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Abstract
Background Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). 
Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/
Val on tubulointerstitial fibrosis in DKD is still largely unclear.

Methods Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day 
for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as 
mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was 
performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in 
high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α 
pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, 
the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro.

Results We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis 
in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD 
mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased 
expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the 
disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to 
restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/
PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the 
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Introduction
Diabetic kidney disease (DKD), a common and severe 
microvascular complications of diabetes mellitus (DM), is 
the leading cause of end-stage renal disease [1]. Increas-
ing evidence demonstrated that DKD is characterized 
by mesangial expansion, glomerulosclerosis, accumula-
tion of extracellular matrix, tubular atrophy and tubular 
interstitial fibrosis [2]. Although angiotensin receptor 
blockers and sodium-glucose cotransporter 2 inhibitors 
significantly delay the progression of DKD [3], current 
therapies have limited effectiveness on the progression to 
end-stage renal disease. Therefore, it is urgent to develop 
novel therapeutic approaches to prevent or reverse the 
progression of DKD.

Compelling evidence indicates that tubulointersti-
tial fibrosis, which is main secondary to tubule injury, is 
predictive of the progression of DKD [4]. Recently, Zhan 
et al. [5] found that aberrant changes of mitochondrial 
morphology were observed in tubules of patients with 
DKD. Meanwhile, preclinical studies have shown that 
mitochondrial dysfunction is not only a key instigator 
of tubule injury but also a critical mediator in the patho-
physiology of progression of DKD [6]. We recently also 
demonstrated that the response of tubular mitochondria 
to metabolic insult provokes the development of renal 
tubulointerstitial fibrosis [7]. Further, disruption of mito-
chondrial homeostasis under pathological conditions 
results in mitochondrial reactive oxygen species (ROS) 
production, energy insufficiency and leakage of the mito-
chondrial DNA, which further disturb mitochondrial 
and cellular homeostasis in a deleterious loop [8]. Thus, 
targeting mitochondrial homeostasis has emerged as an 
attractive approach to delay the progression of tubuloint-
erstitial fibrosis.

Sacubitril/valsartan (Sac/Val) is a first-in-class angio-
tensin receptor-neprilysin inhibitor (ARNI) that has 
been recommended in clinical practice guidelines to treat 
patients with hypertension or heart failure [9]. Grow-
ing evidence suggested that Sac/Val provides great tar-
get organ protection. For instance, Sac/Val was proven 
to have cardiovascular protection effects [10]. Recently, 
Nishio et al. also indicated that Sac/Val ameliorated renal 
tubulointerstitial injury [11]. Meanwhile, it has been 
demonstrated that Sac/Val could attenuate proteinuria 
and glomerulosclerosis, improve tubulointerstitial injury 

in DKD mice model [12–14]. However, the exact mecha-
nisms underpinning Sac/Val dependent renal protection 
effects require elucidation.

Previously, Sac/Val was found to exert organ protective 
effects through inhibiting self-DNA-activated cGMP-
AMP synthase-stimulator of interferon genes signaling. 
Considering the key effect of Sac/Val on mitochondrial 
homeostasis, we hypothesized that Sac/Val plays a criti-
cal role in tubulointerstitial fibrosis by improving the 
mitochondria function in DKD. In this study, we demon-
strate that Sac/Val ameliorates tubulointerstitial fibrosis 
by restoring Sirt1/PGC1α pathway mediated mitochon-
drial homeostasis. Thus, our findings provide theoreti-
cal basis for delaying the progression of DKD in clinical 
practice.

Materials and methods
Animals
Eight-week-old male C57BL/6J mice (n = 28; Nanjing 
Tande Biotechnology Co., Ltd, China) were used for the 
experiments. The mice were housed in an animal care 
facility (20 ± 1 ℃, relative humidity 45 ~ 65%) and had free 
access to food and water under a 12  h light/dark cycle. 
Four mice were housed in each cage. Twenty mice were 
divided into 2 groups: control group (n = 5) and diabetic 
group (n = 15). The sample size of each group was decided 
according to previous studies using STZ-induced dia-
betic mice [15]. To establish the type 1 DM model, the 
mice of diabetic group were intraperitoneally adminis-
tered a low dose of streptozotocin [STZ, 50  mg/(kg·d)] 
dissolved in citrate buffer for 5 days. The control group 
were intraperitoneally administered citrate buffer. After 2 
weeks, mice with fasting blood glucose (FBG) above 16.7 
mmol/L were regarded as the established DM model. 
After excluding animals that were not successfully mod-
eled, the diabetic group randomly divided into 3 groups: 
DKD group (n = 4), Val group (n = 4) and Sac/Val group 
(n = 4). Correspondingly, 4 mice in the control group 
were randomly selected for the next experiments.

