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Abstract
Background Observational studies have indicated an association between diabetes mellitus (DM), glycemic traits, 
and the occurrence of Parkinson’s disease (PD). However, the complex interactions between these factors and the 
presence of a causal relationship remain unclear. Therefore, we aim to systematically assess the causal relationship 
between diabetes, glycemic traits, and PD onset, risk, and progression.

Method We used two-sample Mendelian randomization (MR) to investigate potential associations between diabetes, 
glycemic traits, and PD. We used summary statistics from genome-wide association studies (GWAS). In addition, we 
employed multivariable Mendelian randomization to evaluate the mediating effects of anti-diabetic medications on 
the relationship between diabetes, glycemic traits, and PD. To ensure the robustness of our findings, we performed a 
series of sensitivity analyses.

Results In our univariable Mendelian randomization (MR) analysis, we found evidence of a causal relationship 
between genetic susceptibility to type 1 diabetes (T1DM) and a reduced risk of PD (OR = 0.9708; 95% CI: 0.9466, 
0.9956; P = 0.0214). In our multivariable MR analysis, after considering the conditions of anti-diabetic drug use, this 
correlation disappeared with adjustment for potential mediators, including anti-diabetic medications, insulin use, and 
metformin use.

Conclusion Our MR study confirms a potential protective causal relationship between genetically predicted type 1 
diabetes and reduced risk of PD, which may be mediated by factors related to anti-diabetic medications.
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Introduction
Diabetes mellitus (DM) and Parkinson’s disease (PD) are 
disorders associated with aging, and their prevalence 
is increasing worldwide. In the past few decades, the 
global number of adult diabetes patients has increased 
from 108  million in 1980 to 422  million in 2014 [1]. At 
the same time, the age-standardized prevalence of dia-
betes in men increased from 4.3 to 9.0% and in women 
from 5.0–7.9% [1]. It is estimated that by 2045, the num-
ber of diabetes patients will increase to 783 million [2]. 
Parkinson’s disease (PD) is also a rapidly developing neu-
rodegenerative disease, with a global average prevalence 
of 1–2‰ [3]. With the exacerbation of population aging, 
the burden of PD will become even heavier [4]. Accord-
ing to statistics, from 1990 to 2016, the incidence, disabil-
ity burden, and mortality related to Parkinson’s disease 
have more than doubled. Furthermore, a global survey of 
neurological diseases shows that PD may be the fastest-
growing neurological disease globally [5]. In recent years, 
the role of DM in neurodegeneration has grown special 
interest not only as a contributing factor to disease onset 
but also as a modifying factor of motor and nonmotor 
symptoms [6].

Some epidemiological studies suggest an association 
between diabetes and PD, but the results are not entirely 
consistent with some positive correlation studies [7]. A 
recent meta-analysis included 15 cohort studies (includ-
ing over 86,000 PD cases and nearly 30  million partici-
pants), reporting a 27% increased risk of PD in patients 
with diabetes [8]. An earlier meta-analysis included 7 
cohort studies (including 1,761,632 patients) and found 
that the risk of PD in patients with diabetes also increased 
by 38% [9]. It is worth noting that the results of a few 
case-control studies suggest that diabetes may reduce the 
risk of PD [10, 11]. This difference may be attributed to 
heterogeneity, confounding factors, and biases between 
studies (such as inclusion and recall biases) [10]. There-
fore, the causal relationship between diabetes and PD is 
still controversial.

Factors such as ethical and moral constraints, meth-
odological confounding, and reverse causality contribute 
to the lack of high-quality randomized controlled trial 
(RCT) data in observational studies. However, Mendelian 
randomization (MR) provides a promising alternative. 
MR, which conceptually resembles a randomized con-
trolled trial, is based on the principle of random alloca-
tion of genetic variations during meiosis. This random 
allocation makes genetic variations independent of many 
factors influencing observational studies. To investigate 
the causal relationship between genetic liability to diabe-
tes and glycemic traits with Age at onset (AAO), risk of 
PD, and progression (UPDRS3/MMSE/MOCA), we con-
ducted univariable Mendelian randomization (UVMR). 
UVMR allows us to examine the potential causal effects 

of genetic variations on these outcomes. Considering 
the everyday use of clinical anti-diabetic medications in 
diabetes management, we implemented multivariable 
Mendelian randomization (MVMR) to account for biases 
induced by the concomitant use of anti-diabetic drugs. 
This approach allows us to control for the potential con-
founding effects of these medications on the observed 
associations.

