
randomization
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Discussion
In our study, we integrated two large-scale, publicly 
available GWAS datasets related to CRC. Through rig-
orous MR analysis, we explored the impact of genetic 
susceptibility to MetS and its diagnostic components on 
CRC incidence. We conducted a meta-analysis of the 
IVW results from both the preliminary and replication 

analyses. Ultimately, we established a significant correla-
tion between genetically determined MetS and WC and 
an increased risk of CRC.

Epidemiological evidence has demonstrated a mark-
edly elevated risk of CRC in individuals diagnosed with 
MetS [32]. A recent meta-analysis concluded that there 
is a positive correlation between MetS and the risk of 

Fig. 2  In the preliminary analysis, forest plot for metabolic syndrome and its diagnostic components. 95% CI 95% confidence interval, OR odds ratio, 
N the number of SNPs strongly associated with the exposure, IVW inverse variance weighted
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CRC [33], aligning with the findings of our study. How-
ever, the association between MetS and CRC incidence 
remains controversial due to inconsistent findings in 
previous research, such as gender differences. A study 
by Pelucchi et al. [34], revealed that MetS increased the 
risk of CRC in males but not in females. This gender 
disparity may be attributed to differences in sex hor-
mone levels between males and females. It has been 
suggested that estrogen can reduce the risk of CRC by 
decreasing the synthesis and secretion of bile acids and 

exerting anticancer effects through the inhibition of 
cell proliferation and promotion of apoptosis [35–37]. 
Nevertheless, recent studies have indicated that MetS 
is associated with an increased incidence and mortal-
ity rate of CRC in both males and females [38]. We 
posit that the observed discrepancies might stem from 
the influence of confounding factors characteristic of 
observational study designs. Notably, MR analysis, 
which uses genetic variants as IVs randomly assigned 
at conception, significantly minimizes the impact of 

Table 2  In the preliminary analysis, sensitivity analysis of MR results

IVW inverse variance weighted, RSSobs residual sum of squares observed

Exposure Heterogeneity Intercept term MR-PRESSO Steiger

MR-Egger IVW Intercept P Global test Distortion test P

Q P Q P RSSobs P P

Metabolic syndrome 171.075 0.337 171.136 0.356 0.001 0.810 173.290 0.345 6.26 × 10–20

Fasting glucose 31.617 0.169 35.036 0.111 − 0.016 0.113 71.992  < 0.001 0.574 1.27 × 10–61

HDL cholesterol 43.627 0.040 44.276 0.045 − 0.006 0.517 45.901 0.066 3.27 × 10–230

Triglycerides 18.989 0.458 21.221 0.384 − 0.016 0.152 51.745 0.003 0.707 4.99 × 10–47

Systolic blood pressure 203.847 0.218 203.861 0.233 − 0.001 0.909 206.234 0.227 9.69 × 10–35

Diastolic blood pressure 203.395 0.285 203.403 0.302  < − 0.001 0.930 273.824 0.016 0.122 3.34 × 10–33

Waist circumference 291.094 0.867 291.548 0.871 0.002 0.501 293.679 0.86 2.72 × 10–52

Fig. 3  In the replication analysis, scatter plot demonstrated the impact of MetS and its diagnostic components on CRC. A Scatter plot of metabolic 
syndrome and colorectal cancer; B Scatter plot of fasting glucose and colorectal cancer; C Scatter plot of HDL cholesterol and colorectal cancer; D 
Scatter plot of Triglycerides and colorectal cancer; E Scatter plot of systolic blood pressure and colorectal cancer; F Scatter plot of diastolic blood 
pressure and colorectal cancer; G Scatter plot of waist circumference and colorectal cancer. SNP single nucleotide polymorphism, MR Mendelian 
randomization
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confounding factors. Therefore, our study substantially 
reduces these influences.

Furthermore, among the diagnostic components of 
MetS, an increase in WC significantly elevates the inci-
dence of CRC. WC is a reliable indicator for identifying 
abdominal obesity and a core criterion for diagnosing 

MetS, as it is positively correlated with visceral adipose 
tissue volume [39]. Abdominal obesity is closely linked to 
CRC. Abdominal obesity can increase the risk of devel-
oping CRC, with accumulations of subcutaneous and vis-
ceral fat significantly increases the mortality risk in CRC 
patients [40, 41]. This difference may be associated with 

Fig. 4  In the replication analysis, forest plot for MetS and its diagnostic components. 95% CI 95% confidence interval, OR odds ratio, N the number 
of SNPs strongly associated with the exposure, IVW inverse variance weighted
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the secretion of adipokines such as leptin and resistin 
by adipose tissue. Many studies indicate that the over-
expression of leptin correlates with later stages of CRC. 
Leptin not only regulates angiogenesis and cell apop-
tosis through various pathways but also activates the 
production of inflammatory cytokines such as IL-6 and 
TNF-α, thereby promoting CRC development [42]. Resis-
tin can act as a risk factor and potential prognostic bio-
marker in CRC. It has been shown that resistin activates 
macrophages involved in inflammatory processes and 

stimulates angiogenesis through various proangiogenic 
molecules, including VEGF receptors, ultimately pro-
moting the growth and metastasis of CRC [43].