Val [30  mg/(kg·d), NOVARTIS, Beijing, China] for 
the Val group, Sac/Val [60  mg/(kg·d), NOVARTIS, Bei-
jing, China] for the Sac/Val group or vehicle (normal 
saline) of equal volume for the DKD group were admin-
istered gastric gavage once a day (14). After 12 weeks 
treatment, body weights (BW) and FBG were recorded. 

beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the 
presence of Sirt1 specific inhibitor.

Conclusions Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring 
Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the 
progression of DKD in clinical practice.
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Then, metabolic cages were used for 24-hour urine col-
lection. Subsequently, the mice were sacrificed to collect 
the blood and kidneys samples. Mass of left kidneys was 
weighed after sacrifice, and the kidney hypertrophy index 
was calculated by the ratio of kidney weight (KW) and 
BW.

For EX527 administration, another 8 STZ-induced 
diabetic mice were divided into 2 groups: Sac/Val group 
(n = 4) and Sac/Val + EX527 group (n = 4). The Sac/
Val + EX527 group were given EX527 (20 mg/kg of EX527 
diluted in 0.5% dimethyl sulfoxide) by intraperitoneal 
injection twice daily, and Sac/Val group were given vehi-
cle (0.5% dimethyl sulfoxide) by intraperitoneal injection 
[16]. After 12 weeks treatment, the measurements and 
sample collection were done as mentioned above.

Complete randomization was used for the grouping of 
mice and the determination of treatment order. The anal-
yses on samples were conducted by researchers blinded 
to treatments.

Cell culture and treatment
The human proximal tubular cell line HK-2 was cul-
tured in MEM medium containing 10% FBS and 1% 
penicillin–streptomycin at 37 ℃ in a humidified 5% 
CO2 atmosphere. After serum starvation for 24 h, HK-2 
cells were divided into four groups: HG group (high 
glucose, 35 mmol/L), HG + Val group (HG + Val 0.01 
µmol/L), HG + LBQ/Val group (HG + LBQ657/Valsartan 
0.01 µmol/L; LBQ657, the active metabolite of sacubi-
tril, Sigma-Aldrich, Shanghai, China), and HG + LBQ/
Val + EX527 group (HG + LBQ657/Valsartan 0.01 
µmol/L + Sirt1 inhibitor EX527). NC group (normal con-
trol, glucose 5.5 mmol/L) and HM group (NC + mannitol 
25 mmol/L) were used as control groups. After treatment 
of 48 h, the cells were collected and molecular biological 
experiments were further performed.

Renal function measurement
Serum creatinine (Scr) concentration was measured 
with a sarcosine oxidase creatinine assay kit (Jiancheng, 
China) and blood urea nitrogen (BUN) level was mea-
sured according to instructions of a urea assay kit 
(Jiancheng, China). Urinary creatinine concentration, 
N-acetyl-β-d-glucosamine-dase (NAG) and microal-
bumin level were quantified according to procedures 
of assay kits (Jiancheng, China), respectively. Then, 
24-hour urinary albumin-to-creatinine ratio (ACR) were 
calculated.

Histology
The renal cortical specimens were fixed in 10% parafor-
maldehyde and embedded in paraffin. Thin sections of 
tissues were created for periodic acid-Schiff base (PAS) 
and Masson’s trichrome staining. Histological images 

were visualized using an inverted microscope and ana-
lyzed using Image J software. Tubular injury was scored 
semiquantitatively by an observer in a blinded manner. 
Images of at least 20 cortical fields of PAS-stained sec-
tions were examined for each group. Tubular injury 
score was defined as follows: Score 0: no tubular injury; 
Score 1: <10% of tubules injured (tubular dilation, tubu-
lar atrophy, tubular cast formation, sloughing of tubular 
epithelial cells or loss of the brush border and thicken-
ing of the tubular basement membrane); Score 2: 10–25% 
of tubules injured; Score 3: 25–50% of tubules injured; 
Score 4: 50–74% of tubules injured; Score 5: >75% of 
tubules injured [17]. To assess tubulointerstitial fibrosis, 
the area of fibrosis in Masson trichrome-stained sections 
were measured using Image J software. Images of at least 
20 randomly selected cortical fields for each group were 
evaluated blindly by an observer.