Materials and methods
Study design
We used the two-sample MR method to investigate the 
potential causal relationship between diabetes, blood 
glucose traits, and PD. Specifically, we retrieved sum-
mary genetic data for exposure and outcome from two 
independent samples based on strict genetic instrumen-
tal variables (IVs) criteria, avoiding bias caused by over-
lap [12]. Finally, we used rigorously selected SNPs for 
our final MR analysis. Currently, the GWAS database 
of the European population is the largest publicly avail-
able, so we focused on studying participants of European 
ancestry.

All MR analyses in our study need to meet three fun-
damental assumptions: (I) Instrumental variables are 
closely related to the exposure; (II) Instrumental variables 
are independent of confounding factors; (III) Instrumen-
tal variables only affect the outcome through the expo-
sure (see Fig.  1) [13]. The analysis was conducted using 
the TwoSampleMR package (version 0.5.6) in R software 
(version 4.2.2).

Data source
All data for this study were based on publicly available 
GWAS summary results (see Table  1). The T1DM data 
were obtained from a large GWAS summary dataset 
with a sample size of 520,580 (18,942 cases and 501,638 
controls) [14]. The T2DM data were obtained from the 
Diabetes Genetics Replication and Meta-analysis (DIA-
GRAM) consortium, one of the most extensive collab-
orative efforts focused on characterizing the genetic 
basis of T2DM. This GWAS study involved 933,970 indi-
viduals of European ancestry, including 80,154 T2DM 
cases and 853,816 controls [15]. Additionally, data for 
other relevant traits such as glycated hemoglobin lev-
els [14] (N~146,806), fasting glucose [14] (N~200,622), 
two-hour glucose [14](N~63,396), insulin fold change 
during an oral glucose tolerance test (adjusted for BMI) 
[16] (N~53,287), modified Stumvoll insulin sensitivity 
index (adjusted for BMI) [16] (N~53,657), fasting insulin 
[17] (N~151,013), and proinsulin [18] (N~45,861) were 
obtained from The Meta-Analyses of Glucose and Insu-
lin-related traits Consortium (MAGIC).

PD-related phenotypic data AAO [19] (N~28,568), PD 
risk [20] (N~482,730), UPDRS3/MMSE/ MOCA [21] 



Page 3 of 10Wang et al. Diabetology & Metabolic Syndrome           (2024) 16:59 

(N~4093) were obtained from the International Parkin-
son’s Disease Genomics Consortium (IPDGC) [22].

The phenotype data related to anti-diabetic drugs were 
obtained from the IEU Open GWAS project (https://
gwas.mrcieu.ac.uk/), including Drugs used in diabe-
tes [23](N~305,913), Diabetes, insulin treatment [24] 
(N~218,792), Metformin [24] (N~462,933).

All studies have obtained ethical approval from their 
respective institutional review boards and include writ-
ten informed consent from the participants and strict 
quality control. Since all analyses in this paper are based 
on publicly available summary data, ethical approval 
from institutional review boards is not required for this 
study.

Selection of genetic instruments and data harmonization
Select genetic instruments based on the following criteria 
(see Table S1): I. Choose genetic variants that are closely 
associated with the exposure (P < 5 × 10− 8, F-statistic > 10) 
and are independent [linkage disequilibrium (LD) 
r2 < 0.001, Window size = 1 Mb]. II. Remove SNPs closely 
associated with the outcome (p < 5 × 10− 8). III;. Apply the 
MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
test to remove potential outliers before each MR analy-
sis (P < 0.05). III;. To determine whether SNPs are asso-
ciated with potential risk factors, we searched all SNPs 
in PhenoScanner (Version 2, http://www.phenoscanner.
medschl.cam.ac.uk/) [25, 26]. We removed SNPs associ-
ated with the disease or potential risk factors related to 
PD, including neurotoxins, smoking, coffee drinking, use 

of anti-inflammatory drugs, high plasma urate, physical 
activity, and obesity (see Table S2) [27]. The remaining 
SNPs were used in the MR analysis.

