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Abstract
Background and aim Unhealthy dietary habits and highly caloric foods induce metabolic alterations and promote 
the development of the inflammatory consequences of obesity, insulin resistance, diabetes and cardiovascular 
diseases. Describing an inflammatory effect of diet is difficult to pursue, owing lacks of standardized quali-quantitative 
dietary assessments. The Dietary Inflammatory Index (DII) has been proposed as an estimator of the pro- or anti-
inflammatory effect of nutrients and higher DII values, which indicate an increased intake of nutrients with pro-
inflammatory effects, relate to an increased risk of metabolic and cardiovascular diseases and we here assessed 
whether they reflect biologically relevant plasmatic variations of inflammatory proteins.

Methods In this cross-sectional study, seven days dietary records from 663 subjects in primary prevention for 
cardiovascular diseases were analyzed to derive the intake of nutrients, foods and to calculate DII. To associate DII with 
the Normalized Protein eXpression (NPX), an index of abundance, of a targeted panel of 368 inflammatory biomarkers 
(Olink™) measured in the plasma, we divided the population by the median value of DII (1.60 (0.83–2.30)).

Results 332 subjects with estimated DII over the median value reported a higher intake of saturated fats but lower 
intakes of poly-unsaturated fats, including omega-3 and omega-6 fats, versus subjects with estimated dietary DII 
below the median value (N = 331). The NPX of 61 proteins was increased in the plasma of subjects with DII > median 
vs. subjects with DII < median. By contrast, in the latter group, we underscored only 3 proteins with increased NPX. 
Only 23, out of these 64 proteins, accurately identified subjects with DII > median (Area Under the Curve = 0.601 
(0.519–0.668), p = 0.035).

Conclusion This large-scale proteomic study supports that higher DII reflects changes in the plasmatic abundance of 
inflammatory proteins. Larger studies are warranted to validate.
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Introduction
The adherence to unhealthy dietary habits and the con-
sumption of highly caloric foods promote metabolic 
alterations, including obesity and insulin resistance, 
which are epidemic conditions leading to type 2 dia-
betes and cardiovascular diseases. Current guidelines 
constantly advise to contain the intake of calorie-dense 
nutrients and foods, upon the concept that reducing their 
metabolic burden will also constrain the inflammatory 
consequences of unhealthy dietary habits [1].

Anyhow, the understanding of a pro-inflammatory 
effect of diet, to link the intake of specific nutritional 
components of foods with the activation of inflam-
matory mechanisms, is difficult to pursue, because of 
shortcomings in the standardization of qualitative assess-
ments (e.g. Food Frequency Questionnaires “FFQs”) 
and in the quantitative analyses of dietary consump-
tion. Several studies tested the inflammatory potential 
of dietary patterns of surrogate indices of the quality of 
diet [2–6], although the nature of the dietary informa-
tion was qualitative and different panels of biomarkers 
were interrogated. Furthermore, the type of assays used 
differed among studies and only a limited number of bio-
markers related to inflammation was tested. The Dietary 
Inflammatory Index (DII) is a validated score [7], gener-
ally calculated from the analysis of FFQs, that has been 
associated with the presence or the occurrence of cardio-
metabolic alterations [8–12] and cardiovascular diseases 
[13–16] in epidemiological studies [17]. DII normalizes 
the intake of each nutrient present in the foods consumed 
over the period of the dietary assessment for a correction 
factor (the “inflammatory effect score” [18]). This factor 
can be either positive, for nutrients that are expected to 
exert pro-inflammatory effects (e.g., saturated fats, to 
which the highest score is addressed), or negative, for 
nutrients that are expected to exert anti-inflammatory 
effects based on experimental evidence from literature 
(e.g. fiber, to which the lowest score is addressed) [18].

Sparse data indicate that a positive or a negative 
change in DII can reflect a respective biologically rel-
evant increase or reduction in the plasma levels of some 
inflammatory proteins. Indeed, some data indicate that 
high DII relates to increased plasma levels of C-Reactive 
Protein (CRP) [8, 13, 19, 20], while others do not support 
this relation [21, 22] or failed to find an association with 
other common markers of inflammation [23]. Also, the 
association between high DII, increased blood levels of 
immune cells and increased levels of few other interleu-
kins and factors (e.g. IL-1 α and TGF- β) has been only 
recently evaluated in marginalized populations [24, 25] 
or in comorbid patients [26].

Thereby, to better elucidate the relation between higher 
DII and inflammatory markers, we conducted a plasma 
proteomic study, measuring the plasmatic abundance 

of 368 proteins, that we previously associated with 
increased cardiovascular risk in independent cohorts 
[27, 28]. By harnessing Proximity Extension Assay (PEA; 
Olink™), a technology that combines the use of antibodies 
with unique oligonucleotides to run DNA amplification 
steps, we simultaneously measured the relative expres-
sion (as Normalized Protein eXpression, “NPX” [29]) of 
each protein, achieving an elevated degree of sensitivity 
to reach up to ng-pg/ml concentration ranges. Two inde-
pendent studies, measuring a smaller number of proteins 
with this technique, found an association between higher 
DII and some inflammatory proteins [6, 30], and we now 
tested whether, enlarging the spectrum of the array, we 
can discover additional fingerprints of an inflammatory 
potential of diet.