Mitochondrial morphology assessment
To determine the mitochondrial morphology in tubular 
cells of mice kidney, tissues were fixed in 2.5% glutaral-
dehyde. The samples were then immersed in 1% osmium 
tetroxide. Then the samples were dehydrated with dif-
ferent acetone concentrations and made into ultrathin 
Sects.  (50–70  nm) after embedding. They were then 
stained with uranyl acetate and lead citrate. Finally, they 
were observed by transmission electron microscopy 
(TEM) at 80 Kv. The longitudinal length (major) and 
equatorial length (minor) of mitochondria were mea-
sured using Image J to quantify the mitochondrial mor-
phology in the renal tubular epithelial cells (RTECs) of 
mice kidney. Then the aspect ratio (AR) and form fac-
tor (FF) were calculated as follows: Aspect ratio = major 
axis/minor axis; Form factor = (Pm2)/(4πAm), where 
Pm is the perimeter and Am is the area of the mitochon-
dria. The morphology of at least 110 mitochondria was 
assessed for each group.

To determine mitochondrial morphology of cells, the 
cultured cells were incubated with 0.1 Mm MitoTracker 
Red CMXRos (Thermo Fisher) at 37℃ for 20 min. Then, 
the cells were washed 3 times with PBS and incubated 
in growth medium. Fluorescence intensity was observed 
using a confocal microscope and analyzed using Image J.

Western blot
The cells or kidney tissues were lysed in RIPA lysis buf-
fer (Servicebio, China), and protein concentration was 
detected by bicinchoninic acid assay kits (Beyotime, 
China). Proteins were separated using 10% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis and 
transferred onto polyvinylidene fluoride membranes 
(Millipore, USA). The membranes were then sealed with 
NcmBlot blocking buffer (NCM Biotech) for 15 min and 
incubated overnight at 4 ℃ with primary antibodies 
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against Kidney Injury Molecule-1 (KIM-1, 1:1000, MA5-
28211, Invitrogen), Collagen 1 (1:1000, sc-59,722, Santa 
Cruz), α-SMA (1:1000, sc-53,142, Santa Cruz), Tfam 
(1:1000, ab272885, Abcam), COX IV; (1:5000,11242-
1-AP, Proteintech), Sirt1 (1:1000, ab110304, Abcam), 
PGC1α (1:5000, 66369-1-Ig, Proteintech), or β-actin 
(1:10000, sc-47,778, Santa Cruz). After incubation with 
horseradish peroxidase-conjugated goat anti-mouse or 
anti-rabbit IgG (1:3000, Cell Signaling, USA) for 1  h at 
room temperature, the blots were detected with the che-
miluminescence advanced system (GE Healthcare).

RNA isolation and real-time PCR
The TriZol reagent (Vazyme, China) was used to extract 
total RNA from HK-2 cells according to product specifi-
cations, and HiScript III RT SuperMix (Vazyme, China) 
was used to reverse transcribe mRNA. Then, PCR was 
conducted using a 7300 Real-time PCR detection sys-
tem (Applied Biosystems, USA) with ChamQ Universal 
SYBR Qpcr Master Mix (Vazyme, China). The data were 
normalized to the expression of β-actin, and the relative 
expression of the target genes was calculated using the 
2−ΔΔCT method.

Immunohistochemical staining and immunofluorescence
For immunohistochemical staining, 2 Μm thick paraffin-
embedded kidney sections were incubated with primary 
antibodies against Tfam (1:1000, ab272885, Abcam) over-
night at 4 ℃, followed by PBS washing and incubation 
with biotin-conjugated goat antirabbit IgG for 30 min at 
room temperature. Immunoreactivity was detected using 
diaminobenzidine reagent (Solarbio). The sections were 
subsequently stained with hematoxylin and covered with 
neutral resin. Images were obtained by the optical micro-
scope (Leica Microsystems). Image analysis and quantifi-
cation were performed using Image J.

For immunofluorescence staining, HK-2 cells were 
incubated with primary antibodies against Sirt1 (1:1000, 
ab110304, Abcam). After washing with PBS, the cells 
were incubated with fluorescence conjugated secondary 
antibodies. The Olympus optical microscope was used to 
detect the images.

Mitochondrial function assessment
Mitochondrial membrane potential (MMP) was detected 
using mitochondrial membrane potential assay kit with 
JC-1 following the manufacturer’s protocol (Beyotime, 
China). To measure mitochondrial ROS, HK-2 cells 
were incubated at 37℃ with fresh media containing 
5  Mm MitoSOX Red mitochondrial superoxide indi-
cators (Thermo Fisher) for 10  min. Then, the cells were 
observed by confocal microscopy.

Statistical analysis
Data are expressed as means ± SEM. The significance of 
the differences in mean values between multiple groups 
was examined by analysis of variance (one-way ANOVA). 
To compare between every two groups, the LSD t-test 
was used. All statistical analyses were performed using 
GraphPad Prism 8.0. P < 0.05 was considered statistically 
significant.