MR analysis
To avoid potential pleiotropic effects, we employed three 
different MR methods (inverse-variance weighted (IVW), 
MR-Egger regression, weighted median, and weighted 
mode) to assess the bidirectional causal effects between 
diabetes and PD. The results from the IVW method were 
used as the primary outcome. MR-Egger and weighted 
median complemented the IVW estimates (P < 0.05 indi-
cating a causal relationship between exposure and out-
come). IVW is a commonly used primary method in MR 
studies, which combines all Wald ratios of each SNP to 
obtain an overall estimate [28]. IVW assumes that all 
genetic variations are valid, making it the most efficient 
MR estimation method, but it is also prone to pleiotro-
pic bias. Conversely, MR-Egger believes the instrument 
strength is independent of the direct effect (internal) and 
negligible measurement error (NOME) [29]. Weighted 
median assumes that at least half of the instruments are 
valid [30].

To demonstrate the reliability of our results, we con-
ducted a series of sensitivity analyses to assess potential 
confounding factors. These factors include horizontal 
pleiotropy, heterogeneity, and reverse causality in the 
study. We utilized Cochran’s Q test and a funnel plot to 
measure potential heterogeneity. Cochran’s Q statistic 
evaluates heterogeneity among genetic variations, with 

Fig. 1 Graphical representation of MR assumptions
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a significance level of P < 0.05, indicating the presence 
of heterogeneity. To estimate horizontal pleiotropy, we 
performed the MR-Egger Intercept test. A significance 
level of P < 0.05 indicates the presence of horizontal 
pleiotropy [31]. We employed Steiger’s directional test 
to detect variations that are more strongly associated 
with the outcome than the exposure [32]. If the Steiger 
test provides evidence of a stronger association for spe-
cific genetic instruments, we repeated the analysis after 
excluding these variations [33]. To assess potential direc-
tional pleiotropy, we utilized a funnel plot. Additionally, 
we conducted a leave-one-out study to evaluate whether 
the causal relationship depends on or is biased by any 
individual SNP. Furthermore, we performed reverse MR 
analysis on results with PIVW < 0.05 to assess whether or 
not the results are influenced by reverse causality.

To address potential confounding caused by the 
combined use of diabetes, blood glucose traits, and 
anti-diabetic medication in assessing Parkinson’s disease-
related phenotypes, we employed the Multivariable MR 
(MVMR) method [34]. Overall, these sensitivity analyses 
enhance the reliability of our findings by accounting for 
potential confounding factors and providing a more com-
prehensive assessment of the relationship between the 
variables of interest.

Results
Univariate conventional MR analysis showed a corre-
lation between the genetic prediction of T1DM and a 
reduced risk of PD (IVW OR = 0.9708; 95% CI: 0.9466, 
0.9956; P = 0.0214) (see Figs.  2 and 3; Table  2, S3). The 
estimated associations from MR Egger and Weighted 
median analyses were consistent with the observed 

Table 1 Details of the data sources used in this study
Phenotype Abre. Traits Source Sample size

Total (cases/ controls)
Ancestry Reference

Diabetes Phenotypes & Glycemic Traits
Type 1 diabetes T1DM Type 1 diabetes NA 520,580 

(18,942/501,638)
European Chiou et al. 

[14]
Type 2 diabetes T2DM Type 2 diabetes NA 933,970 

(80,154/853,816)
European Mahajan et al. 

[15]
Glycated hemoglobin levels HbA1c Glucose tolerance 

test
MAGIC 146,806 European Chen et al. 

[17]
Fasting glucose FG Glucose tolerance 

test
MAGIC 200,622 European Chen et al. 

[17]
Two-hour glucose 2hGlu Glucose tolerance 

test
MAGIC 63,396 European Chen et al. 