Materials and methods
Study design and population
The “PLIC” (Progressione delle Lesioni Intimali Carot-
idee) Study was developed and followed at the Center 
for the Study of Atherosclerosis at E. Bassini Hospital 
(Cinisello Balsamo, Milan, Italy). 2.606 participants were 
initially included in the PLIC study from 2001 to 2003 
[28, 31–33] and all the information needed for the pur-
pose of this study was available on 663 subjects. Supple-
mental Fig. 1 reports the flow-chart of the study. Further 
information about ethic statements, inclusion criteria, 
sample selection, sample size statistical analysis, and 
selection bias are reported in Supplemental Material. 
This work is a cross-sectional study, and it was conducted 
following the standards of the STrengthening the Report-
ing of OBservational studies in Epidemiology (STROBE) 
initiative [34].

Measurement of biochemical and clinical parameters
Blood samples were collected from antecubital vein 
after 12  h fasting on NaEDTA tubes (BD Vacuette) and 
then, centrifuged at 3,000  rpm for 12  min (Eppendorf 
580r, Eppendorf, Hamburg, Germany) for biochemical 
parameters profiling including total cholesterol, HDL-C, 
triglycerides, Apolipoprotein B (ApoB), Apolipoprotein 
A-I (ApoA-I), glucose and C-Reactive Protein. Measure-
ments were performed using immuno-turbidimetric and 
enzymatic methods through automatic analyzers (Ran-
dox, Crumlin, UK). LDL-C was derived from the Friede-
wald formula.

Data on pathological and pharmacological history 
(including lipid-lowering, glucose-lowering, anti-hyper-
tensive, and antiplatelet therapy). Clinical and anthropo-
metrical measures (systolic and diastolic blood pressure, 
Body Mass Index (BMI), waist and hips circumferences, 
height, and weight) and lifestyle habits as described else-
where [32].
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Analysis of the seven days dietary records and definition of 
food groups, items and sub-groups
The intake of calories and macro-/micro-nutrients 
were analyzed from the foods that were self-reported to 
be consumed by the subjects in the seven-day dietary 
records, as previously published [32]. In brief, sub-
jects were asked to fill in a paper version of the seven-
day dietary record, at the moment of having their daily 
meals, with a detailed description about the type of each 
food consumed (e.g., type of milk consumed, if either 
goat milk, full fat-cow milk, semi-skimmed cow-milk), 
the weighted amount and the home size (e.g., number 
of mugs, spoons, number of portion sizes commercially 
available). These data were then analyzed by trained 
dietitians and nutritionists during the clinical evaluation 
of the subject, following the Guidelines dedicated for the 
Italian population regarding the standard portion sizes 
(LARN “Livelli di Assunzione di Riferimento di Nutrienti 
ed energia” [35] and Italian Dietary Guidelines [36]). The 
subjects were asked to provide more information regard-
ing the consumed recipes, to distinguish the amount and 
type of the ingredients. Then, the caloric and the content 
of macro-/micro-nutrients in each food was estimated 
by interrogating the in silico publicly available dataset 
of the Food Composition Database for Epidemiological 
Studies in Italy (BDA) [37], which provides the informa-
tion regarding the caloric and the nutritional composi-
tion of 978 foods and classifies them into “food groups”, 
“food subgroups” and “food items” (for instance, “oils/
butter/margarine” are reported in BDA dataset as “food 
groups”, they can include “oils and vegetable fats” as “food 
subgroups”, which, as a consequence, they include “olive 
oil” as “food item”). We also consulted the available litera-
ture to detail in depth the foods that were eventually not 
described in the BDA dataset [38–42]. In case the dataset 
lacks information regarding the nutritional composition 
of a food or an ingredient, an alternative food with an 
analogous nutritional content was considered [43].

Calculation of the DII
The intake of macro-and micro-nutrients derived 
from the analysis of the seven-days dietary records was 
employed to calculate the DII, following the algorithm 
proposed by Shivappa N et al. [18]. Briefly, the dietary 
intake estimates for each participant were converted to 
centered percentiles for each component referring to 
regionally representative global database by computing 
a z-score; the centered percentile was then multiplied 
by the corresponding “inflammatory effect scores” of 
each nutrient (between − 1 to + 1, when negative values 
indicate an anti-inflammatory effect and positive values 
indicate a pro-inflammatory effect). The inflammatory 
effect score of a food pattern resulted from the sum of the 

inflammatory effect scores of the nutrients included in 
that food pattern.

Proteomics analysis
Proteins were measured by Proximity Extension Assay 
(PEA) strategy and the complete list of the proteins that 
are included in the Cardiovascular II, Cardiovascular III, 
Cardiometabolic and Inflammation panels of the Olink™ 
platform have been previously indicated [27]. Further 
methodological details are reported as Supplemental 
Material.

Statistics
The statistical analyses were performed using the SPSS 
software (version 28.0) for Windows. Graphs were pre-
pared using GraphPad Prism (version 8).

Linear data are presented as mean with standard devia-
tion or as median (interquartile ranges) after verifying for 
normal distribution (Kolmogrov-Smirnov test). The com-
parison within each group was performed with simple 
t-test (if linear distribution) or Mann-Whitney U-test (if 
not-normal distribution). The variations in the expres-
sion of plasma proteins between groups of subjects were 
analyzed by calculating the fold changes (on log2 scale).

To validate the biological relevance of the DII, we built 
a binary outcome prediction (DII > median cohort vs. 
DII < median cohort) model with XGboost algorithm.