Results
Sacubitril/valsartan improved renal function in DKD mice
The experimental schedule was presented in Fig.  1A. 
After treatment of 12 weeks, the FBG, kidney weight-to-
body weight ratio (KW/BW), serum BUN, and urinary 
NAG and ACR of DKD mice were significantly increased 
compared with the control group. The DKD mice treated 
with Val and Sac/Val showed statistically lower KW/BW 
compared with those treated with vehicle, and the BW 
loss induced by DM was alleviated in Val group and Sac/
Val group (Fig.  1B, C). However, Sac/Val or Val did not 
change the FBG level of diabetic mice (Fig. 1D). Interest-
ingly, Sac/Val-treated DKD mice had lower Scr, serum 
BUN and urinary NAG compared with DKD group, while 
these parameters were not significantly lower than DKD 
group in Val group (Fig.  1E-G). Further, we also found 
that both Sac/Val and Val treatment significantly low-
ered 24-hour urinary ACR of DKD mice, but there were 
no statistical differences between Val and Sac/Val group 
(Fig.  1H). These data suggest that Sac/Val has markedly 
renoprotective effects.

Sacubitril/valsartan attenuates tubulointerstitial fibrosis in 
DKD mice
Histologically, loss of the brush border, tubular dilation, 
tubular atrophy, cast formation, sloughing of tubular epi-
thelial cells and thickening of the tubular basement mem-
brane were significantly attenuated in DKD mice with 
Sac/Val treatment (Fig.  2A). Meanwhile, we observed 
that tubulointerstitial fibrosis in DKD mice was signifi-
cantly increased. While it was markedly attenuated with 
Sac/Val treatment, evidenced by the results of Mas-
son staining (Fig.  2C). Concomitantly, according to the 
results of quantitative assessment, the effects of Sac/
Val on reducing tubular injury score and tubulointer-
stitial fibrotic area were superior to that of Val (Fig. 2B, 
D). Further, the protein expression of KIM-1 (a specific 
and sensitive biomarker of tubule injury) was significant 
attenuated by Sac/Val (Fig. 2E-F). The protein expression 
of collagen 1 and α-SMA in the kidney followed a similar 
trajectory (Fig. 2G-H). Collectively, these data indicated 
that Sac/Val attenuates renal tubular injury and tubuloin-
terstitial fibrosis.
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Sacubitril/valsartan restores mitochondrial homeostasis
To explore the potential mechanisms of Sac/Val on the 
amelioration of tubulointerstitial fibrosis, a genome-wide 
gene expression analysis of kidney tissues was performed. 

The up-regulated and down-regulated genes displayed 
by Heatmap (Fig.  3A). To identify the inherent tran-
scriptome features and predict the function of differen-
tially expressed genes, we applied KEGG (Fig.  3B) and 

Fig. 1 Primary metabolic parameters and biochemistry of blood and 24-hour urine in diabetic mice. (A) Diagram illustrating the experimental design 
(by Figdraw). (B) Kidney weight/body weight. (C) The percentage of increase in body weight at the end of treatment. (D) Fasting blood glucose. (E) 
Urinary NAG. (F) Serum creatinine. (G) blood urea nitrogen. (H) Urinary albumin-to-creatinine. Results represent means ± SEM, n = 4. *P < 0.05, **P < 0.01, 
***P < 0.001. STZ, streptozotocin; i.p., intraperitoneal injection; DKD, diabetic kidney disease; Val, DKD + Valsartan treated; Sac/Val, DKD + Sacubitril/
Valsartan treated; KW, kidney weight; BW, body weight; NAG, N-acetyl-β-d-glucosamine-dase; Scr, serum creatinine; BUN, blood urea nitrogen; ACR, 
albumin-to-creatinine
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Fig. 2 Sacubitril/valsartan attenuated tubulointerstitial fibrosis in diabetic mice. (A) PAS staining, representative micrographs were shown. (B) Tubular 
injury score in PAS-stained sections. (C) Masson staining, representative micrographs were shown. (D) The percentage of tubulointerstitial fibrotic area 
in Masson trichrome-stained sections. (E, F) Representative western blotting images and densitometric analysis of KIM-1. (E, G) Representative west-
ern blotting images and densitometric analysis of Collagen 1 and α-SMA. Scale bar = 50 μm. Results represent means ± SEM, n = 4. *P < 0.05, **P < 0.01, 
***P < 0.001. DKD, diabetic kidney disease; Val, DKD + Valsartan treated; Sac/Val, DKD + Sacubitril/Valsartan treated; PAS, periodic acid-Schiff base
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Fig. 3 Sacubitril/valsartan improved mitochondrial morphology and mitochondrial biogenesis. (A-C) Functions of differential expressed genes between 
DKD group and Sac/Val group (D) Representative transmission electron microscopy of mitochondria in tubular cells of mice. (E) Aspect ratio of mi-
tochondria in tubular epithelial cells. (F) Form factor of mitochondria in tubular epithelial cells. (G, H) Representative western blotting images and 
densitometric analysis of Tfam and Cox IV; in kidney from mice in different groups. (I) Representative images and statistical graphs of immunohisto-
chemical staining of Tfam in kidney sections. (J, K) Representative western blotting images and densitometric analysis of Tfam and Cox IV; in HK-2 cells. 
Scale bar = 50 μm. Results represent means ± SEM, n = 4. *P < 0.05; **P < 0.01; ***P < 0.001 DKD, diabetic kidney disease; Val, DKD + Valsartan treated; Sac/
Val, DKD + Sacubitril/Valsartan treated; NC, normal control; HM, high mannitol; HG, high glucose; HG + Val, high glucose + Valsartan; HG + LBQ/Val, high 
glucose + LBQ657 + valsartan
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Reactome analyses (Fig.  3C) for feature selection. Con-
sidering the function of Sac/Val on the amelioration of 
tubulointerstitial fibrosis, we focused on the differentially 
expressed genes that were specifically downregulated. 
Interestingly, the downregulated expressed genes were 
found to be associated with organismal systems, metabo-
lism, and environmental information processing.

