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Abstract
Background Numerous previous studies have reported an association between type 2 diabetes mellitus (T2DM) and 
lung cancer risk, but the underlying mechanism of the interaction remains unclear. This study aimed to investigate the 
shared genetic features and immune infiltration processes between lung cancer and T2DM.

Methods Epidemiological data from the National Health and Nutrition Examination Survey (NHANES) 2000–2018 
was used to explore the relationship between lung cancer and diabetes systematically. In addition, we also used 
bioinformatics methods to analyze the transcriptome data from the Gene Expression Omnibus (GEO) to explore the 
potential functional mechanisms from the perspective of genes and immune infiltration.

Results Logistic regression analysis showed that prediabetes (OR = 3.289,95%CI 1.231, 8.788, p = 0.01760, model 3)
and type 2 diabetes (OR = 3.032 95%CI,1.015, 9.054, p = 0.04689) were significantly associated with an increased risk 
of lung cancer after adjusting for multiple covariates. Data from NHANES showed an inverted U-shaped relationship 
between fasting blood glucose and glycosylated haemoglobin and the risk of lung cancer (P for non-linear < 0.001). 
Transcriptome data showed that we screened 57 co-DEGs, of which 25 were up-regulated co-DEGs and 32 were 
down-regulated. Ten core DEGs were identified by bioinformatics analysis, which were SMC6, CDC27, CDC7, RACGAP1, 
SMC4, NCF4, NCF1, NCF2, SELPLG and CFP. Correlation analysis showed that some core DEGs were significantly 
associated with simultaneous dysregulation of immune cells.

Conclusion The identified core genes of NSCLC and T2DM are associated with dysregulated immune cells, which 
provides a potential research avenue for diagnosing and treating lung cancer combined with diabetes.
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Introduction
Lung cancer is the primary cause of cancer-related death 
worldwide [1]. The advancement of low-dose spiral CT 
has led to the increased early detection of lung cancer 
[2]. In clinical practice, we also find that more and more 
patients with pulmonary nodules or lung cancer have 
type 2 diabetes mellitus (T2DM) and elevated blood glu-
cose [3]. Diabetes mellitus is the most common meta-
bolic disease and has emerged as a significant public 
health concern globally. According to the American Dia-
betes Association (ADA), diabetes is the fourth leading 
cause of death in the United States [4]. There exists an 
intricate relationship between diabetes and the incidence 
of various cancers.

The latest research [5] indicates that cancer patients 
also experience insulin resistance. Elevated insulin levels 
can accelerate the growth of cancer cells, thus hasten-
ing the progression of the disease. Cancers may directly 
affect host metabolism by secreting various factors such 
as tumor necrosis factor α, interleukin 6, and HIF-1, all 
related to metabolic regulation and/or insulin resistance. 
Furthermore, cancer also leads to a rewiring of fatty acid 
metabolism, which contributes to the onset of preclini-
cal insulin resistance [6]. The combination of cancer and 
insulin resistance is highly detrimental. Identifying which 
cancer patients are at risk of diabetes or insulin resistance 
is an urgent issue that needs to be addressed.

Some studies have indicated that diabetes is linked to 
an increased risk of lung cancer [7]. A growing num-
ber of epidemiological and clinical studies have shown 
that T2DM and lung cancer (BC) co-occur in the same 
patient population, with a higher lung cancer risk and 
mortality [8]. Patients with diabetic lung cancer had 
significantly lower overall survival and disease-specific 
survival compared to non-diabetic lung cancer patients, 
suggesting that T2DM may be an independent prog-
nostic factor for lung cancer [9]. While the mechanisms 
by which diabetes affects the advancement and treat-
ment response of lung cancer are still unclear, increas-
ing evidence suggests that diabetes can promote cancer 
through factors such as hyperglycemia, insulin resis-
tance, hyperinsulinemia, insulin-like growth factor (IGF) 
expression, immune damage, and reactive oxygen species 
(ROS) production [10, 11]. Hyperglycemia promotes the 
advancement of lung cancer through high levels of insu-
lin receptor expression, and the IGF-1/IGF-1R pathway 
is known to play an essential role in the pathogenesis of 
lung cancer [12, 13]. Additionally, patients with predia-
betes have higher blood glucose levels than usual, which 
carries the risk of developing diabetes. There is limited 
research on the correlation between prediabetes and 
lung cancer, which warrants further exploration. Despite 
strong clinical and epidemiological evidence of an asso-
ciation between lung cancer and T2DM [12, 14, 15], 

the common gene regulatory mechanisms underlying 
diabetes and lung cancer remain unclear. The National 
Health and Nutrition Examination Survey (NHANES) 
is a research program to assess the health of adults and 
children in the United States [16]. Few researchers have 
utilized the NHANES database to investigate the associa-
tion between cancer and diabetes.

This study collected the cancer incidence and diabe-
tes status of NHANES participants from 2000 to 2018. 
Whether diabetes increases lung cancer risk is contro-
versial [3, 17]. Therefore, this study aims to clarify further 
the positive association between diabetes and prediabetes 
with lung cancer using extensive sample data. Addition-
ally, previous studies using the NHANES database mainly 
focused on identifying cancer risk factors through epide-
miologic analyses but lacked an explanation of molecular 
mechanisms. The GEO (Gene Expression Omnibus) data-
base, created by NCBI, contains high-throughput gene 
expression data from countries worldwide [18]. Microar-
ray technology and integrated bioinformatics analysis are 
commonly used to identify novel genes and molecular 
mechanisms related to various diseases. According to the 
above reasons, we designed the present study. Initially, we 
analyzed a large US population cohort from 2000 to 2018 
using the NHANES database, confirming the increased 
risk of lung cancer associated with T2DM and prediabe-
tes. Subsequently, bioinformatics analysis was conducted 
based on the GEO clinical public database to explore the 
gene co-expression of T2DM and NSCLC and to prelimi-
narily investigate their common pathogenic mechanism 
from the perspective of genes and immune infiltration. 
There are few studies on the mechanism of NSCLC com-
plicated with T2DM. Exploring the common pathogenic 
mechanism of T2DM and NSCLC at the gene level has 
yet to be reported at home and abroad, which has a cer-
tain degree of innovation. This study aims to explore new 
gene targets and biomarkers for early lung cancer diag-
nosis. Genetic screening for diabetic patients with high-
risk factors of lung cancer may be of great significance for 
early diagnosis of lung cancer. Meanwhile, we also strive 
to find specific gene targets for lung cancer patients with 
T2DM to provide new strategies for precise treatment of 
lung cancer patients with T2DM.