Gradient boosting machine learning (ML) model
The model included all the significantly different pro-
teins measured among those with DII > median vs. 
DII < median. The total sample was split randomly into 
a train set (60% of the entire cohort) and a test set (40% 
of the entire cohort). The XGBoost classifier model was 
trained in the train set with 1000 iteration rounds and 
< 0.001 learning rate. Hyperparameter optimization 
was performed by k-fold iteration internal to the train-
ing set. The most important proteins found in the opti-
mized model were then listed by relative importance in 
the Random Forest classifier plot. Then we assessed the 
predicting performance of the algorithm in the test set by 
Receiver Operating Characteristic (ROC) analysis. Mod-
els were built in Python 6.4.5 with pandas, scikit–learn, 
NumPy, XGboost.

Gene Ontology (GO) and KEGG pathway enrichment 
analysis
We conducted an enrichment analysis of biological pro-
cesses with the proteins that emerged as significantly 
associated with higher DII, as previously published [44, 
45]. The DAVID (The Database for Annotation, Visualiza-
tion, and Integrated Discovery, NIAID, North Bethesda, 
MD, USA) platform was used for gene ontology (GO) 
enrichment analyses. The significant GO biological 
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processes (GO_bp) were selected for FDR < 0.05. Then, 
for each GO biological process (GO_bp) we annotated 
the fold of enrichment, an index of the percentage of pro-
teins belonging to a pathway, and the false discovery rate 
(FDR) to indicate how likely the enrichment is by chance 
(FDR < 0.05 indicates a statistically significant enrichment 
of proteins in that pathway).

Results
Specific food patterns and nutritional profiles from 
habitual diets characterize higher DII
663 subjects were asked to self-report their dietary habits 
in a seven-day dietary record. The clinical characteristics 
of the population are reported in Table 1 and the dietary 
data, including the amounts of food patterns consumed, 
the percentages of the energy deriving from the main 
macronutrients (%En/day), and the absolute intakes of 
the micro-nutrients present in the consumed food pat-
terns (either as milligrams/day (mg/day) or micrograms/
day (µg/day)) are reported in Tables 2 and 3.

The nutritional composition of the consumed food pat-
terns was then used to calculate the DII, which was 1.60 
on average in the population (0.83–2.30) and, to explore 

which foods and nutrients mostly reflect higher DII val-
ues, we compared the nutritional and dietary profiles of 
the subjects with DII > median (n = 332, DII = 2.30 (1.97–
2.73)) versus those of the subjects with DII < median 
(n = 331, DII = 0.83 (0.29–1.18)). The subjects with 
DII > median reported to consume not only less veg-
etables (including tomatoes, dark-yellow/leafy/crucifer-
ous vegetables), legumes, and fruits (including fresh and 
dried fruits, flours and juices), but also less daily amount 
of tubers and potatoes, cereals, flour, pasta, bread, crack-
ers and rusks (both refined and whole), oily and non-oily 
fishes), olive oil and wine, compared to subjects with 
DII < median. By contrast, the consumption of other 
food patterns, including milk and yogurt, cheese (includ-
ing low-fat cheese), meat and meat products (including 
preserved, red, and white meat), shellfish and mollusks, 
butter, chocolate, croissant, cookies, puddings, cakes, 
non-alcoholic beverages (including sugar-sweetened bev-
erages, tea and coffee), beer and spirits were comparable 
between the two groups (Table 2 and Supplemental Table 
1).

Of note, the differences in the food patterns con-
sumed resulted in lower daily caloric intake in subjects 

Table 1 Clinical characteristics of the population divided by median DII. The table reports the clinical characteristics and the 
biochemical parameters of the population divided according to the median value of DII. N = 331 subjects displayed DII below the 
median (DII < median) and 332 subjects displayed DII over the median (DII > median)

Total sample (n = 663) DII < median (n = 331) DII > median (n = 332)
Median (25th-75th percentiles) Median (25th-75th percentiles) Median (25th-75th percentiles) p