Next, tubular mitochondrial homeostasis was exam-
ined. Interestingly, TEM revealed more fragmented mito-
chondria with decreased AR and FF in DKD mice, which 
was markedly alleviated by Val or Sac/Val treatment 
(Fig.  3D). Meanwhile, we found that, compared to the 
mice with Val treatment, the improvement of AR and FF 
was more significant in mice with Sac/Val administration 
(Fig. 3E, F). Further, we analyzed mitochondria function 
by detecting the Cox IV; (a subunit of electron transport 
chain proteins regulating cellular energy metabolism) 
and Tfam (a mitochondrial protective protein that pro-
motes replication and transcription of mitochondrial 
DNA). Compared to the control group, diabetic mice 
showed significantly lower levels of Cox IV; and Tfam 
protein expression, which was largely restored by Sac/Val 
(Fig. 3G-H). As shown in Fig. 3I, the immunohistochemi-
cal staining analysis also revealed increased Tfam expres-
sion in the kidney tissues of DKD mice treated with Sac/
Val.

Thereafter, the potential function of Sac/Val in HG 
HK-2 cell was determined. Interestingly, we found 
that LBQ/Val, the active form of Sac/Val, increased the 
expression of Tfam and Cox IV, which was decreased 
by HG administration in HK-2 cells (Fig. 3J-K). Of note, 
although both Val and LBQ/Val improved expressions of 
these proteins, LBQ/Val had relatively stronger effects 
than Val. Then, mitochondrial ROS, MMP and mitochon-
drial morphology in HK-2 cells were assessed. Hypergly-
cemia increased MitoSOX fluorescence intensity of HK-2 
cells, indicating the increased in mitochondrial ROS pro-
duction, while LBQ/Val markedly attenuated MitoSOX 
expression in HG-treated HK-2 cells (Fig.  4A-B). Com-
pared to the NC group, JC-1 staining showed increased 
green fluorescence and weaker red fluorescence in the 
cells with HG administration, revealing the reduction 
of MMP under HG conditions. Administration of LBQ/
Val resulted in amelioration of aberrant MMP (Fig.  4C-
D). Finally, the fragmented mitochondria assessed by 
MitoTracker in the HK-2 cells followed a similar pat-
tern (Fig.  4E-F). Thus, these data indicate that Sac/Val 
improved mitochondrial dysfunction in DKD.

Sacubitril/valsartan activated Sirt1/PGC1α pathway
Previous studies indicated that PPAR-γ coactivator-1α 
(PGC1α), which can be activated via the deacetylation 
by Sirtuin1 (Sirt1), plays a vital role in mitochondrial 
homeostasis [18, 19]. Compelling evidence showed that 

activation of Sirt1 and PGC1α restores mitochondrial 
function and biogenesis and played an essential role in 
compensatory response of mitochondrial homeosta-
sis [20]. Considering the key role of Sirt1/PGC1α axis 
in the regulation of mitochondrial homeostasis, we 
hypothesized that mitochondrial homeostasis-mediated 
by Sirt1/PGC1α axis is the exact molecular mechanism 
for the renoprotective effects of Sac/Val. Interestingly, 
the decreased expressions of Sirt1 and PGC1α in DKD 
mice were improved by Sac/Val (Fig. 5A, B). As in DKD 
mice, the expressions of Sirt1 and PGC1α were mark-
edly decreased in HK-2 cells of HG group (Fig. 5C). The 
results of Western blot and real-time PCR revealed that 
LBQ/Val improved protein and mRNA expression of 
Sirt1 and PGC1α, suggesting that the Sirt1/PGC1α path-
way was activated by LBQ/Val (Fig.  5D, E). Further, the 
immunofluorescence staining for Sirt1 in the kidney fol-
lowed a similar pattern (Fig. 5F). The results all suggested 
that there is a potential link between the renoprotective 
effect of Sac/Val and Sirt1/PGC1α pathway in DKD.