Materials and methods
Data sources
Subjects of epidemiological investigation
The epidemiological survey data in this study were 
collected from the NHANES dataset for nine cycles 
from 2000 to 2018 (https://wwwn.cdc.gov/nchs/data/
nhanes/2017-2018/, accessed on 1 June 2023). The 
NHANES database, a significant National Center for 
Health Statistics (NCHS) project, includes demographic 
information, physical examinations, laboratory tests, and 

https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/
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questionnaires to determine significant disease preva-
lence and risk factors [19, 20]. A total of 91,351 subjects 
were included. According to the purpose of the study, 
the exclusion criteria were as follows:(1) Age less than 20 
years old (n = 41,150). (2) Questionnaire survey, fasting 
blood glucose, glycosylated haemoglobin, fasting insulin, 
and other diabetes information were missing (n = 29,525). 
(3) Cancers other than lung cancer (n = 1954). (4) Other 
demographic measures were missing (n = 54). Partici-
pants in the lung cancer group were identified based 
on the following questionnaire: “Have you ever been 
informed by a doctor or community health worker that 
you have lung cancer?” or “Have you been informed that 
you have any type of cancer? “. 19,543 participants were 
finally included in this study.

Gene expression data
In this study, “lung cancer”, “non-small cell lung cancer”, 
and “type 2 diabetes mellitus” were searched in the GEO 
database (https://www.ncbi.nlm.nih.gov/geoprofiles/, 
accessed on 13 October 2023) to obtain gene expression 
data of patients with lung cancer and T2DM. The selec-
tion criteria of the microarray data set were as follows: (1) 
It met the diagnostic criteria of lung cancer and T2DM. 
One data set included the diseased and the normal con-
trol groups; (2) Age > 18 years old; (3) The study data 
were total RNA of blood or tissue; (4) The validation sets 
were from the same platform, and the gender and race of 
the subjects were consistent. (5) All samples extracted in 
the data set were total RNA; (6) Patients with other can-
cers were excluded.

Finally, GSE18842, GSE118370, GSE26168 and 
GSE15932 were selected as the target data sets. 
GSE18842 had 47 lung cancer patients and 44 controls, 
and GSE118370 had 6 lung cancer patients and 6 con-
trols. There were 18 T2DM patients and 18 controls 
in GSE26168, and 8 T2DM patients and 8 controls in 
GSE19532. Due to the small sample size of some chips, 
we performed a joint multi-chip analysis for the same 
disease. In addition, since individual chips came from 
different platforms, batch correction and sample nor-
malization were performed on all datasets to eliminate 
individual differences among different samples. In this 
study, GSE135304 and GSE7014 were selected for verifi-
cation. The verification set GSE135304 was derived from 
blood, including 200 cases and 200 normal controls. The 
validation set GSE7014 was derived from skeletal mus-
cle tissue, including 6 case groups and 20 normal con-
trol groups. We substituted the obtained co-expressed 
genes into validation datasets to verify whether these co-
expressed genes were expressed in tissues. These datasets 
come from a public database and do not require ethical 
approval. Table S1 lists all the details of these datasets.

Diagnosis of T2DM and covariates variables
The diagnosis of diabetes was based on the question, 
“Have you ever been told by a doctor or health profes-
sional that you have diabetes, except during pregnancy?” 
Fasting blood glucose, 2  h-OGTT, and glycosylated 
haemoglobin were collected from all participants for 
diagnosis of diabetes according to the Diabetes Asso-
ciation (ADA) standard. The diagnostic criteria were 
as follows [21]: FPG ≥ 126  mg/dL (7.0 mmol/L) or 2-h 
plasma glucose after the OGTT test (2 h-PG) ≥ 200 mg/ 
dL (11.1 mmol/L) or A1C ≥ 6.5%. The diagnostic crite-
ria for prediabetes were as follows [20]: FPG ≥ 100  mg/
dL (5.6 mmol/L) and ≤ 125  mg/dL (6.9 mmol/L) or a 
2 h-PG ≥ 140 mg/ dL (7.8 mmol/L) and ≤ 199 mg/dL (11.0 
mmol/L) or an HbA1c ≥ 5.7% and ≤ 6.4%.

Covariates associated with diabetes or lung cancer 
were collected from the NHANES database by previ-
ous studies. The covariates included age (year), gen-
der, race (Non-Hispanic White, Non-Hispanic Black, 
Mexican American, Others), BMI (kg/m2), Educational 
level (less than high school, high school, more than high 
school), Hypertension history, total cholesterol (TC), tri-
glyceride (TG), lower density lipoprotein (LDL), higher 
density lipoprotein (HDL), smoking status and alcohol 
consumption.

Weighted gene co-expression network analysis (WGCNA)
WGCNA is a commonly used method to construct a 
gene co-expression network and explore the association 
between the phenotype of interest and the core genes in 
the network. Moreover, enrichment analysis was con-
ducted for each module gene. The WGCNA analysis 
consisted of two main parts: expression clustering analy-
sis and phenotypic association analysis, including gene 
co-expression network construction, module identifica-
tion, module information extraction, module and trait 
association, and regulatory relationship of genes within 
modules. Initially, we obtained the expression profiles 
of the NSCLC and T2DM datasets after batch correc-
tion for further analysis. We utilized the WGCNA pack-
age (version 1.69) in R (version 4.2.1, R Foundation for 
Statistical Computing, Vienna, Austria) to construct 
a co-expression network for differentially expressed 
genes. We constructed a weighted adjacency matrix with 
weighted correlation coefficients and transformed the 
adjacency matrix into a matched overlap matrix (TOM). 
Subsequently, the hierarchical clustering method was 
used for module identification and feature gene calcula-
tion. Finally, gene significance and module membership 
were calculated to correlate with clinical features. Genes 
involved in the corresponding modules were used for 
subsequent analyses. Finally, the feature gene network 
was visualized.

https://www.ncbi.nlm.nih.gov/geoprofiles/
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Identification of differentially expressed genes (DEGs)
The limma package (version 3.5.1) on the R plat-
form was used to identify DEGs between NSCLC 
and T2DM. Genes with logFC > logFold Change and 
adj.p-value < adjust p were considered up-regulated, 
while genes with logFC<(-logFold Change)and adj.p-
value < adjustp were considered down-regulated. Finally, 
the DEGs of lung cancer and T2DM were intersected 
(only the genes that were both up-regulated or down-
regulated) to obtain co-expressed genes (co-DEGs), visu-
alized using the Venn Diagram package (version 1.7.3). 
Statistical difference was defined as p-value < 0.05.

