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Abstract 

Background Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduced the risk of cardiovascular and renal 
outcomes in patients with type 2 diabetes (T2D), but the underlying mechanism has not been well elucidated. The 
circulating levels of proteins and metabolites reflect the overall state of the human body. This study aimed to evaluate 
the effect of dapagliflozin on the proteome and metabolome in patients with newly diagnosed T2D.

Methods A total of 57 newly diagnosed T2D patients were enrolled, and received 12 weeks of dapagliflozin treat-
ment (10 mg/d, AstraZeneca). Serum proteome and metabolome were investigated at the baseline and after dapagli-
flozin treatment.

Results Dapagliflozin significantly decreased HbA1c, BMI, and HOMA-IR in T2D patients (all p < 0.01). Multivariate 
models indicated clear separations of proteomics and metabolomics data between the baseline and after dapagliflo-
zin treatment. A total of 38 differentially abundant proteins including 23 increased and 15 decreased proteins, and 35 
differentially abundant metabolites including 17 increased and 18 decreased metabolites, were identified. In addi-
tion to influencing glucose metabolism (glycolysis/gluconeogenesis and pentose phosphate pathway), dapagliflozin 
significantly increased sex hormone-binding globulin, transferrin receptor protein 1, disintegrin, and metalloprotease-
like decysin-1 and apolipoprotein A-IV levels, and decreased complement C3, fibronectin, afamin, attractin, xanthine, 
and uric acid levels.

Conclusions The circulating proteome and metabolome in newly diagnosed T2D patients were significantly 
changed after dapagliflozin treatment. These changes in proteins and metabolites might be associated with the ben-
eficial effect of dapagliflozin on cardiovascular and renal outcomes.
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Introduction
Type 2 diabetes (T2D) is a worldwide medical problem 
with increasing mortality and morbidity [1]. Individuals 
with T2D are more likely to develop coronary artery 

disease, heart failure, and chronic kidney disease [1]. 
Sodium‐glucose co‐transporter‐2 (SGLT2) inhibitors 
are a novel class of hypoglycemic agents that inhibit 
glucose reabsorption in the proximal tubules of the 
kidney [2–4]. Recently, Sodium‐glucose co‐transporter‐2 
inhibitors (SGLT2i) have attracted tremendous attention 
because their cardiovascular and renal benefits are 
multifactorial and beyond glycemic control, but the 
underlying mechanism has not been well elucidated 
[2–4]. SGLT2 is a transmembrane protein almost 
exclusively expressed on proximal renal tubule [5]. 
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Hence, it has been speculated that SGLT2i might exert 
beneficial effects by arousing a series of physiological 
consequences. Metabolomics and proteomics are 
emerging and powerful technologies in biological 
research [6]. Proteins are crucial effectors in the process 
of biogenesis, and their changes directly affect metabolic 
pathways in  vivo [7]. Proteomics technology makes it 
possible to investigate the characteristics of proteins at a 
large-scale level, to obtain an overall and comprehensive 
understanding of the processes of disease occurrence, 
cell metabolism, growth and development, and various 
stress responses at the protein level [8]. Metabolomics is 
the collection of metabolites in a given biological sample 
[9]. Metabolites are usually downstream products of 
gene expression, transcription, and protein translation. 
In addition to genetic factors, metabolites may be 
affected by exogenous factors [9]. Since both proteins 
and metabolites are participants in metabolic pathways, 
influenced by nutrition, environment and physical 
condition, and reflect the overall state of human body, the 
combined multi-omics approach could provide insights 
into the complex interactions among different molecular 
pathways involved in SGLT2i in metabolic diseases. 
Importantly, T2D is a metabolic disease accompanied by 
the alteration of circulating proteins and metabolites [10, 
11]. SGLT2i probably provide multi-organ improvement 
effect by affecting circulating proteins and metabolites. 
Considering the potential for protein and metabolite 
interactions, a multi-omics approach was employed for 
the study.

This study aimed to provide an integrated evaluation 
of the circulating proteome and metabolome in newly 
diagnosed T2D patients at the baseline and after 
dapagliflozin treatment.

Methods
Study design and participants
From April 2021 to August 2021, a total of 62 newly 
diagnosed T2D patients were consecutively enrolled at 
the Department of Endocrinology in Beijing Chao-yang 
Hospital Affiliated with Capital Medical University. All 
the patients had been diagnosed with T2D within the 
previous three months according to the 2020 American 
Diabetes Association diagnostic criteria, and met the 
following inclusion criteria: (1) aged 20–79 years old; (2) 
hemoglobin A1c (HbA1c) 7–10%. None of the patients 
had received anti-diabetic drugs before enrollment. None 
of the patients had any history of coronary artery disease, 
liver or renal function impairment, infectious disease, 
systemic inflammatory disease, hematological diseases, 
thyroid disease, autoimmune diseases, or cancer. Patients 
with ketoacidosis and hyperglycemic hyperosmolar 
status, and those who were pregnant or possibly 

pregnant, or ingesting agents influencing glucose or lipid 
metabolism were also excluded.