In contrast, our study did not find significant causal 
relationships between other diagnostic components of 
MetS besides WC and the risk of CRC. Although the cur-
rent study results show a lack of significant association, 
our calculation of statistical power revealed that, except 
for WC, the statistical power of other diagnostic com-
ponents was below 80%. This suggests that even if there 

Table 3  In the replication analysis, sensitivity analysis of MR results

IVW inverse variance weighted, RSSobs residual sum of squares observed

Exposure Heterogeneity Intercept term MR-PRESSO Steiger

MR-Egger IVW Intercept P Global test Distortion test P

Q P Q P RSSobs P P

Metabolic syndrome 181.975 0.160 182.145 0.171 0.002 0.696 184.372 0.177 6.74 × 10–15

Fasting glucose 34.945 0.113 35.312 0.131 − 0.005 0.605 57.283 0.008 0.891 3.47 × 10–59

HDL cholesterol 27.894 0.524 28.127 0.567 0.004 0.633 30.548 0.582 5.03 × 10–224

Triglycerides 25.000 0.247 25.076 0.293 − 0.002 0.804 27.435 0.323 2.55 × 10–61

Systolic blood pressure 218.810 0.055 220.803 0.051 − 0.008 0.193 223.765 0.053 1.26 × 10–22

Diastolic blood pressure 250.917 0.068 252.039 0.068 0.005 0.323 278.726 0.014 0.862 5.18 × 10–24

Waist circumference 353.901 0.087 354.851 0.087 − 0.003 0.355 360.379 0.074 2.68 × 10–33

Fig. 5  Meta-analyses of the association between MetS and its diagnostic components and CRC. A Meta-analysis results of metabolic syndrome; B 
Meta-analysis results of fasting glucose; C Meta-analysis results of HDL cholesterol; D Meta-analysis results of triglycerides; E Meta-analysis results 
of systolic blood pressure; F Meta-analysis results of diastolic blood pressure; G Meta-analysis results of waist circumference. 95% CI 95% confidence 
interval, OR odds ratio, SE standard error
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is indeed a causal relationship between them and CRC, 
this study may not be able to effectively detect it. Sev-
eral studies suggest that insulin resistance is a primary 
mechanism of MetS. Elevated levels of insulin in the 
body, through binding with cell surface IGF-1 receptors, 
promote cell proliferation, thereby facilitating the devel-
opment of CRC [44]. Epidemiological studies indicated 
that diabetes is a risk factor for CRC, particularly type 2 
diabetes. A MR study by Murphy et al., shows that high 
fasting insulin levels are associated with an increased 
risk of CRC, rather than high FG levels or type 2 dia-
betes [45]. However, obesity is widely considered one 
of the significant factors contributing to insulin resist-
ance, especially abdominal obesity. Research by Tian 
et al. [46], indicated that high levels of total serum cho-
lesterol, TG, and HDL-C are positively correlated with 
colorectal adenomas, which are precancerous lesions 
of CRC with a prolonged risk of developing CRC. Fang 
et al. [47], after adjusting for potential confounders such 
as BMI and WC, found no correlation between dyslipi-
demia and CRC risk. Currently, the relationship between 
hypertension and CRC remains unclear, and reports on 
this topic are limited. One study comparing early-onset 
CRC patients with healthy controls revealed a significant 
correlation between hypertension, as one of the compli-
cations of obesity, and increased CRC risk [48]. Although 
some observational studies have suggested links between 
FG, SBP, DBP, TG, and HDL-C and CRC incidence, we 
believed that these associations may be mediated by 
abdominal obesity.

This study is subject to certain limitations. Firstly, due 
to the relative scarcity of GWAS datasets related to the 
exposure and outcome factors in our study, we con-
ducted MR analysis using GWAS data from individuals 
of European ancestry only. However, in different ethnic 
groups, the same genetic variants may exhibit differ-
ent magnitudes or directions of effects due to diverse 
genetic backgrounds. Therefore, this specificity restricts 
the extrapolation of our findings to broader, more diverse 
populations. Secondly, as previously mentioned, due 
to the lack of data, the GWAS datasets we used are not 
sufficient to address the issue of inadequate statistical 
power, thus certain results should be interpreted with 
caution. To improve the statistical power of the study, 
future research should consider using larger sample sizes 
or more effective genetic instrumental variables to accu-
rately estimate causal relationships. Moreover, although 
our GWAS data included both male and female samples, 
which significantly reduced the impact of confounding 
factors, we cannot fully elucidate whether gender differ-
ences affect the causal relationship between MetS and 
CRC. In light of this, we believe that further gender-strat-
ified research is necessary. Unfortunately, we were unable 

to obtain genetic information specific to male and female 
MetS patients. Finally, our study exhibits some degree 
of survivor bias. Due to the late onset of CRC, publicly 
released GWAS datasets may overlook individuals who 
died or failed to be diagnosed before the development of 
the disease under study, leading to biased estimates of the 
genetic associations involved. Meta-analysis can provide 
more stable estimates by pooling data and potentially 
eliminating individual biases, which somewhat mitigated 
the impact of survivor bias. But it is noteworthy that we 
must still carefully consider the characteristics of each 
dataset, such as the variability of different GWAS data-
sets, the diversity of the ancestries of the individuals 
studied, and the late onset of CRC, to effectively compre-
hend survivor bias.

Conclusion
In conclusion, this study provides reliable evidence sup-
porting a causal relationship between MetS and CRC. In 
view of this, clinicians should be particularly attentive 
to the potential risk of CRC in patients with MetS. This 
approach is especially pertinent for patients with larger 
waist circumferences who are obese, where an emphasis 
on enhanced CRC screening and preventive measures is 
essential.
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