Enrichment analyses
Enrichment analysis was used to explore the functions of 
genes and more comprehensive biological information. 
GO enrichment analysis and Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) pathway enrichment were 
performed using the Cluster Profiler package (version 
4.2.2) on the R platform. The results of GO enrichment 
analysis were categorized into three functional catego-
ries: Biological Process (BP), Cell Component (CC) and 
Molecular Function (MF). Visualization of the results 
was done using bar and dot plots. Statistical differences 
were defined as p < 0.05.

Construction of PPI network and screening of key genes
PPI networks for NSCLC, T2DM and co-DEGs were 
established using the online tool STRING 26 (http://
string-db.org). We set the interaction association to the 
maximum confidence score of > 0.4 and hide the discon-
nected nodes in the network. To filter out co-DEGs with 
weak associations and disconnected nodes, we set the 
low confidence score of co-DEGs > 0.150. In the end, for 
a better understanding of the protein-protein interac-
tion and to select the function of the gene interaction, 
we used Cytoscape (version 3.9.1) software (http://www.
cytoscape.org/) for the visualization and analysis of the 
PPI network. The genes in the PPI network were ranked, 
and the top 10 genes identified as hub genes in each algo-
rithm were selected. Finally, the critical hub genes co-
expressed in NSCLC and T2DM were determined.

Diagnostic efficacy of hub genes
Receiver Operating Characteristic Curve Analysis (ROC) 
was utilized to assess the diagnostic value of a specific 
factor for diagnosing a particular disease. ROC plots 
depict the relationship between sensitivity and speci-
ficity. The area under the curve (AUC) represents the 
accuracy of the detection method, with a value ranging 
from 0.5 to 1. The closer the AUC is to 1.0, the higher the 
authenticity of the detection method. We evaluated the 
accuracy of hub gene prediction and used ROC analysis 
to differentiate lung cancer groups from normal controls 

and T2DM from normal controls. The ROC curve of hub 
genes was generated using the pROC package (version 
1.18.0) on the R platform, and the area under the ROC 
curve and AUC were measured to compare the diagnos-
tic value of hub genes.

Immune infiltration analyses
We performed immune infiltration assays using CIBER-
SORT. CIBERSORT [22] is a deconvolution algorithm 
used to analyze gene expression data and uses gene 
expression tags to determine the proportion of each 
immune cell type. The R script was downloaded from 
the CIBERSORT website (https://cibersortx.stanford.
edu/). We used the original CIBERSORT gene signa-
ture file LM22 (LM22 defines 22 immune cell subtypes) 
to assess the infiltration status of 22 immune cells in the 
lung cancer dataset. We then used the “ggplot2” package 
(version 3.4.4) to draw boxplots to visualize the differ-
ences in immune cell infiltration in the lung cancer group 
compared with the control group. Finally, TIMER, a web 
server for comprehensive analysis of tumor-infiltrating 
immune cells (https://cistrome.shinyapps.io/timer/), was 
used to explore the association between immune cells 
and the identified core genes.

Statistical methods
R (version 4.2.1, R Foundation for Statistical Comput-
ing, Vienna, Austria) and Empower Stats (version 2.0, 
Boston, Massachusetts, USA) were used for all statistical 
analyses. The Kruskal-Wallis rank sum test was used for 
continuous variables, and the chi-square test with design 
adjustment was used for categorical variables. Fisher’s 
exact probability test was used if the count variable had a 
theoretical number < 10. Population characteristics were 
reported as means ± standard deviations for continuous 
variables and N (percentages) for categorical variables. 
A multivariate logistic regression model was used to 
analyze the association between diabetes status and the 
risk of lung cancer. Three models were used for the analy-
sis: Model 1 did not account for confounding variables, 
and Model 2 adjusted for age, sex, and race. Based on 
Model 2, Model 3 also considered the influence of BMI, 
education, TC, TG, HDL, LDL, drinking history, smok-
ing status, and history of hypertension. Odds ratios and 
95% confidence intervals (CI) were used to describe the 
results. Restricted cubic splines show nonlinear relation-
ships between lung cancer risk and glycemic measures. 
P < 0.05 was considered statistically significant. The flow 
chart is presented in Fig. 1.

http://string-db.org
http://string-db.org
http://www.cytoscape.org/
http://www.cytoscape.org/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cistrome.shinyapps.io/timer/
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Fig. 1 Flowchart of this study
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Results
The baseline characteristics of individuals in 2000–2018 
NHANES
The flow chart of this study is shown in Fig.  1. The 
patients were grouped according to diabetes status, and 
the differences in clinical characteristics among the non-
diabetes group, pre-diabetes group and type 2 diabetes 
group were compared. The results showed that gender, 
age, race, education level, BMI, TC, TG, HDL, LDL, 
FPG, Fins, Hba1c, drinking history, smoking status, and 
history of hypertension significantly differed among the 
three groups (Table  1). Although the incidence of lung 
cancer was low in the study cohort, the incidence of lung 
cancer gradually increased among the three groups.

The results of whether or not lung cancer occurred are 
shown in Fig. 2; FPG and glycosylated haemoglobin were 

significantly different between the two groups. FPG and 
glycated haemoglobin levels (Fig. 2A and B) were higher 
among participants with lung cancer. Although the fast-
ing insulin level was lower in the lung cancer group than 
in the non-lung cancer group, the difference between the 
two groups was insignificant (Fig. 2C).

The association between diabetes status and lung cancer
Table  2 shows the association between diabetic status 
(non-diabetic, pre-diabetic, and type 2 diabetes) and 
lung cancer using multiple logistic regression analy-
sis. The results were presented with odds ratios (ORs) 
and 95% confidence intervals (CIs) of the three different 
models. The ORs of all three models were considered 
the reference group for the non-diabetic group. For the 
pre-diabetes group, the OR value of model 1 was 6.019 