[17]
Insulin fold change during an oral glucose 
tolerance test (adjusted for BMI)

IFC Insulin resistance MAGIC 53,287 European Williamson et 
al. [16]

Modified Stumvoll Insulin Sensitivity Index 
(adjusted for BMI)

ISI Insulin resistance MAGIC 53,657 European Williamson et 
al. [16]

Fasting insulin FI Pancreatic β-cell 
dysfunction

MAGIC 151,013 European Chen et al. 
[17]

Proinsulin PROI Pancreatic β-cell 
dysfunction

MAGIC 45,861 European Broadaway et 
al. [18]

Parkinson’s disease phenotypes
Parkinson’s disease risk PD risk PD risk IPDGC 482,730 

(33,674/449,056)
European Nalls et al. [20]

Age at onset of Parkinson’s disease AAO PD prodrome IPDGC 28,568 European Blauwendraat 
et al. [19]

UPDRS3 NA PD progression IPDGC 4093 European Iwaki et al. [21]
MMSE NA PD progression IPDGC 4093 European Iwaki et al. [21]
MOCA NA PD progression IPDGC 4093 European Iwaki et al. [21]
Anti-diabetic drugs phenotypes
Drugs used in diabetes NA Antidiabetic drugs UK Biobank 305,913 

(15,272/290,641)
European Wu et al. [23]

Diabetes, insulin treatment NA Anti-diabetic drugs FinnGen 218,792 
(29,071/189,721)

European Kurki et al. [24]

Metformin NA Anti-diabetic drugs FinnGen 462,933 
(11,552/451,381)

European Kurki et al. [24]

MAGIC: Meta-Analyses of Glucose and Insulin-related Traits Consortium; IPDGC: International Parkinson’s Disease Genomics Consortium; UPDRS3, Unified 
Parkinson’s Disease Rating Scale part III; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment
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associations in the primary study, but the confidence 
intervals were often imprecise. It is worth noting that 
these sensitivity methods have lower statistical power 
than IVW because they rely on more stringent assump-
tions; thus, their results are expected to provide weaker 
statistical evidence but cannot offer effect sizes. There 
is no statistical evidence for an impact of T2DM on the 
risk of PD (IVW OR = 1.0292; 95% CI: 0.9714, 1.0905; 
P = 0.3284). Furthermore, there is no statistical evidence 
to suggest an association between diabetes, glycemic 
traits, and other phenotypes of PD.

We conducted a series of sensitivity tests to assess the 
accuracy of the optimistic estimates. These tests included 
Cochran’s Q-test, MR-Egger intercept, leave-one-out 
analysis, and funnel plot. The results of Cochran’s Q-test 
indicated no heterogeneity (P = 0.3968), suggesting that 
the studies included in our calculation were consistent. 
Additionally, the MR-Egger intercept test (P = 0.9704) did 
not detect potential horizontal pleiotropy, further sup-
porting the reliability of our findings. Furthermore, the 
leave-one-out analysis results indicated that the causal 
effect was not driven by a single instrumental variable, 
suggesting that the observed association was robust. The 
symmetrical funnel plot also stated the results’ reliabil-
ity, suggesting minimal publication bias. We conducted 
directionality checks using Steiger’s analysis to validate 
our findings further. These checks did not indicate a vio-
lation of the observed causal relationship, strengthening 
the evidence for our significant associations. Moreover, 
we performed reverse MR analysis to assess the influence 
of reverse causality on our results. The analysis showed 
that the results were unlikely to be influenced by reverse 
causality (IVW OR = 0.9347; 95% CI: 0.8657, 1.0092; 
P = 0.0844), providing additional support for the robust-
ness of our findings(see Table S4).

In the context of MVMR, we evaluated the genetic 
risk of T1DM in combination with anti-diabetic drugs 
(see Table 3, 5). After adjusting for phenotypes related to 
anti-diabetic medications, such as drugs used in diabetes 
(IVW OR = 0.9812; 95% CI: 0.9324, 1.0325; P = 0.4740), 
diabetes, insulin treatment (IVW OR = 0.9822; 95% 
CI: 0.9463, 1.0194; P = 0.3380), and Metformin (IVW 
OR = 1.0000; 95% CI: 0.9825, 1.0178; P = 0.9930), the 
correlation between T1DM and PD risk was no longer 
significant. This suggests that the observed association 
between T1DM and PD risk may be confounded by the 
use of anti-diabetic drugs. The estimated associations 
from MR Egger and Weighted median analyses consis-
tently aligned with the associations observed in IVW. 
Moreover, Cochran’s Q-test and MR-Egger intercept test 
did not reveal potential heterogeneity and pleiotropy, 
further supporting the robustness of our findings.