Sacubitril/valsartan restored mitochondrial homeostasis 
via Sirt1/PGC1α pathway
The Sirt1 specific inhibitor, EX527, markedly reduced 
the expressions levels of Sirt1 and PGC1α in the HK-2 
cells with LBQ/Val treatment under HG conditions 
(Fig.  6A, B). The effects of LBQ/Val on mitochondrial 
function were also weaken after Sirt1 was inhibited. Pro-
tein expression levels of Tfam and Cox IV; were lower 
in HG + LBQ/Val + EX527 group than LBQ/Val group 
(Fig.  6C). EX527 partially reversed the improvement of 
MMP and exacerbated the production of mitochondrial 
ROS in the cells treated by LBQ/Val (Fig. 6D, E). Mean-
while, the HK-2 cells of HG + LBQ/Val + EX527 group 
showed inferior improvement in mitochondrial morphol-
ogy than HG + LBQ/Val group (Fig. 6F). Taken together, 
it can be speculated that the beneficial effects of Sac/Val 
are partially attributed to the activation of Sirt1/PGC1α 
pathway.

Sacubitril/valsartan attenuated tubulointerstitial fibrosis 
through Sirt1/PGC1α pathway-mediated mitochondrial 
function
Our results of biochemistry and histopathological tests 
of DKD mice revealed that the renal function and tubu-
lointerstitial fibrosis improved by Sac/Val was partially 
attenuated when Sirt1 was inhibited. Urinary NAG, Scr, 
serum BUN and urinary ACR was augmented in Sac/
Val + EX527 group compared to those in Sac/Val group, 
indicating the relatively severe renal tubular injury and 
renal dysfunction (Fig.  7A-D). After treatment with 
EX527, the tubulointerstitial fibrosis that alleviated by 
Sac/Val was aggravated (Fig.  7E-H). When Sirt1 was 
inhibited, the effect of LBQ/Val on the alleviation of 
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tubulointerstitial fibrosis was attenuated, indicated by the 
relatively high levels of collagen 1 and α-SMA (Fig. 7I-K). 
Therefore, it can be inferred that mitochondrial function 
regulated by Sirt1/PGC1α is involved in the mechanism 
by which Sac/Val ameliorates tubulointerstitial fibrosis in 
DKD mice.

Discussion
Recently, Sac/Val is found to exert a robust beneficial 
effect in DKD. However, the potential functional effect 
of Sac/Val on tubulointerstitial fibrosis is still largely 
unclear. Accordingly, in this study, we found that Sac/Val 
improved renal function and attenuated tubulointerstitial 
fibrosis through restoring the disturbed mitochondrial 

Fig. 4 In vitro sacubitril/ valsartan improved mitochondrial function and morphology in HG-treated HK-2 cells. (A, B) Typical fluorescence photomicro-
graph and quantitative analysis of mitochondrial superoxide. (C, D) Mitochondrial membrane potential assessed by JC-1 assay. (E) Representative images 
of mitochondria morphology with MitoTracker staining. (F) The percentage of cells with mitochondrial fragmentation in MitoTracker staining. Results rep-
resent means ± SEM, n = 4. *P < 0.05, **P < 0.01, ***P < 0.001. NC, normal control; HM, high mannitol; HG, high glucose; HG + Val, high glucose + Valsartan; 
HG + LBQ/Val, high glucose + LBQ657 + valsartan
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Fig. 5 Sacubitril/valsartan improved expression of Sirt1/PGC-1α in DKD mice and HG HK-2 cells. (A, B) Representative western blotting images and 
densitometric analysis of Sirt1 and PGC1α in kidney from mice. (C, D) Representative western blotting images and densitometric analysis of Sirt1 and 
PGC1α in HK-2 cells. (E) PCR analysis of Sirt1 and PGC1α mRNA expression in HK-2 cells treated with HG. (F) Representative images and statistical graphs 
of immunofluorescent staining for Sirt1 in HK-2 cells from different groups. Results represent means ± SEM, n = 4. *P < 0.05, **P < 0.01, ***P < 0.001. DKD, 
Diabetic kidney disease; Val, DKD + Valsartan treated; Sac/Val, DKD + Sacubitril/Valsartan treated; NC, normal control; HM, high mannitol; HG, high glucose; 
HG + Val, high glucose + Valsartan; HG + LBQ/Val, high glucose + LBQ657 + valsartan
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homeostasis. Further, activation of Sirt1/PGC1α path-
way, which is mediated by Sac/Val, has been proven to be 
the crucial mechanism. Therefore, our finding provides a 
theoretical basis for delaying the progression of DKD in 
clinical practice.