Dietary Inflammatory Index 1.60 (0.83–2.3) 0.83 (0.29–1.18) 2.30 (1.97–2.73) -
Age (years) 56 (50–61) 56 (50–61) 55 (50–60) 0.187
Female, n (%) 447 (67.42) 215 (64.95) 232 (69.88) 0.176
Smokers, n (%) 126 (19) 52 (15.71) 74 (22.29) 0.031
Physically active, n (%) 295 (44.49) 178 (53.78) 117 (35.24) < 0.001
Body Mass Index (kg/m^2) 26.22 (23.81–28.81) 25.84 (23.5-28.23) 26.66 (24.23–29.18) 0.006
Waist to Hips ratio 0.8 (0-0.84) 0.79 (0.71–0.83) 0.8 (0-0.85) 0.360
Systolic Blood Pressure (mmHg) 130 (120–140) 130 (120–140) 130 (120–140) 0.555
Diastolic Blood Pressure (mmHg) 80 (80–90) 80 (80–90) 80 (80–90) 0.822
Anti-hypertensive therapies, n (%) 153 (23.08) 75 (22.66) 78 (23.49) 0.799
Fasting glucose (mg/dL) 88 (82–96) 87 (81–96) 89 (82–96) 0.347
Glucose-lowering therapies, n (%) 4 (0.6) 2 (0.6) 2 (0.6) 0.998
Cholesterol (mg/dL), mean ± SD 222.43 ± 38.55 224.07 ± 37.21 220.8 ± 39.84 0.275
HDL-C (mg/dL), mean ± SD 54 (45–66) 54 (45–67) 54 (46–65) 0.434
Triglycerides (mg/dL) 91 (64–132) 89 (63–127) 92.5 (68-137.5) 0.147
LDL-C (mg/dL) 144.71 ± 35.76 146.48 ± 33.88 142.92 ± 37.53 0.202
Remnant cholesterol (mg/dL) 18.2 (12.8–26.4) 17.8 (12.6–25.4) 24.64 ± 26.14 0.147
Apo A1 (mg/dL) 149.95 ± 24.58 148.99 ± 23.77 149 (132–169) 0.386
Apo B (mg/dL), mean ± SD 112 (96–131) 114.7 ± 24.96 112.22 ± 25.23 0.274
Apo A1/Apo B ratio 0.75 (0.62–0.93) 0.75 (0.63–0.95) 0.74 (0.6–0.91) 0.185
Lipid-lowering therapies, n (%) 56 (8.45) 27 (8.16) 29 (8.73) 0.789
CRP (mg/L) 0.09 (0.05–0.16) 0.08 (0.04–0.15) 0.1 (0.06–0.17) 0.004
Previous CVD events, n (%) 0 (0) 0 (0) 0 (0) .
Antiplatelet therapies, n (%) 13 (1.96) 9 (2.72) 4 (1.2) 0.160
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Total sample (n = 663) DII < median (n = 331) DII > median (n = 332)
Median (25th-75th 
percentiles)

Median (25th-75th 
percentiles)

Median (25th-75th 
percentiles)

p

Tubers, potatoes, starch (g/day) 21.43 (6.89-40) 24.07 (7.14–44.84) 19.01 (5.63–35.35) 0.019
Vegetables, mushrooms (g/day) 200.21 (147.14-254.69) 234.57 (191.04-295.65) 164.14 (117.87-209.18) < 0.001
Tomatoes (g/day) 14.29 (0-38.58) 14.29 (0-42.86) 14.29 (0-35.36) 0.039
Dark-yellow vegetables (g/day) 7.41 (2.12-20) 13.57 (4.17–28.57) 4.29 (0.82–11.43) < 0.001
Leafy vegetables (including salads)
(g/day)

46.16 (25.69–71.43) 57.14 (34.29–82.44) 37.14 (19.47–57.14) < 0.001

Cruciferous vegetables (g/day) 0 (0-14.29) 4.29 (0-22.5) 0 (0-8.68) < 0.001
Other vegetables (g/day) 109.87 (71.71-148.57) 128.06 (91.43-171.72) 85.71 (58.03-125.78) < 0.001
Legumes and soy products (g/day) 12.86 (0-28.57) 14.29 (3.17–33.33) 5.7 (0-21.43) < 0.001
Fresh fruits, dried fruits, flours, juices (g/day) 261.07 (168.78-350.07) 307.14 (238.57-411.43) 214.29 (119.86-301.35) < 0.001
Fresh fruit and berries (g/day) 238.21 (142.14-323.06) 285.71 (207.14–370) 190.99 (89.29-278.57) < 0.001
Dried fruit and seeds (g/day) 0 (0-2.86) 0.71 (0-4.29) 0 (0-1.79) < 0.001
Fruit juices and drinks (g/day) 0 (0-28.57) 0.71 (0-31.25) 0 (0-4.23) < 0.001
Milk and yogurt (g/day) 122.85 (28.12–170) 125 (27.86-187.86) 110.41 (27.61-162.41) 0.061
Cheeses (g/day) 34.15 (21.43–47.47) 33.85 (20.71–47.81) 34.27 (23.03–47.5) 0.348
Low-fat cheeses (< 25% fat content)
(g/day)

12.86 (0-22.86) 10 (0-21.43) 14.29 (0-23.42) 0.083

Other cheeses (g/day) 18.57 (9.92-30) 18.57 (9.38–30.9) 18.57 (10–30) 0.966
Cereals, flour, pasta, bread, crackers, rusks (g/day) 162.33 (122-207.5) 174.8 (131.67-218.57) 154.29 (113.1-197.57) < 0.001
Refined cereals, flour, pasta, bread,
crackers, rusks (g/day)

157.86 (115.71-202.68) 164.29 (126.31-208.63) 147.67 (106.07-194.67) 0.001

Whole cereals, flour, pasta, bread,
crackers, rusks (g/day)