Table 1 Weighed baseline characteristics of all participants
Characteristic Type 2 diabetes Prediabetes Non-diabetes P-value
Number of subjects (n) 8828 7943 2771
Age (years) 40.835 ± 16.297 52.513 ± 16.633 60.028 ± 13.727 < 0.001
Gender (%) < 0.001
 Male 3645 (41.289) 4344 (54.690) 1518 (54.782)
 Female 5183 (58.711) 3599 (45.310) 1253 (45.218)
Race (%) < 0.001
 Non-Hispanic White 4103 (46.477) 3260 (41.042) 917 (33.093)
 Non-Hispanic Black 1683 (19.064) 1647 (20.735) 686 (24.756)
 Mexican American 1476 (16.720) 1428 (17.978) 595 (21.472)
 Others 1566 (17.739) 1608 (20.244) 573 (20.678)
 BMI (kg/m2) 27.226 ± 6.011 29.834 ± 6.845 32.056 ± 7.370 < 0.001
 Glycohemoglobin (%) 5.203 ± 0.285 5.635 ± 0.369 7.616 ± 1.841 < 0.001
 Fasting plasma glucose (mmol/L) 5.068 ± 0.394 5.857 ± 0.479 9.442 ± 3.602 < 0.001
 Fasting insulin (uU/mL) 9.849 ± 8.299 14.499 ± 14.152 23.492 ± 31.831 < 0.001
 Total cholesterol (mmol/L) 4.982 ± 1.074 5.126 ± 1.068 4.906 ± 1.228 < 0.001
 Higher density lipoprotein (mmol/L) 1.474 ± 0.434 1.354 ± 0.397 1.255 ± 0.373 < 0.001
 Lower density lipoprotein (mmol/L) 2.919 ± 0.891 3.082 ± 0.908 2.798 ± 0.953 < 0.001
 Triglyceride (mmol/L) 1.301 ± 1.031 1.537 ± 1.184 1.994 ± 2.162 < 0.001
Educational level (%) < 0.001
 Less than high school 1919 (21.738) 2271 (28.591) 1033 (37.279)
 High school 1898 (21.500) 1931 (24.311) 647 (23.349)
 More than high school 5011 (56.763) 3741 (47.098) 1091 (39.372)
Alcohol (%) < 0.001
 No 2213 (25.068) 2112 (26.589) 940 (33.923)
 Yes 5803 (65.734) 5105 (64.270) 1573 (56.767)
 Not reported 812 (9.198) 726 (9.140) 258 (9.311)
Smoking (%)
 No 5232 (59.266) 4141 (52.134) 1352 (48.791)
 Yes 3596 (40.734) 3802 (47.866) 1419 (51.209)
Hypertension history (%) < 0.001
 No 7067 (80.052) 4834 (60.859) 1070 (38.614)
 Yes 1761 (19.948) 3109 (39.141) 1701 (61.386)
Lung cancer (%) < 0.001
 No 8823 (99.943) 7916 (99.660) 2760 (99.603)
 Yes 5 (0.057) 27 (0.340) 11 (0.397)
Continuous variables: mean ± standard deviation; Categorical variables: number (%)
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(95%CI 2.317, 15.637, p = 0.00023), and the OR value 
of model 2 was 3.334 (95%CI 1.259, 8.829, p = 0.01540). 
The OR value of model 3 was 3.289 (95%CI 1.231, 8.788, 
p = 0.01760). For the type 2 diabetes group, the OR of 
model 1 was 7.033 (95%CI 2.441, 20.259, p = 0.00030), 
and the OR of model 2 was 3.032 (95%CI 1.015, 9.054, 
p = 0.04689). The OR of model 3 was 3.110 (95%CI 0.999, 
9.684, p = 0.05020).

These findings suggest that T2DM is significantly 
associated with increased risk for lung cancer, even 
after adjustment for multiple covariates. The results are 
detailed in Table 2.

In U.S. adults, fasting blood glucose and glycosyl-
ated haemoglobin were nonlinearly associated with lung 

cancer risk. As shown in Fig.  2, fasting blood glucose 
and glycosylated haemoglobin had an inverted U-shaped 
relationship with the risk of lung cancer (P for non-lin-
ear < 0.001). In summary, diabetic status and glycemic 
measures were significantly associated with an increased 
risk of lung cancer.

Identification of differentially expressed genes (DEGs)
This study analyzed datasets obtained from the GEO 
database using R language. The lung cancer group was 
compared with the control group, and 4741 DEGs were 
found, including 2358 up-regulated genes and 2383 
down-regulated genes. A total of 334 DEGs (including 
92 up-regulated genes and 242 down-regulated genes) 
were identified between T2DM patients and normal con-
trols. Subsequently, the intersection of NSCLC-DEGs 
and T2DM-DEGs was taken on the R platform to ana-
lyze their co-DEGs, and the results were visualized using 
a Venn diagram (Fig.  3C). We identified 57 co-DEGs, 
including 25 up-regulated co-DEGs (RACGAP1, MYBL2, 
ASUN, SMC4, HN1L, BRI3BP, ORC5, UNG, SMC6, 
ALG6, DROSHA, GOLT1B, FAM69A, G2E3, ABCE1, 
NCAPD3, RNMT, CDC27, YWHAG, SLC5A3, DLG1, 
POT1, CDC7, PIGW, ZNF322) and 32 down-regulated 
co-DEGs(NXB, GSTM5, RILPL2, PREX1, HSPB8, AGTR1, 

Table 2 Relationship between diabetes status and lung cancer
Model I Model II Model III
OR (95% CI, P) OR (95% CI, P) OR (95% CI, P)

Non-diabetes Reference Reference Reference
Prediabetes 6.019 (2.317, 

15.637) 0.00023
3.334 (1.259, 
8.829) 0.01540

3.289 (1.231, 
8.788) 0.01760

Type 2 diabetes 7.033 (2.441, 
20.259) 0.00030

3.032 (1.015, 
9.054) 0.04689

3.110 (0.999, 
9.684) 0.05020

Model I: No covariates were adjusted; Model II: Adjusted for sex, age, race; 
Model III: Adjusted for sex, age, race, BMI, education, TC, TG, HDL, LDL, drinking 
history, smoking status, and history of hypertension

Fig. 2 The Association between diabetes and lung cancer. (A-C) FPG, glycosylated haemoglobin, and fasting insulin in the lung cancer group and control 
group; (D) The association between FPG and the risk of lung cancer; (E) The association between glycosylated haemoglobin and the risk of lung cancer
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ARRB2, NCF2, FAXDC2, SELPLG, ALDH2, NCF1C, CFP, 
NCF4, IL6R, ARID5A, NCF1, IL16, MID1IP1, PALM, 
MCL1, ATP6V0D1, TFEB, FRAT1, SIGLEC5, RAB24, 
LSP1, PYCARD, SOD2, TREM2, CAPG, ADGRG3). Fig-
ure 3A-B shows the volcano diagram.