All the T2D patients received 12 weeks of dapagliflozin 
treatment (10 mg/d, AstraZeneca). During this time, the 
subjects received no other additional treatments. Patients 
were followed up every 4  weeks, and side effects were 
recorded at each visit. Three patients dropped out of 
the study due to urinary tract infections, and 2 patients 
dropped out due to self-discontinuation. During the 
12  weeks of dapagliflozin treatment, hypoglycemia, 
ketoacidosis, or other side effects were not observed in 
any patients.

This study was conducted according to the principles of 
the Declaration of Helsinki, and approved by the Ethics 
Committee of Beijing Chao-yang Hospital Affiliated with 
Capital Medical University. Written informed consents 
were obtained from all participants.

Clinical and biochemical measurements
The information about health status and medications 
was collected by two skilled nurses using a standard 
questionnaire. Clinical and biochemical measurements 
were performed at baseline and after 12  weeks of 
dapagliflozin treatment. Height and weight were 
measured to the nearest 0.1 cm and 0.1 kg by the same 
trained group, respectively. BMI was calculated as the 
weight in kilograms divided by the height in meters 
squared. Fasting venous blood was collected in the 
morning after an overnight fast. Biochemical parameters 
were measured immediately and serum was stored at 
− 80  °C for proteomic and metabolomic analysis after 
centrifugation at 1500g for 20 min at 4 °C.

Serum triglyceride (TG) was measured by a glycerol 
lipase oxidase reaction, total cholesterol (TC) by an 
enzymatic cholesterol oxidase reaction, and high-
density lipoprotein cholesterol (HDL-C) and low-density 
lipoprotein cholesterol (LDL-C) by a direct assay using an 
autoanalyzer (Hitachi 747, Roche Diagnostics, Germany). 
Nonesterified fatty acid (NEFA) concentrations were 
determined by enzymatic colorimetric assays (Hitachi 
747, Roche Diagnostics, Germany). Fasting blood 
glucose (FBG) was detected using the glucose oxidase 
method (Hitachi 747, Roche Diagnostics, Germany). 
Fasting plasma insulin (FINS) was determined by the 
chemiluminescence method (Dimension Vista, Siemens 
Healthcare Diagnostics, Germany). HbA1c was estimated 
by high-performance liquid chromatography using 
the HLC-723G7 analyzer (Tosoh Corporation, Tokyo, 
Japan). Serum creatinine (CREA) level was measured by 
the picric acid method (Hitachi 747, Roche Diagnostics, 
Germany). Homeostasis model assessment of insulin 
resistance (HOMA-IR) was calculated according to the 
following formula: HOMA-IR = FINS (mIU/L) × FBG 
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(mmol/L)/22.5 [12]. The estimated glomerular filtration 
rate (eGFR) was calculated using the Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equation 
[13].

Proteomics
Chemicals and reagents
All chemicals used were mass spectrometry (MS) 
grade or higher. Methanol, acetonitrile (ACN), and 
formic acid (FA) were purchased from Fisher Scientific 
(Thermo Fisher Scientific, Inc. USA). Sodium dodecyl 
sulfate (SDS), ammonium bicarbonate  (NH4HCO3), 
trifluoroacetic acid (TFA), DT-Dithiothreitol (DTT), 
iodoacetamide (IAA), lysyl endopeptidase (LysC), urea, 
and trypsin were obtained from Sigma-Aldrich (St. Louis, 
USA).