Discussion
In this analysis, we have demonstrated the potential pro-
tective effect of T1DM on PD risk. Our MVMR analysis 
suggests that this observed causal relationship may be 
driven by drug-related features of specific anti-diabetic 
medications. We thoroughly examined the data using 
various sensitivity methods in the MR analysis and found 
no significant pleiotropy or heterogeneity. Moreover, no 
evidence supports a causal relationship between geneti-
cally predicted T2DM and PD. To delve deeper into 
the topic, we further analyzed the causal relationship 
between glycemic traits and PD. However, the results of 
this analysis do not support a causal relationship between 
the two.

There has been a long-standing controversy regarding 
the association between DM and PD. Epidemiological 
evidence suggests an association between DM and PD, 

Fig. 2 IVW estimates from Diabetes Mellitus, Glycemic traits on PD phenotypes. The color of each block represents the IVW-derived P-values for each MR 
analysis, examining the association between Diabetes mellitus, Glycemic traits, and PD (red indicates a positive association, and blue indicates a negative 
association). PD refers to Parkinson’s disease, AAO stands for Age at onset, UPDRS3 stands for Unified Parkinson’s Disease Rating Scale part III, MMSE stands 
for Mini-Mental State Examination, and MoCA stands for Montreal Cognitive Assessment
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but the results are inconsistent, ranging from significant 
negative correlations to significant positive correlations 
[35–40]. Biological evidence demonstrates that both 
conditions are characterized by abnormal protein accu-
mulation, lysosomal and mitochondrial dysfunction, and 
chronic systemic inflammation [41, 42]. Moreover, hypo-
insulinemia in T1DM patients or insulin resistance (IR) 
in T2D patients leads to hyperglycemia, exposing neu-
rons to increased metabolic stress, neuronal dysfunction, 
and death, thereby directly contributing to the devel-
opment of PD [43]. Furthermore, several anti-diabetic 
drugs have been shown to have anti-PD effects, such as 

DPP-4 inhibitors and GLP-1 receptor agonists [44–46]. 
However, these studies often have relatively small sample 
sizes, which may introduce confounding, selection bias, 
and reverse causality, further limiting the interpretabil-
ity of the results [47]. Additionally, case-control stud-
ies do not adequately address the temporal relationship 
between diabetes and PD since they rely on retrospec-
tive data and often fail to specify the time window for 
exposure assessment. Although large-scale prospective 
studies hold promise in overcoming these limitations, 
conducting such research requires significant human, 
financial, and time resources.

Fig. 3 Mendelian randomization (MR) analysis results for T1DM and its impact on Parkinson’s disease (PD) risk. (A) A scatter plot illustrating the potential 
effects of single nucleotide polymorphisms (SNPs) on T1DM and PD risk using IVW, MR-Egger, and weighted median methods. The slope of the fitted 
lines represents the estimated MR effect per method, while the 95% CI for the effect size on T1DM is shown as vertical lines, and the 95% CI for PD risk is 
shown as horizontal lines. (B) A funnel plot for T1DM shows the estimation using the inverse of the standard error of the causal estimate with each SNP as 
a tool. The vertical line depicts the estimated causal effect obtained using IVW and MR-Egger methods. (C) A forest plot demonstrating the impact of each 
SNP in the MR analysis. (D) A forest plot presenting the results of the leave-one-out sensitivity analysis, where each SNP in the instrument was iteratively 
removed to check the stability of the result
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Although clinical trials have various limitations, early 
identification of risk factors for PD is crucial. Early inter-
vention targeting relevant risk factors is currently the 
most effective approach to delay or prevent the onset 
of PD [48]. However, there is currently no effective cure 
once PD occurs. Compared to traditional epidemiology, 
MR analysis reveals the causal relationship between DM 
and PD cost-effectively, reducing confounding biases 
in epidemiological studies, including reverse causation 
[49, 50]. Three Mendelian randomization studies have 
recently been reported, investigating the causal inference 
of DM on PD in different populations. Chohan et al.‘s MR 
study on the European population reveals that genetically 
predicted T2DM leads to an increased risk and faster 
progression of PD, particularly in motor impairment [51]. 
Park et al.‘s MR study based on the Korean (East Asian) 
population suggests no evidence of a causal association 
between T2DM and PD. The authors explain this seem-
ingly contradictory result as being due to a small sample 
size and ethnic differences [51, 52]. Additionally, Senkev-
ich et al.‘s MR study on the European population suggests 
a potential protective association between genetically 

predicted T1DM and the risk and progression of PD, 
possibly driven by latent pleiotropy [53].