Identification of co-expression modules by WGCNA
WGCNA was used to construct a co-expression module 
to evaluate whether there was a co-expression pattern of 
each gene between samples and to determine whether 
NSCLC genes and T2DM genes had the same expression 
pattern in a particular stage. By constructing a weighted 
gene co-expression network, we set the soft threshold to 
12 to guarantee high gene independence and low aver-
age connectivity to identify co-expressed gene modules. 
Based on the weighted correlation, hierarchical cluster-
ing analysis was conducted, and the cluster results were 
determined according to the set criteria. The analysis 
outcomes were depicted using cluster trees with differ-
ent branches and colors. In this study, we analyzed the 
expression matrices of all samples in the NSCLC and 
T2DM datasets separately. We selected variant genes in 

the top 30 to 50% (less than 5000) for co-expression anal-
ysis. We calculated module signature genes represent-
ing each module’s overall gene expression level clustered 
according to their correlation. In addition, we generated 
the heatmap to show the correlation between modules 
and a given trait or grouping, with the trait or grouping 
on the abscordinate and the module on the ordinate; the 
redder the color in the heatmap, the stronger the posi-
tive correlation. On the contrary, the bluer the color, the 
stronger the negative correlation. The values in the grid 
are the correlation coefficients and p-values, respec-
tively. If a trait or grouping is linked to a module with 
an absolute value closer to one, it is likely associated 
with the trait or grouping’s gene function in that mod-
ule. WGCNA identified eight modules in the lung cancer 
data, and the interrelationship between the modules was 
assessed. MEmagenta exhibited a highly negative cor-
relation with NSCLC, while MEgreen showed a positive 
correlation with NSCLC. In addition, 17 modules were 
found in the diabetes data, with the MEorangered4 mod-
ule displaying a negative correlation with T2DM, and the 
MElightcyan1 module was highly positively correlated 

Fig. 3 volcano maps of (A) Lung cancer and (B) T2DM;(C) Venn diagram of co-DEGs
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with T2DM. We retained the genes associated with these 
modules for further analysis. The results of all WGCNA 
analyses are shown in Fig. 4.

Functional enrichment analysis
GO and KEGG enrichment are two main methods for 
analyzing gene function and structure. Firstly, GO and 
KEGG enrichment analyses were performed on lung 
cancer. GO enrichment analysis identified the biologi-
cal process (BP), cellular component (CC), and molecu-
lar function (MF) of these genes, respectively. From the 
GO analysis of NSCLC (Fig. 5A), biological process (BP) 
(Fig. 5B) showed that DEGs were mainly enriched in an 
extracellular matrix organization, extracellular structure 
organization, extracellular matrix organization, mitotic 
nuclear division, cell chemotaxis, and mitotic sister 
chromatid segregation. The cellular component (CC) 
(Fig.  5C) consisted mainly of collagen-containing extra-
cellular matrix, condensed chromosome-centromeric 
region, chromosome-centromeric region, and condensed 
chromosome kinetochore, kinetochore. Molecular func-
tions (MF) (Fig.  5D) mainly included peptidase regula-
tor activity, glycosaminoglycan binding, and enzyme 

inhibitor activity. KEGG pathway analysis (Fig.  5E-F) 
showed that DEGs were mainly enriched in the Cell 
cycle (p = 0.00011), Complement and coagulation cas-
cades (p < 0.0001), Staphylococcus aureus infection 
(p = 0.00068), Hematopoietic cell lineage (p = 0.00168), 
Cell adhesion molecules (p = 0.002091), Viral pro-
tein interaction with cytokine and cytokine receptor 
(p = 0.000448), Antifolate resistance (p = 0.008433), and 
p53 signaling pathway (p = 0.028114).

GO analysis of T2DM-DEGs is shown in Fig. 6A. Bio-
logical processes (BP) (Fig. 6B) showed that DEGs were 
mainly enriched in the regulation of intrinsic apoptotic 
signaling pathways, regulation of apoptotic signaling 
pathways, and superoxide metabolism. The cellular com-
ponent (CC) (Fig.  6C) consists mainly of NADPH oxi-
dase complexes, Fleming bodies, endocytic vesicles, and 
secondary lysosomes. Molecular function (MF) (Fig. 6D) 
mainly includes NADH oxidase activity for superoxide 
production, oxidoreductase activity, NADPH oxidase 
activator activity for superoxide production, and DNA-
glycosylase activity. KEGG pathway analysis (Fig.  6E-
F) was mainly enriched in several metabolic diseases, 
such as Lipid and atherosclerosis (p = 0.003051), fat 

Fig. 4 WGCNA for (A,D) the scale-free index for various soft-threshold powers (β) and the mean connectivity for various soft-threshold powers for NSCLC 
and T2DM; (B,E) phyloclustering tree map of the genes for NSCLC and T2DM; (C,F) heatmap of module and trait / grouping correlation for NSCLC and 
T2DM
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digestion and absorption (p < 0.0001), and some signal-
ing pathways, such as neurotrophic factor signaling path-
way (p = 0.022672)and AGE-RAGE signaling pathway 
(p < 0.0001).

In addition, GO functional enrichment analysis and 
KEGG enrichment analysis were performed to explore 
co-DEGs’ biological functions further. GO pathway 
analysis of co-DEGs (Fig.  7A) showed that Changes in 
biological processes (BP) (Fig.  7B) mainly include the 
superoxide metabolic process, reactive oxygen species 
metabolic process, and reactive oxygen species meta-
bolic process. The cellular component (CC) (Fig. 7C) was 
mainly enriched in NADPH oxidase complex, second-
ary lysosome, and Flemming body. In terms of molecular 
function (MF) (Fig. 7D), co-DEGs were mainly enriched 
in superoxide generating NADPH oxidase activator 
activity, superoxide generating NAD(P)H oxidase activ-
ity oxidoreductase activity, acting on NAD(P)H, and 
oxygen as acceptor. As for the enrichment of KEGG 
analysis (Fig.  7E-F), the result of the co-DEGs mainly 
enriched in some inflammation and metabolic dis-
eases, such as Lipid and atherosclerosis (p = 0.001190)), 
Neutrophil extracellular trap formation (p = 0.005241), 
Diabetic cardiomyopathy (p = 0.006495), Leukocyte 
transendothelial migration (p = 0.008752), and Chemical 

carcinoma-reactive oxygen species (p = 0.009001), and 
expressed in signaling pathways, such as Chemokine 
signaling pathway (p = 0.033944) and PI3K-Akt sig-
naling pathway (p = 0.042931), and some cellular life 
processes, Examples include Osteoclast differentia-
tion (p = 0.001493), Phagosome (p = 0.002308), and Cell 
cycle(p = 0.002596).

Construction of PPI network and screening of key genes
In this study, the STRING database was used to construct 
the PPI network of up-regulated and down-regulated co-
DEGs to screen the hub genes of co-DEGs further. The 
PPI network of co-DEGs that were both up-regulated 
consisted of 21 genes and 296 edges, and the PPI net-
work of co-DEGs that were down-regulated consisted 
of 29 genes and 448 edges (Fig.  8A-B). Key hub genes 
were screened using the cytoHubba plugin in Cytoscape 
software. According to the visualization results of the 
PPI network combined with the key nodes of the PPI 
network, the hub key genes of 10 co-DEGs were finally 
screened out in this study, which were SMC6, CDC27, 
CDC7, RACGAP1, SMC4, NCF4, NCF1, NCF2, SELPLG 
and CFP (Fig. 8C-D).