0 (0–0) 0 (0-4.29) 0 (0–0) < 0.001

Eggs (g/day) 8.33 (1.75–14.37) 8.57 (2.14–16.43) 7.41 (1.53–14.29) 0.240
Meat and meat products (g/day) 93.57 (67.48-123.96) 96 (69.71-125.64) 88.93 (65.46-121.18) 0.142
Processed meat (g/day) 24.43 (13.53–37.4) 25.71 (13.57–37.23) 23.09 (13.42–37.71) 0.460
Meat and offal (g/day) 67.78 (44.29–91.34) 68.57 (48.95–93.01) 64.29 (42.86–89.29) 0.112
Offal (g/day) 0 (0–0) 0 (0–0) 0 (0–0) 0.307
Red meat (g/day) 35.71 (17.14–57.14) 36.54 (17.14-60) 34.01 (17.32–55.98) 0.287
Other meat (g/day) 22.5 (14.29–42.86) 24.29 (14.29–42.86) 21.43 (8.7-42.86) 0.339
Fish, shellfish, mollusks (g/day) 28.57 (14.29-50) 35.71 (20.71-60) 25.36 (7.14–41.79) < 0.001
Oily fish (g/day) 0 (0-14.29) 0 (0–15) 0 (0-7.5) 0.002
Other fishes (g/day) 21 (7.14–36.43) 25 (10-45.61) 14.52 (0-31.27) < 0.001
Shellfish and mollusks (g/day) 0 (0–0) 0 (0–0) 0 (0–0) 0.137
Oils, margarins, butter, cream (g/day) 27.86 (20.69–35.71) 30 (23.04–38.35) 26.24 (18.81–32.63) < 0.001
Margarine (g/day) 0 (0–0) 0 (0–0) 0 (0–0) 0.771
Oils and vegetable fats (g/day) 22.86 (17.14–29.14) 25.17 (19.06–32.33) 20.71 (14.58–25.96) < 0.001
Olive oil (g/day) 21.43 (15.71–27.62) 24.03 (17.86–31.43) 19.24 (14.18–24.62) < 0.001
Other vegetables oils (g/day) 0 (0-1.43) 0 (0-1.74) 0 (0-0.82) 0.120
Butter and animal fats (excluding
cream) (g/day)

2.86 (0-6.43) 2.86 (0-6.43) 2.85 (0-6.31) 0.888

Cream (g/day) 0 (0–0) 0 (0–0) 0 (0–0) 0.950
Sweets, sugar, jams, ice-creams (g/day) 20.32 (9.66–37.39) 21.43 (10.31–41.43) 19.29 (9.29–34.86) 0.186
Chocolate and cocoa (g/day) 0 (0–3) 0 (0-3.69) 0 (0-2.93) 0.938
Croissants, cookies, puddings, cakes
(g/day)

35.71 (20-59.55) 39.29 (20.29–61.43) 33.47 (19.88–55.71) 0.088

Beverages (mL/day) 247.94 (131.67–376.8) 274.61 (149.29-388.57) 211.92 (117.66-356.71) 0.002
Non-alcoholic beverages
(mL/day)

114.29 (67.32-198.12) 115 (68.57-192.86) 107.86 (64.29–200) 0.507

Sugar-sweetened beverages
(mL/day)

0 (0-17.86) 0 (0-10.5) 0 (0-25.54) 0.492

Table 2 Intakes of the food groups, subgroups and items reported to be consumed by the subjects that were divided according to 
median DII. The table lists the amounts of the foods groups (in bold), of the food subgroups and of the food items (in italic) consumed 
by the subjects with DII below the median (DII < median, N = 331) versus the subjects with DII over median (DII > median, N = 332)
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with DII > median compared to subjects DII < median 
(1592.03 (1344.00-1848.50) Kcal/die vs. 1882.61 
(1587.64-2168.17) Kcal/die respectively, p < 0.001; 
Table  3). In search of a possible explanation for this 
finding, we profiled the percentages of energy deriv-
ing from the principal caloric-yielding components of 
diet, which are the macronutrients. Yet, the percentages 
of energy from carbohydrates (including soluble carbo-
hydrates) and proteins were comparable between sub-
jects with DII > median vs. subjects with DII < median 
(49.48 ± 6.36% vs. 50.00 ± 6.27% from carbohydrates, 
p = 0.284; 15.84 (13.29–18.96)% vs. 17.21 (14.76–20.08)% 
from soluble carbohydrates, p < 0.001; 16.04 (14.73–
17.66)% vs. 16.04 (14.65–17.59)%, p = 0.553 from pro-
teins (Table 3)). By contrast, although the energy deriving 
from the intakes of total lipids, and of monounsaturated 
fats (MUFA) were comparable between both groups (for 
total lipids: 35.49 ± 5.68% in subjects with DII > median 
vs. 34.73 ± 5.53% in subjects with DII < median, 
p = 0.083; for MUFA 16.26 (14.22–17.93)% in subjects 
with DII > median vs. 16.25 (14-31-18.33)% in subjects 
with DII < median, p = 0.647 (Table  3)), subjects with 
DII > median reported to acquire higher energy deriv-
ing from the dietary intake of saturated fats, but reduced 
energy deriving from the intake of polyunsaturated fats 
(PUFA) versus subjects with DII < median (for saturated 
fats: 12.05 ± 2.55% vs. 11.08 ± 2.36% respectively, p < 0.001 
(Table  3)); for PUFA: 3.88 (3.39–4.60)% vs. 4.12 (3.55–
4.90)%, respectively p = 0.002 (Table  3)). Also, the per-
centages of energy deriving from the intakes of omega-3 
PUFA and omega-6 PUFA were reduced in subjects with 
DII > median vs. subjects with DII < median (for omega-
3: 0.57 (0.49–0.69)% vs. 0.64 (0.53–0.77)% respectively, 
p < 0.001; for omega-6 3.24 (2.73–3.88)% vs. 3.42 (2.88–
4.12)% respectively, p = 0.013 (Table  3)). It is finally of 
note that higher DII is predominantly associated with 
significantly less intake in the entire spectrum of micro-
nutrients and vitamins (Table 3).