There is ongoing controversy regarding the relation-
ship between DM and PD; given the complex association 
and significant clinical implications between the two, 
it is imperative to robustly replicate this association in 
larger GWAS study cohorts and explore potential under-
lying mechanisms. Consistent with the findings of Sen-
kevich et al., our results confirm the causal relationship 
between T1DM and reduced risk of PD, and we further 
discovered that the use of anti-diabetic medications may 
mediate this causal relationship. Some traditional epi-
demiological approaches have also reported a lower risk 
of PD incidence in DM patients [37, 38, 54]. It has been 
reported that long-term use of anti-diabetic medica-
tions such as GLP-2 receptor agonists and DPP1 inhibi-
tors may potentially reduce the risk of PD [45]. In recent 
years, an increasing body of research evidence supports 
the potential of anti-diabetic medications in reducing 
the risk of PD [55]. Using commonly used anti-diabetic 
drugs targeting the insulin signaling pathway has induced 
neuroprotective effects in preclinical studies and clinical 
trials. A longitudinal study of 5,528 veterans with T2DM 

Table 2 Main results of the MR analysis and sensitivity analysis
Outcome N MR analysis Heterogeneity MR-Egger 

pleiotropy
MR 
PRESSO

Directionality

SNVs Test Test Test Test

Method Estimate (95% CI) P Q value P Egger 
intercept

P Global 
Test P

Correct 
directionaliy

P

Type 1 diabetes (T1DM)
PD risk* 68 IVW 0.9708(0.9466, 0.9956) 0.0214 69.3901 0.3968 0.0002 0.9704 0.3885 TRUE 0
PD AAO 49 IVW -0.0432(-0.2235, 0.1369) 0.6379 36.5035 0.8875 -0.0132 0.6908 0.8941 TRUE 0
UPDRS3 29 IVW 0.0081(-0.0347, 0.0508) 0.712 6.2855 1 0.0059 0.5376 1 TRUE 0.6823
MMSE 31 IVW -0.0502(-0.1265, 0.0261) 0.1969 8.1621 1 0.0018 0.9106 1 TRUE 0.0654
MOCA 23 IVW -0.0983(-0.3123, 0.1157) 0.3678 7.9993 0.9972 0.0037 0.9445 0.9951 TRUE 0.8692
Type 2 diabetes (T2DM)
PD risk 154 IVW 1.0292(0.9714, 1.0905) 0.3284 194.3979 0.0132 -0.0077 0.0921 0.0262 TRUE 0
PD AAO 119 IVW 0.0780(-0.2895, 0.4455) 0.6774 67.9223 0.9999 0.03 0.3063 1 TRUE 0
UPDRS3 49 IVW -0.0796(-0.1834, 0.0243) 0.1331 7.9237 1 0.01 0.2797 1 FALSE 0.0017
MMSE 46 IVW -0.0194(-0.2116, 0.1728) 0.8431 4.1319 1 0.004 0.8081 1 FALSE 0
MOCA 45 IVW -0.0532(-0.6078, 0.5014) 0.8508 5.8716 1 0.0415 0.3616 1 FALSE 0.0003
N SNPs: number of single nucleotide polymorphisms in the instrument. IVW: Inverse variance weighted. MR: Mendelian randomization. MR-PRESSO: Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier. OR: Odds ratio. CI: confidence interval. Beta: MR effect estimate. Se: standard error of MR effect estimate. 
P: P-value. PD: Parkinson’s Disease; AAO: Age at onset of Parkinson’s disease; UPDRS3: Unified Parkinson’s Disease Rating Scale part III. MMSE: Mini-Mental State 
Examination. MoCA: Montreal Cognitive Assessment. Describing PD risk results using OR (95% CI) and UPDRS3/MMSE/MOCA results using Bete ± se