Previously, growing evidence indicated that Sac/Val 
could prevent worsening of renal function and progres-
sion of chronic kidney disease (CKD). For instance, Span-
nella et al. reported that Sac/Val resulted in a lower risk 
of renal dysfunction as compared with RAS inhibitors 
alone, evidenced by a systematic review and meta-anal-
ysis of 10 randomized controlled trials [21]. Meanwhile, 
preclinical study also revealed that Sac/Val improved the 

decline of renal function in DKD mice [14]. However, the 
underlying mechanism is still unclear.

Therefore, the exact effects and molecular mechanism 
of ARNI on renal function in DKD was explored. Inter-
estingly, here, we found that Sac/Val effectively improved 
decline of renal function of diabetic mice, demonstrated 
by the reduced Scr and BUN in Sac/Val group. This is 
in line with the studies focusing on the renoprotective 
effects of Sac/Val in diabetic animal models [22, 23] and 
other kidney disease models [24–26]. Meanwhile, urinary 
NAG was also lower in Sac/Val group compared with that 
in DKD group and Val group, indicating that Sac/Val was 
superior to Val on alleviating tubular injury in DKD mice. 

Fig. 6 The improvement of mitochondrial function by in Vitro sacubitril (LBQ657) /valsartan was attenuated by Sirt1 inhibition in the HG-treated HK-2 
cells. (A) Representative western blotting images and densitometric analysis of Sirt1 and PGC1α of HK-2 cells from HG + LBQ/Val and HG + LBQ/Val + EX527 
group. (B) Representative images and statistical graphs of immunofluorescent staining for Sirt1. (C) Representative Western blotting images and den-
sitometric analysis of Tfam and Cox IV;. (D) Mitochondrial membrane potential assessed by JC-1 assay. (E) Typical fluorescence photomicrograph and 
quantitative analysis of mitochondrial superoxide. (F) Representative images of mitochondria morphology with MitoTracker staining and quantitative 
analysis of the percentage of cells with mitochondrial fragmentation. Results represent means ± SEM, n = 4. *P < 0.05, **P < 0.01, ***P < 0.001. HG, high 
glucose; Val, valsartan; LBQ/Val, LBQ657 + valsartan
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Concomitantly, we found that Sac/Val significantly allevi-
ated tubulointerstitial fibrosis, which is one of the most 
important findings of this study. In addition, the reduc-
tion in urinary ACR suggested that proteinuria, which 
may aggravate the production of proinflammatory and 
profibrotic factors [27], was attenuated by Sac/Val. Of 
note, there was no significant change in FBG after treat-
ment with Val or Sac/Val, thus, the renoprotection effects 
of Sac/Val may contribute to the attenuated tubule injury.

What is the exact mechanism of renoprotection effects 
of Sac/Val? Emerging evidence indicated that tubular 
injury and tubular dysfunction occur in the early stage of 
DKD and plays a critical role in the progression of DKD. 
Recent evidence also suggested that tubulointerstitial 
damage may start from a primary tubular injury initiated 
by metabolic disorder [28]. Packed with mitochondria 
and dependent on oxidative phosphorylation, the proxi-
mal tubule is particularly vulnerable to injury (hypoxic, 

Fig. 7 Sacubitril/valsartan attenuated tubulointerstitial fibrosis through Sirt1-mediated mitochondrial dysfunction. (A) Urinary NAG. (B) Serum creat-
inine. (C) blood urea nitrogen. (D) Urinary albumin-to-creatinine. (E) PAS staining, representative micrographs were shown. (F) Tubular injury score 
in PAS-stained sections. (G) Masson staining, representative micrographs were shown. (H) The percentage of tubulointerstitial fibrotic area in Masson 
trichrome-stained sections. (I-K) Representative Western blotting images and densitometric analysis of collagen 1 and α-SMA in HK-2 cells. Scale bar 
= 50 μm. Results represent means ± SEM, n = 4. *P < 0.05, **P < 0.01, ***P < 0.001. Sac/Val, DKD + Sacubitril/Valsartan treated; Sac/Val + EX527, DKD + Sa-
cubitril/Valsartan and EX527 treated; NC, normal control; HM, high mannitol; HG, high glucose; HG + Val, high glucose + Valsartan; HG + LBQ/Val, high 
glucose + LBQ657 + valsartan

 



Page 13 of 15Zhang et al. Diabetology & Metabolic Syndrome           (2024) 16:40 

oxidative, metabolic), resulting in mitochondrial dis-
orders [29, 30]. When exposed to HG environments, 
RTECs need a large amount of ATP to reabsorb excess 
glucose, resulting in superoxide production concurrently 
[30]. Excessive superoxide is converted into ROS, which 
contributes to mitochondrial damage, thereby leading to 
atrophy or programmed cell death of RTECs. Therefore, 
increasing evidence suggests that mitochondrial dysfunc-
tion is an important pathological factor promoting tubu-
lointerstitial fibrosis in kidney diseases, including DKD 
[8, 31].