Higher Dietary Inflammatory Index is associated with 
plasma markers of inflammation
Subjects with DII > median presented with higher CRP 
levels versus subjects with DII < median (0.10 (0.06–
0.07) vs. 0.08 (0.04–0.15) mg/L respectively, p = 0.004; 
Table 1), and with higher plasmatic NPXs of 61 proteins 
but lower plasmatic NPXs of 3 proteins (Fig. 1A; Supple-
mental Table 1 reports the mean and the standard errors 
of each protein in both groups, the p values and the log-
2fold of change, which indicates how much the NPX of 
each protein changes, on average, in the subjects with 
DII > median compared to subjects with DII < median).

Next, to identify which of these proteins mostly con-
tribute to variations in DII, we employed a machine 
learning boosting prediction model. This model, trained 
on a subset of 194 subjects with DII > median versus 
203 subjects with DII < median (“training sets”), was 
then tested in an internal “test set” (138 subjects with 
DII > median vs 128 subjects with DII < median; see 
methods) to identify the most important contributors for 
the increase of DII values. This model, which achieved 
significant performance in discriminating subjects with 
DII > median versus subjects DII < median in the test 
set (Area Under the Curve (AUC) of Receiver Operat-
ing Characteristic (ROC) = 0.601 (0.519–0.668), and 
p = 0.035) (Fig.  1B), underscored 23 most representative 
proteins (listed in Fig. 1C in descending order of impor-
tance). Out of these proteins, 22 displayed increased 
plasmatic NPX in subjects with DII > median versus 
subjects with DII < median, and included Galectine-9 
(Gal9), Sulfotransferase 1A1 (ST1A1), Vascular Endo-
thelial growth factor A (VEGFA), Platelet glycoprotein Ib 
alpha chain (GP1A1), Stem cell factor (SCF), Junctional 
adhesion molecule A (JAM-A), Programmed death-
ligand 1 (PDL1), Sirtuin-2 (SIRT2), Colony Stimulating 
Factor 1 (CSF-1), Interleukin-24 (IL-24), Interleukin-6 
(IL-6), Selectin-P (SELP), Caspase 3 (CASP3), Fibroblast 
Growth Factor 3 (FGF-23), Chemokine-ligand 5 (CCL5), 

Total sample (n = 663) DII < median (n = 331) DII > median (n = 332)
Median (25th-75th 
percentiles)

Median (25th-75th 
percentiles)

Median (25th-75th 
percentiles)

p

Tea (mL/day) 0 (0-64.29) 0 (0-64.29) 0 (0-64.29) 0.503
Coffee (mL/day) 63.5 (38.57-90) 64.29 (38.57-90) 61.9 (38.57–85.71) 0.375
Herbal teas, infusions (g/day) 0 (0–0) 0 (0–0) 0 (0–0) 0.396
Alcoholic beverages (mL/day) 71.43 (10.01-202.27) 105.98 (20.47-226.21) 50 (3.39-175.28) < 0.001
Wine and sparkling wines
(mL/day)

47.2 (4.29-160.71) 85.71 (8.57-196.43) 32.73 (2.06-113.39) < 0.001

Beer (mL/day) 0 (0-24.29) 0 (0-21.43) 0 (0-28.57) 0.953
Distillates, sweets liquors, high
alcohol beverages and high
alcohol bitter liqueur (mL/day)

0 (0–0) 0 (0–0) 0 (0–0) 0.744

Aromatic herbs and spices (g/day) 15.2 (4.05–36.53) 15.29 (4.64–35.71) 15.09 (3.01–37.14) 0.410

Table 2 (continued) 
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Chemokine-ligand 18 (CCL18), Spondin-1 (SPON1), 
Hepatocyte Growth Factor (HGF), Tumor Necrosis Fac-
tor Receptor Superfamily member 10A (TNFRSF10A), 
CD8 subunit alpha (CD8A), Integrin Subunit Beta 1 
Binding Protein 2 (ITGB1BP2), Serpin Family A Member 
7 (SERPINA7). By contrast, only Interleukin-27 (IL-27) 
was significantly reduced in subjects with DII > median vs 
subjects with DII < median.

Finally, by Gene Ontology enrichment analysis we 
found that these 23 proteins are significantly clustered 

into up to 52 biological processes (“GO_bp”). Of them, 
24 are related to immune-inflammatory pathways (red 
bars in Supplemental Fig.  2), 23 refer to cell-cell signal-
ing pathways (grey bars in Supplemental Fig. 2) and 5 are 
involved in metabolic processes (blue bars in Supplemen-
tal Fig.  2). A detailed list of these biological processes, 
with their folds of enrichments and FDR, is available as 
Supplemental Table 3.