Fig. 5 Functional characteristics analysis for NSCLC. (A) GO enrichment results. (B) Go-enriched BP; (C) Go-enriched CC; (D) GO MF; (E) KEGG enriched 
barplot; (F) Dot plot of KEGG enrichment
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Fig. 7 Functional characteristics analysis for the co-DEGs. (A) GO enrichment results. (B) Go-enriched BP; (C) Go-enriched CC; (D) GO MF; (E) KEGG en-
riched barplot; (F) Dot plot of KEGG enrichment

 

Fig. 6 Functional characteristics analysis for the T2DM. (A) GO enrichment results. (B) Go-enriched BP; (C) Go-enriched CC; (D) GO MF; (E) KEGG enriched 
barplot; (F) Dot plot of KEGG enrichment
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Receiver operating characteristic (ROC) curve
ROC curve was used to verify the diagnostic value of hub 
genes in NSCLC and T2DM. For patients with NSCLC, 
the AUCs of SMC6, CDC27, CDC7, RACGAP1, SMC4, 
NCF4, NCF1, NCF2, SELPLG, and CFP were 0.920, 
0.920, 0.812, 0.968, 0.974, 0.920, 0.875, 0.974, 0.939, and 
0.935, respectively (Fig.  9A-J). For patients with T2DM, 
the AUCs of SMC6, CDC27, CDC7, RACGAP1, SMC4, 
NCF4, NCF1, NCF2, SELPLG, and CFP were 0.812, 0.912, 

0.901, 0.857, 0.801, 0.864, 0.831, 0.794, 0.846, and 0.860, 
respectively (Fig. 10A-J).

The hub-genes had good diagnostic efficiency and 
high diagnostic value in both NSCLC and T2DM 
(0.9 > AUC > 0.7). In addition, among the up-regulated 
genes, RACGAP1 had a high diagnostic value for NSCLC 
and T2DM. SMC4 had a high diagnostic value for 
NSCLC and T2DM among the down-regulated genes.

Fig. 8 Protein-protein interaction (PPI) analysis of (A) upregulated co-DEGs; (B) downregulated co-DEGs; (C) hub genes in downregulated co-DEGs; (D) 
hub genes in upregulated co-DEGs
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Evaluation of immune cell infiltration
Box plots of differences in immune cell infiltration 
showed that compared with the control group, memory 
B cells, activated myeloid dendritic cells, M0 and M1 
macrophages, plasma cells, CD4 + memory activated 
T cells were significantly increased in the lung cancer 
group. However, resting myeloid dendritic cells, eosino-
phils, activated mast cells, Monocytes, neutrophils, and 
CD8 + T cells were significantly reduced in the lung can-
cer group (Fig. 11A). The corrplot package in R software 
was used for the correlation analysis of immune cells. As 

shown in Fig. 11B, the numbers in the squares represent 
the correlation coefficients between the corresponding 
immune cells. The combinations with high positive cor-
relation include memory B and plasma cells, Eosinophils 
and Monocytes. The combinations with high negative 
correlation were Eosinophils and plasma cells.

Then, we further explored the spear-man correlation 
coefficient between hub genes and the degree of infiltra-
tion of immune cells. As a result, all hub genes were asso-
ciated with immune cells. Using correlation scatter plots, 
we visualized the six hub genes most strongly associated 

Fig. 10 ROC curve of co-DEGs in T2DM. (A) SMC6; (B) CDC27; (C) CDC7; (D) RACGAP1; (E) SMC4; (F) NCF4; (G) NCF1; (H) NCF2; (I) SELPLG; (J) CFP

 

Fig. 9 ROC curve of co-DEGs in NSCLC. (A) SMC6; (B) CDC27; (C) CDC7; (D) RACGAP1; (E) SMC4; (F) NCF4; (G) NCF1; (H) NCF2; (I) SELPLG; (J) CFP
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with immune cells (Fig.  12). NCF1, 2, 4 and SELPLG 
genes were positively correlated with B cells, CD4 + T 
cells, macrophages, neutrophils, and dendritic cells. The 
CFP gene was positively correlated with CD4 + T cells, 
neutrophils, and dendritic cells.

Discussion
In clinical work, we have observed an increasing number 
of patients with pulmonary nodules or lung cancer who 
also have diabetes or hyperglycemia. In addition to treat-
ing the symptoms to lower blood glucose, clinicians need 
to investigate the potential relationship and interaction 
between these two diseases during clinical diagnosis and 
treatment. T2DM is a risk factor for various malignancies 

Fig. 11 (A) Analysis of differences in immune cells between the lung cancer and the control group. The horizontal axis represents the different immune 
cells, the vertical axis represents the proportion of immune cells; (B) Immune cell proportion correlation matrix. *p < 0.05;**p < 0.01;***p < 0.001;****p < 0
.0001
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due to reduced pancreatic insulin secretion and insulin 
resistance, and it is also a known factor in tumor growth 
[23]. Some basic research has indicated that factors 
such as hyperglycemia, hyperinsulinemia, glycosylation, 
inflammation, and hypoxia may be potential mechanisms 
for promoting the proliferation and invasiveness of lung 
tumor cells [24].

Hyperglycemia is not only an indicator of prediabetes/
diabetes but also one of a critical factors affecting can-
cer treatment. The molecular mechanisms underlying 
lung cancer in T2DM remain unclear. Therefore, explor-
ing the co-expressed gene levels of lung cancer patients 
and diabetes is crucial for personalized treatment and 
improving prognosis [25]. This is the first time to exam-
ine the common genes and characteristics of NSCLC and 

Fig. 12 Correlation between hub genes and immune cell components in NSCLC and T2DM. (A) CDC27; (B) NCF4; (C) NCF1; (D) NCF2; (E) SELPLG; (F) CFP
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T2DM using bioinformatics methods such as WGCNA 
and immune infiltration analysis, which can guide early 
detection, better treatment and timely prevention.

Although these studies suggest a potential link between 
diabetes and the development of lung cancer, previous 
large cohort studies [26, 27] have produced conflicting 
results regarding the relationship between diabetes and 
lung cancer risk, showing both reduced or increased risk 
and no association. These studies included relatively het-
erogeneous populations, and most lacked the power to 
assess the association between diabetes and lung cancer 
risk.