In our study, both in vivo and in vitro experiment 
showed that the decreased expressions of Tfam and Cox 
IV; in DKD were effectively attenuated by Sac/Val, indi-
cating the improvement of mitochondrial biogenesis. 
The results of JC-1, MitoSOX and MitoTracker assess-
ment also revealed the beneficial effects of Sac/Val on 
mitochondrial function. The improved mitochondrial 
function may contribute to Sac/Val’s protection effects 
on tubular injury. Furthermore, it has been extensively 
shown that high glucose levels in diabetes increases 
Ang II expression, which induces cellular hypertrophy 
of tubular cells mediated by the activation of TGF-β 
[32, 33]. Therefore, inhibition of RAAS may be another 
mechanism by which Sac/Val exerts its protective effect 
on tubular cells of diabetic kidney.

Then, the molecular mechanism of Sac/Val on tubu-
lar mitochondrial homeostasis was explored. Compel-
ling evidence has demonstrated that Sirt1 deacetylates 
multiple lysine sites of PGC1α to promote the recon-
struction of cellular energy homeostasis [34]. This 
deacetylation of PGC1α results in a well-coordinated 
change of gene expression that related to transcrip-
tional control of mitochondrial proteins, including 
PPARα, hepatocyte nuclear factor 4α, estrogen-related 
receptor α, Forkhead box-containing protein type O 1, 
nuclear respiratory factor [35, 36]. Moreover, targeting 
Sirt1/PGC1α has been considered to be a promising 
strategy to prevent the progression of DKD. Here, we 
observed that the decreased Sirt1 and PGC1α expres-
sion, as well as the aberrant mitochondrial morphol-
ogy and function in DKD mice and HG-treated HK-2 
cells were markedly ameliorated by Sac/Val. More 
interestingly, the functional effects of Sac/Val on 
mitochondria were dependent on the Sirt1/PGC1α 
signaling. Because after treatment with Sirt1 specific 
inhibitor EX527, the alleviated mitochondrial abnor-
malities and tubulointerstitial fibrosis by Sac/Val was 
markedly reversed.

In fact, the functional roles of Sac/Val in mitochon-
dria and metabolism in patients has been observed. For 
instance, Selvaraj et al. reported that compared with 
valsartan, Sac/Val reduced triglycerides and increased 
high-density lipoprotein cholesterol [37]. Meanwhile, 

in the diabetic sub-study of the PARADIGM-HF trial, 
sacubitril/valsartan administration was also found 
to increase high-density lipoprotein cholesterol level 
[38]. These data suggested that Sac/Val plays a vital 
role in regulating of metabolism, which is a key fac-
tor in regulating renal tubule injury and renal fibrosis 
[39]. Furthermore, in the PARAGON-HF trial, Sac/Val 
showed superior outcome of renal function in patients 
compared to Val [40], which is consistent with our 
findings. To the best of our knowledge, our study is the 
first to explore the role of Sac/Val in mitochondria and 
metabolism under the condition of DKD.

Finally, the exact mechanisms of Sac/Val on Sirt1/
PGC1α pathway activation remains unclear. Neverthe-
less, we speculate that Sac/Val may potentiate Sirt1/
PGC1α pathway by enhancing the natriuretic peptides 
(NPs)-cGMP-dependent pathway. Because cGMP-
dependent pathway was found to increase the level and 
activity of Sirt1, which is associated with a decrease in 
the activity of NADPH oxidase and the levels of ROS 
[41]. Moreover, it has been widely accepted that cGMP 
level was decreased in diabetic kidney [42]. Whereas, 
Sac/Val contributed to an increase in the level of NPs 
by inhibiting NPs degradation, which activates its gua-
nylyl cyclase (GC)-A through binding to NPR-A and 
subsequently elevates the intracellular level of cGMP 
[43]. Of note, Jani´c et al. reported that the adminis-
tration of Val substantially increased the expression of 
Sirt1 in healthy middle-aged males [44]. Therefore, we 
hypothesize that the effects of Sac/Val on Sirt1/PGC1α 
pathway may be cGMP-dependent.

Conclusions
Taken together, we demonstrated that Sac/Val 
ameliorates tubulointerstitial fibrosis in DKD. 
Mechanistically, Sac/Val could restore disturbed mito-
chondrial homeostasis in tubules through activating 
Sirt1/PGC1α pathway. Therefore, our findings pro-
vide a theoretical basis for delaying the progression of 
DKD.
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