Sample preparation
Total protein concentration was measured by a BCA 
Protein Assay Kit (Thermo Fisher Scientific, Inc. USA). 
10 μL aliquot of serum samples (~ 600 μg proteins) were 
transferred into High Select™ depletion spin columns 
to deplete the top 14 abundant blood proteins following 
the manufacturer’s instruction (Thermo Fisher Scientific, 
Inc. USA). Then, 320  μL samples were centrifugated 
at 12,000g for 10  min in a 10kD ultrafiltration tube 
(Millipore, Burlington, MA, USA). 200  μL of 8  M urea 
was added to the sample and centrifuged at 12,000g for 
10 min twice, and finally, 200 μL of 8 M urea was added. 
DTT solution was added to the sample until reaching 
final a concentration of 10 mM, and incubated at 37 ℃ for 
30 min. IAA solution was added to a final concentration 
of 20  mM, incubated away from  light at room 
temperature for 30 min, and centrifugated at 12,000g for 
10 min. 200 μL of 50 mM NH4HCO3 solution was added 
to the sample and centrifuged at 12,000g for 10 min twice, 
and finally, 200  μL of 50  mM NH4HCO3 solution was 
added. Next, 4  μg of LysC (50:1, w/w, protein: enzyme) 
was added to each sample for incubation at 37 ℃ for 2 h, 
after which 4 μg trypsin (50:1, w/w, protein: enzyme) was 
added to the sample for incubation at 37 ℃ overnight. 
Finally, a final concentration of 1% TFA was added 
to terminate the reaction. Next, 100  μL of methanol 
was centrifuged at 600g for 1  min in SoLAμ HRP plate 
(Thermo Fisher Scientific, Inc. USA), after which 100 μL 
of 80% ACN 0.1% TFA and 200  μL of 0.1% TFA were 
added for centrifuging at 1000g for 1  min, respectively. 
Then, the sample was loaded to the SoLAμ HRP plate for 
centrifuging at 1000g for 2 min twice. Next, 200 μL 0.1% 
TFA was added to the sample for centrifuging at 1000g 
for 2  min, after which 100  μL 80% ACN 0.1% TFA was 
added for centrifuging at 1000g for 3 min. Then the eluate 

was dried at 40  ℃ using a Centrifugal concentrator. 
Next, the digested and desalted peptides were dissolved 
to 0.5  μg/μL with 0.1% FA, after peptide assay by using 
NanoDrop microvolume spectrophotometer (Thermo 
Fisher Scientific, Inc. USA), and 2  μg was loaded into 
liquid chromatography-mass spectrometry (LC–MS) for 
data-independent acquisition (DIA) analysis.

LC–MS analysis
DIA proteomic analysis was performed by LC–MS 
analysis using a UltiMate™ 3000 RSLC nano-LC system 
(Thermo Fisher Scientific, Inc. USA) with Q Exactive 
HFX™ quadrupole-electrostatic field orbitrap high 
resolution mass spectrometry (Thermo Fisher Scientific, 
Inc. USA). XCalibur 4.3 (Thermo Fisher Scientific, 
Inc. USA) was used for data acquisition. All samples 
were allocated in a random order, and technicians were 
blinded to the status of the samples. Quality control 
(QC) samples (pooled samples from equal aliquots of 
each sample) were used to monitor the MS performance. 
Further details are provided in the Supporting 
Information section.

The digested peptide was loaded onto the Trap Column 
(Acclaim PepMap C18, 3  μm, 100  Å, 75  μm*2  cm, 
Thermo Fisher Scientific, Inc. USA) with buffer A (0.1% 
FA), and subsequently separated on the analytical column 
(Acclaim PepMap C18, 2  μm, 100  Å, 75  μm*25  cm, 
Thermo Fisher Scientific, Inc. USA). The trap column 
was eluted with different gradients of buffer B (0.1% FA, 
80% ACN). The gradient of buffer B was from 3 to 6% in 
3 min, 8% to 30% in 95 min, 30% to 99% in 4 min, and 99% 
to 99% in 5 min. The column flow rate was maintained at 
300 nL/min.

A mass spectrometer with electrospray at an inlet 
voltage of 2.1 kV was used. The temperature of the heated 
capillary was set at 300  °C. After ionization, MS1 was 
performed using an Orbitrap Fusion Lumos (Thermo 
Fisher Scientific, Inc. USA). Fragmentation was achieved 
by high-energy collisional dissociation (HCD) with a 
collision energy of 32%. Data were obtained in DIA 
mode.

Data processing
DIA data were processed using DIA-NN 1.8 (The Francis 
Crick Institute, UK). A previously generated human 
chromatography library was used in the targeted analysis 
of DIA data against the human reference proteomics 
database. Default settings were used unless otherwise 
noted. Protein identifications were accepted if the false 
discovery rate (FDR) < 1% by the Scaffold Local FDR 
algorithm. When samples failed quality control, proteins 
were removed. Proteomic datasets were filtered for 
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75% valid values across all samples (proteins with > 25% 
missing values were excluded from downstream 
statistical analysis). Then, the K-nearest algorithm 
(sample-wise) was employed to impute the missing 
values. Protein intensities were then log-transformed for 
further statistical and bioinformatics analysis.

metabolomics
Chemicals and reagents
All chemicals used were MS grade or higher. Methanol, 
ACN, and FA were purchased from Fisher Scientific 
(Thermo Fisher Scientific, Inc. USA). Ammonium acetate 
was purchased from Sigma-Aldrich (St. Louis, USA). 
Isotope labeling internal standards were purchased from 
Cambridge Isotope Laboratories (Tewksbury, MA, USA) 
and Toronto Research Chemicals (Toronto, Canada). 
Ultra-pure water (18.2  MΩ·cm) was prepared using a 
Milli-Q purified water system (Merck KGaA, Darmstadt, 
Germany).