Therefore, we conducted a comprehensive statistical 
analysis using the NHANES 2000–2018 dataset to inves-
tigate the association between various indicators of dia-
betes and the risk of lung cancer. After accounting for 
all confounding factors, we discovered that prediabetes 
and type 2 diabetes were still significantly linked to an 
increased risk of lung cancer. Both fasting plasma glucose 
and glycosylated haemoglobin had an inverted U-shaped 
association with the risk of lung cancer. Therefore, we 
hypothesize that hyperglycemia or diabetes is correlated 
with an elevated risk of lung cancer, although the specific 
genetic mechanisms need to be further studied.

Based on the results of the epidemiological analysis, 
we further explored the potential molecular mechanisms 
related to NSCLC and T2DM using transcriptome data. 
This study analyzed GSE18842, GSE118370, GSE26168 
and GSE15932 datasets from the GEO database. First, 
WGCNA analysis explored the core modules signifi-
cantly related to the disease. Limma analysis identified 
57 co-expressed genes, 25 up-regulated co-expressed 
genes, and 32 down-regulated co-expressed genes. Then, 
KEGG pathway enrichment analysis and PPI network 
were constructed to identify hub key genes in co-DEGs. 
KEGG pathway analysis of co-DEGs mainly focused on 
several inflammatory and metabolic diseases and signal-
ing pathways. These co-expressed genes were related to 
tumor, immunity and inflammation. Based on the above 
analysis, 10 hub genes were identified in this study, 
namely SMC6, CDC27, CDC7, RACGAP1, SMC4, NCF4, 
NCF1, NCF2, SELPLG and CFP. ROC curve analysis 
showed these 10 hub genes had good diagnostic values 
for NSCLC and T2DM (0.9 > AUC > 0.8). Among them, 
RACGAP1 and SMC4 had the best predictive value. 
Through bioinformatics analysis, the co-expressed genes 
of NSCLC and T2DM were obtained in this study, which 
provides a basis for the early diagnosis and treatment of 
the diseases.

Six genes of SMC family members form SMC protein 
complexes by creating heterodimers and binding to other 
proteins in the cell, including adhesin (SMC1/3), clustin 
(SMC2/4) and SMC5/6 complex [28, 29]. The SMC com-
plex regulates genome stability and homeostasis in the 

nucleus by controlling chromatid condensation, DNA 
replication and repair, and homologous chromosome 
pairing in meiosis [30].

Previous studies [31] have demonstrated that the pro-
tein products of SMC genes can act not only as tran-
scription factors that promote carcinogenesis but also 
as tumor suppressors based on their aberrant expres-
sion patterns in some organs. An increasing number of 
studies [32] have shown that SMC4 also plays essential 
roles in the non-mitotic phase of the cell cycle, such as 
maintaining the silent state of gene expression, hetero-
chromatin organization and DNA repair. Recent studies 
have shown that SMC4 is aberrantly expressed in HCC 
and colon cancer. However, the underlying mechanism of 
SMC4 in carcinogenesis has not been investigated. There 
is no research on SMC4 and SMC6 in lung cancer and 
diabetes, which needs further exploration.

CDC27 comprises 33 specific exons and can produce 
multiple transcripts through alternative splicing, result-
ing in 22 different mRNAs, 13 of which can be trans-
lated into functional proteins. The primary function of 
CDC27 is encoded by 19 exons, with 830 and 824 amino 
acids, respectively [33]. APC/C can regulate cell divi-
sion, genome stability, cell differentiation, carcinogenesis, 
autophagy, cell death, and energy metabolism. Most of 
these functions, which are essential in tumor pathogen-
esis, may be regulated by CDC27 in APC/C. Changes in 
CDC27 at DNA, RNA, and protein levels, and post-trans-
lational modifications could impact cell division [34]. The 
discovery of its abnormal expression in various malignant 
tumors provides a new direction for the early diagnosis, 
treatment evaluation and prognosis of these malignant 
tumors [35]. CDC27 has not been investigated in diabe-
tes thus far, and we need to verify further its potential as 
a common target in lung cancer and diabetes.

Cell division cycle 7 (CDC7) is a conserved serine-thre-
onine kinase essential for initiating DNA replication [36]. 
CDC7 controls S-phase checkpoints in the DNA dam-
age response (DDR) by reducing checkpoint signaling 
and triggering DNA replication reinitiation. CDC7 may 
also phosphorylate claspin and activate the ATR-CHK1 
checkpoint pathway [37]. CDC7 expression is minimal or 
undetectable in normal tissues and cell lines but highly 
expressed in many human cancer and tumor cell lines. 
Silencing CDC7 in cancer cells impairs S-phase progres-
sion and induces p53-independent apoptosis but does 
not affect normal cells [38]. Thus, CDC7 becomes an 
attractive target for cancer therapy.

RACGAP1 is a component of centrospirin that is cru-
cial for the activation of cell division and is believed to 
be a member of the Rho GTpase-activating protein fam-
ily [39]. RACGAP1 binds to GTP-bound Rac1 and serves 
as both a mediator of tyrosine phosphorylation of the 
signal transducer and activator of transcription (STAT) 



Page 17 of 20Yuan et al. Diabetology & Metabolic Syndrome           (2024) 16:64 

protein family and as a nuclear chaperone of phosphory-
lated STATs containing nuclear localization signals [40]. 
Racgap1 has multiple functions, including anti-apoptosis, 
proliferation, differentiation, and inflammation [41].

RACGAP1 also controls the activity of Rho proteins, 
including Rac and CDC42, to influence cell shape, migra-
tion, and polarization. RACGAP1 has been shown to 
play essential roles in multiple cancers through its high 
expression. RACGAP1 can increase the potential for 
malignancy and can be used as a biomarker for lymph 
node metastasis and prognosis in colorectal cancer [42]. 
RACGAP1 has also been shown to drive breast cancer 
metastasis by regulating ECT2-dependent mitochondrial 
quality control [43]. Liang et al. ‘s study [44] was the first 
to link RACGAP1 to lung cancer, observing that down-
regulation of RACGAP1 in cultured lung cancer cells by 
RNA interference led to defects in cell division. Rac1 is a 
master regulator of cytoskeleton remodelling and is vital 
for insulin particle fusion and transport and subsequent 
secretion in pancreatic β-cells. APPL2 interacts with Rac-
GAP1, inhibiting the conversion of active GTP-bound 
Rac1 to inactive GDP-bound Rac1 [45]. The APPL2-Rac-
GAP-Rac1 signaling axis is essential for tightly regulating 
GSIS and subsequent glucose homeostasis.

In the last decade, with the rapid development of tumor 
immunotherapy, immune-infiltrating cells in the tumor 
environment have garnered increasing attention. Many of 
their functions have been identified as targets for treating 
malignant melanoma and lung cancer [46]. It is crucial to 
investigate the correlation between elevated gene expres-
sion in tumor tissues and tumor infiltration by different 
types of immune cells. In this study, the CIBERSOTR 
algorithm was used to evaluate the types of immune cells 
infiltration in the lung cancer group. It was discovered 
that various immune cell subtypes were closely related to 
critical biological processes of lung cancer.