Table 3 Multivariable MR results after adjusting for the anti-diabetic drug
Exposure Outcome Adjustments N SNP Methods Causal effect Heterogeneity Pleiotropy

OR (95%CI) p Q value p Intercept p
TIDM PD risk Drug used in diabetes 134 IVW 0.9812(0.9324, 1.0325) 0.474 61.8836 0.2742 61.5 0.2547

Diabetes, insulin treatment 126 IVW 0.9822(0.9463, 1.0194) 0.338 63.978 0.89 63.92387 0.8747
Metformin 126 IVW 1.0000(0.9825, 1.0178) 0.993 117.526 0.1395 117.5186 0.1249

N SNPs: number of single nucleotide polymorphisms in the instrument. IVW: Inverse variance weighted. MR: Mendelian randomization. MR-PRESSO: Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier. OR: Odds ratio. CI: confidence interval. Beta: MR effect estimate. Se: standard error of MR effect estimate. P: 
P-value. PD: Parkinson’s Disease. Describing PD risk results using OR (95% CI)
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showed that treatment with metformin for more than 
four years can reduce the risk of AD and PD [56]. The 
neuroprotective effect of metformin is mediated through 
the regulation of AMP-activated protein kinase (AMPK) 
activity, which modulates several critical cellular pro-
cesses such as autophagy, cell growth, and mitochondrial 
function, as well as inhibiting microglial activation and 
inflammation [57–60]. Some studies have explored the 
neuroprotective potential of intranasal insulin. Preclini-
cal data indicate that intranasal delivery of recombinant 
human insulin can reach deep brain structures, includ-
ing the hippocampus and nigrostriatal pathway [61]. The 
study by Novak et al. showed that intranasal short-acting 
(regular) insulin treatment improved motor performance 
and function compared to placebo, resulting in lower dis-
ability scores (HY scale) and improved UPDRS motor 
scores compared to placebo [46].

Furthermore, other drugs, such as glucagon-like pep-
tide 1 (GLP-1) agonists, can provide neuroprotection. 
Liraglutide and lixisenatide, both GLP-1 analogs, have 
been shown to induce neuroprotection in PD animal 
models [62]. These drugs can cross the blood-brain bar-
rier (BBB), enhance hippocampal neurogenesis, and 
increase brain-derived neurotrophic factor (BDNF) 
expression, promoting neuroprotection in AD and PD 
[63, 64].

Our study highlights the potential protective effect of 
genetic prediction of T1DM on PD, suggesting that anti-
diabetic drugs may play a crucial role in reducing PD 
risk. However, the exact mechanism underlying this pro-
tective effect remains unclear. Therefore, it is necessary 
to gather further direct evidence to validate our findings 
and develop effective PD prevention and management 
strategies.

We want to acknowledge certain limitations in our 
study. Firstly, it is essential to note that the associations 
observed through MR analysis do not provide informa-
tion about temporal patterns but rather reflect lifelong 
effects on specific risk factors. Secondly, the sample size 
used for analyzing PD progression (UPDRS3/MMSE/
MOCA) is relatively small, which may reduce the analyti-
cal power and potentially lead to false-negative results. 
Conducting larger-scale MR analyses will be essential 
to ensure the robustness of our findings. Additionally, 
it should be considered that genetic variations associ-
ated with T1DM may be correlated with multiple fac-
tors, which could represent alternative pathways through 
which these genetic variations influence PD. This poten-
tial horizontal pleiotropy should be taken into account 
when interpreting our results. Lastly, it is worth men-
tioning that our study primarily focuses on individuals of 
European ancestry. Further research is needed to deter-
mine whether our findings can be generalized to other 
ethnicities.

Conclusion
In summary, our study discovered a direct causal rela-
tionship between genetic predictions of T1DM and a 
decreased risk of PD in individuals of European ances-
try. Moreover, there is indirect evidence indicating that 
anti-diabetic drugs may mediate the protective effect of 
T1DM against PD. However, further research is needed 
to fully understand the mechanisms by which anti-dia-
betic drugs exert their anti-PD effects and to identify 
potential therapeutic targets.
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