Table 3 Intakes of nutrients consumed by the subjects that were divided according to median DII. The table lists the dietary intakes 
of the nutrients consumed by the subjects with DII below the median (DII < median, N = 331) versus the subjects with DII over median 
(DII > median, N = 332)
Daily intake of nutrients Total sample

(n = 663)
DII < median
(n = 331)

DII > median
(n = 332)

Median (25th -75th 
percentiles)

Median (25th -75th 
percentiles)

p

Energy intake (Kcal/day) 1711.96 (1469.94-2045.29) 1882.61 (1587.64-2168.17) 1592.03 (1344-1848.5) < 0.001
Energy from macronutrients:
Energy from lipids (%En/day) 35.11 ± 5.61 34.73 ± 5.53 35.49 ± 5.68 0.083
Energy from saturated fat (%En/day) 11.56 ± 2.50 11.08 ± 2.36 12.05 ± 2.55 < 0.001
Energy from monounsaturated fat (%En/day) 16.25 (14.3-18.25) 16.25 (14.31–18.33) 16.26 (14.22–17.93) 0.647
Energy from polyunsaturated fat (%En/day) 4.04 (3.47–4.77) 4.12 (3.55–4.9) 3.88 (3.39–4.6) 0.002
Energy from omega-3 polyunsaturated fat (%En/
day)

0.6 (0.5–0.73) 0.64 (0.53–0.77) 0.57 (0.49–0.69) < 0.001

Energy from omega-6 polyunsaturated fat (%En/
day)

3.32 (2.81-4) 3.42 (2.88–4.12) 3.24 (2.73–3.88) 0.013

Energy from proteins (%En/day) 16.04 (14.67–17.62) 16.04 (14.65–17.59) 16.04 (14.73–17.66) 0.553
Energy from carbohydrates (%En/day) 50 ± 6.27 50 ± 6.27 49.48 ± 6.36 0.284
Energy from soluble carbohydrates (%En/day) 16.66 (14.07–19.52) 17.21 (14.76–20.08) 15.84 (13.29–18.96) < 0.001
Daily intake of micronutrients:
Calcium (mg/day) 638.21 (503.51-782.09) 713.53 (568.12-847.42) 569.42 (474.34-705.86) < 0.001
Iron (mg/day) 9.74 (7.93–11.58) 11.09 (9.57–12.67) 8.11 (7.07–10.08) < 0.001
Sodium (mg/day) 1772.92 (1411.09-2275.05) 1927.06 (1519.7-2425.92) 1671.76 (1308.76-2075.68) < 0.001
Potassium (mg/day) 2596.59 (2192.95-2990.21) 2931.34 (2653.53-3266.4) 2223.86 (1985.62-2503.77) < 0.001
Phosphorus (mg/day) 1053.82 (889.49-1234.9) 1154.56 (988.41-1305.85) 959.42 (834.21-1112.65) < 0.001
Zinc (mg/day) 8.96 (7.71–10.53) 9.82 (8.57–11.4) 8.22 (7.13–9.34) < 0.001
Magnesium (mg/day) 156.2 (129.01-186.14) 172.57 (145.16-203.69) 139.48 (116.32-164.95) < 0.001
Selenium (mg/day) 29.87 (22.1-40.26) 33.7 (25.51–44.18) 26.04 (19.84–35.19) < 0.001
Vitamin B1 (mg/day) 0.89 (0.75–1.08) 1.01 (0.86–1.15) 0.79 (0.68–0.94) < 0.001
Vitamin B2 (mg/day) 1.4 (1.17–1.64) 1.58 (1.38–1.78) 1.25 (1.08–1.43) < 0.001
Vitamin C (mg/day) 108.49 (75.8-151.17) 139.24 (109.92-177.62) 80.62 (59.38-107.27) < 0.001
Vitamin B3 (mg/day) 16.57 (14.19–19.75) 18.36 (15.6-20.99) 15.35 (12.94–17.82) < 0.001
Vitamin B6 (mg/day) 1.62 (1.37–1.89) 1.83 (1.61–2.04) 1.43 (1.24–1.64) < 0.001
Folates (µg/day) 256.19 (209.88-310.85) 302.4 (257.66-345.18) 219.93 ± 56.29 < 0.001
Pantothenic acid (mg/day) 2.48 (2.03–3.01) 2.79 (2.34–3.35) 2.23 (1.89–2.62) < 0.001
Biotin (mg/day) 16.66 (13.54–20.43) 18.78 (15.05–22.51) 15.22 (12.51–17.86) < 0.001
Vitamin B12 (µg/day) 4 (2.96-6) 4.39 (3.22–6.85) 3.63 (2.78–5.05) < 0.001
Vitamin A (RE/day) 718.38 (547.99–941.6) 862.68 (721.98-1095.18) 575.93 (476.17-713.22) < 0.001
Vitamin E (µg/day) 9.7 (8.07–11.77) 11.23 (9.44–13.07) 8.72 ± 2.38 < 0.001
Vitamin D (µg/day) 2.18 (1.38–4.23) 3.01 (1.58–4.83) 1.75 (1.16–3.13) < 0.001
Vitamin K (µg/day) 6.78 (2.39–13.55) 8.46 (3.39–15.71) 5.61 (1.94–10.99) < 0.001
B-carotene (µg/day) 2779.36 (2032.86-4026.24) 3646.14 (2822.11-4735.32) 2109.04 (1592.32-2659.43) < 0.001
Alcohol (g/day) 5.9 (0.85–17.81) 9.19 (1.7–20.5) 4.16 (0.34–14.41) < 0.001
Caffeine (g/day) 0.1 (0.06–0.15) 0.11 (0.06–0.16) 0.1 (0.06–0.15) 0.085
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Discussion
Our findings contribute to a better understanding of the 
inflammatory consequences of unhealthy dietary habits, 
which are a risk factor for the development of obesity, 
cardiometabolic, and cardiovascular diseases. In fact, 
higher DII did not only associate with increased levels 

of a clinically used marker of low-grade inflammation, 
the CRP (a finding that is in line with some data from 
literature [13–46, 47] but in contrast with others [48]), 
but it also reflected significant variations in the plasmatic 
abundance of multiple inflammatory proteins, out of one 
of the largest arrays measured in this field and that we 