Memory B cells, activated myeloid dendritic cells, M0 
and M1 macrophages, plasma cells, and CD4 + memory 
activated T cells showed significant increases in the 
lung cancer group, while resting myeloid dendritic cells, 
eosinophils, activated mast cells, Monocytes, neutro-
phils, and CD8 + T cells exhibited significant decreases. 
In addition, we delved into the correlation between hub 
genes and immune cells. All Hub genes were found to 
be significantly correlated with immune cells. Notably, 
NCF1, 2, 4 and SELPLG genes were positively correlated 
with B cells, CD4 + T cells, macrophages, neutrophils and 
dendritic cells.

Neutrophil cytoplasmic factor 1 (NCF1), neutro-
phil cytoplasmic factor 2 (NCF2), and neutrophil cyto-
plasmic factor 4 (NCF4) are also known as p47phox, 
p67phox, and p40phox, respectively [47]. They belong to 
the NADPH oxidase complex, a cytoplasmic component 
whose polymorphism is a significant factor associated 

with autoimmune diseases and is most likely caused by 
the modulation of peroxides. Increasing evidence sug-
gests that NCF1, NCF2 and NCF4 play essential roles in 
tumorigenesis and progression [48].

The selection P-ligand gene (SELPLG), also known as 
CD162 and PSGL-1, is expressed in bone marrow cells 
and stimulated T lymphocytes [49]. This protein plays a 
crucial role in leukocyte trafficking during inflammation 
by binding leukocytes to activated platelets or selectin-
expressing endothelial cells. Recently, it has been shown 
that SELPLG acts as an immune checkpoint regulator in 
colorectal cancer [50], head and neck squamous cell car-
cinoma, and melanoma [51], making it a potential novel 
therapeutic target for cancer.

In the analysis, we found a significant positive corre-
lation between the CFP gene and CD4 + T cells, neutro-
phils and dendritic cells. CFP, which encodes a plasma 
glycoprotein, binds and stabilizes the labile C3 conver-
tase (C3bBb) in the complement system and actively 
regulates the innate immune system in the alternative 
pathway (AP). CFP is mainly synthesized and secreted by 
leukocytes. Furthermore, various immune cells, particu-
larly mature neutrophils, significantly affect serum CFP 
expression levels [52]. Research has indicated that CFP 
may serve as an independent risk factor for the prog-
nosis of lung cancer and could be involved in regulating 
relevant immune mechanisms in the tumor microenvi-
ronment [53]. However, there is limited research on the 
relationship between CFP and tumors, and the specific 
mechanism needs further study.

Diabetes is a metabolic disease that arises from inflam-
mation in a complex immune process. Insulin resis-
tance, caused by the inhibition of insulin signaling, 
triggers a series of immune responses that exacerbate 
the inflammatory state, leading to hyperglycemia. Cross-
talk between pathogenic CD4 + and CD8 + T cells and 
CD11c + M1 macrophages in obese adipose tissue further 
enhances the inflammatory immune response induced by 
adipocyte apoptosis and macrophage infiltration, exacer-
bating adipose tissue inflammation and peripheral insulin 
resistance. In addition, neutrophil dysfunction, macro-
phage dysfunction, cytokine and complement production 
are all related to the development of T2DM. Our find-
ings suggest that the co-expressed genes of lung cancer 
and diabetes may mediate the interaction between lung 
cancer and diabetes through the immune cell infiltration 
pathway, which needs further experimental verification.

Our findings indicated the co-expression of genes in 
NSCLC and T2DM. We have established a genetic basis 
for the common pathogenesis of NSCLC and T2DM. 
Additionally, the identified hub genes may provide new 
insights for the early diagnosis of future diseases. Iden-
tifying co-expressed genes in both conditions may alert 
clinicians to the potential development of lung cancer in 
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patients with lung nodules expressing these hub genes, 
allowing for early clinical intervention. Genetic testing is 
currently widely used for the early diagnosis of diseases. 
The co-expressed genes of NSCLC and T2DM that we 
have proposed can, to some extent, distinguish between 
NSCLC and non-NSCLC subjects and between type 2 
diabetes and non-type 2 diabetes subjects. However, it is 
necessary to clarify further whether there are expression 
differences of these hub genes in NSCLC and T2DM, and 
whether there are cumulative effects of gene expression 
between the diseases, which requires further experimen-
tal validation. Additionally, we can also use co-expressed 
gene targets to predict personalized treatment for lung 
cancer combined with T2DM. Before clinical use, these 
drugs require extensive animal research, clinical trials, 
adverse reaction monitoring, and approval from the Food 
and Drug Administration.

In summary, SMC6, CDC27, CDC7, RACGAP1, SMC4, 
NCF1,2,4, SELPLG and CFP are significantly associ-
ated with T2DM and lung cancer, making them poten-
tial target genes for disease prediction and treatment in 
the future. Further experiments can be designed around 
these genes to verify the pathogenic mechanism and 
achieve early disease prediction. However, our study has 
some limitations. Firstly, we used the NHANES 2000–
2018 dataset for the epidemiologic analysis, which may 
limit the extrapolation of statistical results as all par-
ticipants were from the United States. At the same time, 
although we have included extensive sample data span-
ning 18 years, the number of people with lung cancer in 
this dataset is small, and more large sample epidemiolog-
ical investigations are needed in the future. Secondly, we 
have only reached a preliminary conclusion that the bio-
informatics dataset from GEO needs to be validated by 
our independent experiments. Further validation in cell 
and animal models needs to be performed. Future stud-
ies will focus on verifying the clinical application of these 
genes in individualized cancer therapy.

Conclusion
Based on the NHANES database, we found that diabetes 
status and glycemic measures (fasting plasma glucose, 
glycated haemoglobin) were significantly associated with 
an increased risk of lung cancer. We then used bioinfor-
matics methods to screen and validate the co-expressed 
genes between lung cancer and T2DM. We identified 
the critical pathogenic genes SMC6, CDC27, CDC7, 
RACGAP1, SMC4, NCF1,2,4, and SELPLG, which exhib-
ited good predictive value. Furthermore, these core 
genes were associated with dysregulated immune cells. 
Together, these dysregulated core genes and immune 
cells offer potential research avenues for lung cancer with 
diabetes. It is anticipated that early genetic screening 
and individualized treatment for diabetic patients with 

high-risk factors of lung cancer will be conducted. In the 
future, more basic experiments are required to explore 
the potential mechanisms by which co-expressed genes 
regulate diseases.
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