Fig. 1 Higher DII associates with variations in the plasmatic expression of multiple inflammatory proteins. (A) Volcano plot, showing how much the 
plasmatic expression of each of the 368 proteins in subjects with DII > median changes versus the plasmatic expression of the same protein in subjects 
with DII < median. Data are expressed as fold of changes in log2 scale on the x axis and as–log10 p value on the y axis. (B) Receiving Operating Curve 
(ROC) reporting the performance of the machine learning model (as sensitivity and 1-specificity to detect subjects with DII > median including the 368 
proteins measured in plasma. The Area Under the Curve (AUC), the upper and lower limits of the 95% confidence interval and the p-value are reported. (C) 
Random forest classifier plot showing, in descending order, the relative importance of the top predictors for DII > median by the machine learning model
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previously associated with increased cardiovascular risk 
[27, 28].

Indeed, two previous studies, which measured a smaller 
number of biomarkers with the same PEA technology, 
found associations between several proteins with either 
unhealthy dietary patterns (21/184 proteins in one study 
[6]) or with increased DII (55/163 proteins in another one 
[30]). By contrast, in our study of the NPXs up to 61 pro-
teins were increased and 3 were reduced in subjects with 
higher DII versus subjects with lower DII. Our machine 
training learning model restricted the importance to 23 
of them, 22 of which, including pro-inflammatory pro-
teins, presented with increased plasmatic NPXs, while 
only IL-27, a protein known of immunoregulatory poten-
tial [49], was reduced in subjects with higher DII. 6 pro-
teins that were found associated with DII in the second 
study (VEGFA, PDL1, IL6, FGF23, HGF and CD8A) were 
also detected in our study. In addition, we have identified 
a number of other proteins associated with metabolic 
pathways which are consistent with a pro-inflammatory 
effect of diet with high DII. The fact that none of these 
pathways was previously identified may depend upon 
the different panels tested in the different studies and the 
different methodologies used. Therefore, our study adds 
new information to what previously reported by others 
and expands the reach of dietary effects on the overall 
biological pathways related to inflammation. Anyhow, we 
cannot rule out that increasing the number of biomark-
ers might allow to find even further pathways. Indeed, 
two other studies, which measured a larger number of 
proteins compared to our work using an alternative tech-
nology (4,955 in one study [4] and 1,713 in another [5]), 
found a significant association between dietary patterns, 
evaluated by qualitative food frequency questionnaires, 
with 20 and 5 proteins respectively.

Higher DII was associated with the intake of only some 
macronutrients, while it was predominantly reflected 
a lower intake in the entire spectrum of micronutrients 
and vitamins which, although not providing energetic 
supply, significantly contribute to the “inflammatory 
effect score” used to estimate their anti-inflammatory 
potential [18]. We thereby speculate that a plausible 
inflammatory effect of diet should be investigated con-
sidering the broader concept of the “food matrix” [50], as 
a sum of multiple nutritional components of a food con-
sumed, rather than focusing on the intake of some mac-
ronutrients, for instance, dietary fats, whose relationship 
with the odds of developing cardiometabolic and cardio-
vascular diseases is still currently debated [51, 52]. This 
possibility can be achieved only through the analysis of 
the quantitative seven-days dietary records, but not with 
the qualitative FFQs, commonly used in large epidemio-
logical studies [8, 13–16]. Indeed, these tools are affected 
by significant shortcomings, like lacking standardizations 

and limited accuracy of the dietary assessments relying 
on publicly available biobanks (including the ones for the 
Italian population [53]) and used to calculate scores/indi-
ces of healthy/unhealthy dietary patterns (e.g., the PRE-
DIMED score [54]). Although we acknowledge that the 
seven days dietary records could be representative of the 
adherence to a specific dietary pattern in a limited time-
frame, we are confident about the quality of the dietary 
information gathered with using this methodological 
approach, as testified by the total caloric intakes, which 
were in line with the current dietary surveys for the Ital-
ian population [53]. Anyhow, multiple aspects related 
to diet (e.g. the geographic locations [55], the socioeco-
nomic status [56], the processing and quality of foods 
[50]) could significantly impact and cannot be unmasked 
in this single-center experience. Validation studies in 
independent cohorts and in subjects with more advanced 
cardio-metabolic impairment are warranted.

We also acknowledge other limits in our study. First, 
the PEA technology, employed for this proteomics anal-
ysis, although ensuring an elevated degree of sensitiv-
ity, provides information of a relative abundance (NPX 
values [29]), but not of an absolute quantity. Therefore, 
the future step of our study will be to confirm such data 
of abundance into absolute quantities by techniques of 
mass-spectrometry.

Finally, longitudinal studies still demonstrated that 
dietary changes towards adherence to healthier dietary 
patterns result into reductions of DII [57, 58], and 
whether such changes also lead to reductions in the 
plasma abundance of inflammatory proteins will be a 
matter of future analyses.

Conclusions
Higher DII, calculated from the quantitative analysis of 
the consumption of specific food patterns and nutritional 
intakes, associates with significant variation of a large set 
of inflammatory proteins in plasma.
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