Sample preparation
After thawing at 4  ℃, 120  μL of samples were 
transferred to a 96-well plate (Thermo Fisher 
Scientific, Inc. USA), and 480  μL methanol-ACN 
extract (containing isotope labeled internal standards: 
Taurine-d4 1.0  μg/mL, Hippuric acid-d5 1.0  μg/mL, 
Chlorophenylalanine 1.0  μg/mL, Acylcarnitine(12:0)-d9 
0.2  μg/mL, Acylcarnitine(18:0)-d3 0.2  μg/mL, Palmitic 
acid-13C16 0.2  μg/mL, Stearic acid-d35 1.0  μg/mL, 
Chenodeoxycholic acid-d4 1.0  μg/mL) was added for 
vortex oscillation for 5  min. After centrifugation at 
2000g for 20  min at 4 ℃, two 200  μL aliquots of each 
extract were transferred to another 96-well plate. The 
QC sample was prepared by mixing an equal aliquot of 
the supernatants from all samples. The extracts were 
concentrated and dried by decompressed centrifugation 
(Labconco Corporation, Kansas City, USA). After adding 
80 μL polar complex solution, the supernatant of extracts 
was collected and transferred to a 96-well plate for 
further metabolomic analysis.

Ultra‑high performance liquid chromatography‑high 
resolution mass spectrometry analysis
The specific technical detection method was consistent 
with the study by Du et  al. [14]. Non-targeted metabo-
lomics analysis was conducted using a Ultimate™ 3000 
ultra-high performance liquid chromatography coupled 
with Q Exactive™ quadrupole-Orbitrap high resolution 
mass spectrometer system (Thermo Fisher Scientific, 
Inc. USA). The hydrophilic fraction of metabolite extract 
was injected into the analytic workflow randomly. 

Technicians were blinded to the status of samples. Fur-
ther details were provided in the Supporting Information 
section. All the data was acquired in profile format.

Data processing
Compound Discoverer software (Thermo Scientific, 
San Jose, USA) was used for comprehensive component 
extraction. The hydrophilic metabolites were structurally 
annotated by searching acquired MS2, local high-
resolution MS/MS spectrum libraries, as well as 
mzCloud library (Thermo Scientific, San Jose, USA). 
Besides, the exact m/z of MS1 spectra was searched 
via a local HMDB metabolite chemical database. 
Mass accuracy of precursor within ± 5  ppm was the 
prerequisite, and a fit score of relative isotopic abundance 
pattern > 70% was employed to determine the chemical 
formula. Furthermore, retention time as well as high 
resolution MS/MS spectra similarity was employed to 
strictly confirm the structural annotation of metabolites. 
The area under curve value extracted by XCalibur 
Quan Browser information was used as the quantitative 
information of metabolites, and all peak areas data for the 
annotated metabolites were exported into Excel software 
for trim and organization before statistics. Finally, the 
chemical identification results were annotated with 
classification criteria proposed by MSI (metabolomics 
standardization initiative). The metabolomic data from 
the two measurements were merged and trimmed for 
further data process. MetaboAnalyst 4.0 (www. metab 
oanal yst. ca) was used to filter missing values by the 
following criterion: the metabolites with features > 50% 
missing values. The remaining missing values were 
replaced by half of the minimum positive value in the 
original data. The metabolomics data were then log-
transformed for further statistical and bioinformatics 
analysis.

Statistical and bioinformatical analysis
Differences in clinical parameters were analyzed using 
SPSS 22.0 (SPSS, Chicago, IL, USA). The distribution 
of continuous data was evaluated using Kolmogorov‐
Smirnov test. For normally distributed data, continuous 
data were expressed as mean ± standard deviation. 
Because following the skewed distribution, the values of 
TG, FINS, and HOMA-IR were given as medians and 
upper and lower quartiles. Changes in parameters from 
baseline values within a group were evaluated using a 
paired t-test. Statistical significance was considered with 
two-tailed analyses as p < 0.05.

Principal component analysis (PCA) and orthogonal 
partial least square discriminant analysis (OPLS-DA) 

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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of proteins or metabolites were performed in SIMCA 
software (Umetrics AB, Umea, Sweden). A validation 
plot was used to assess the validity of the OPLS-DA 
model using permutation tests (n = 999). Differences of 
proteins or metabolites in baseline and after the treat-
ment were analyzed by the Wilcoxon signed rank test 
for paired comparisons in the R statistical environ-
ment, version 4.1.3. Differentially abundant proteins 
or metabolites were identified by meeting  the follow-
ing criteria: (1) |log2  fold change (FC)|> 0.1375; and 
(2) the p value after the FDR multiple test correction 
(q value) < 0.05 by Benjamini–Hochberg method. Data 
visualization was conducted using R Studio [15, 16]. 
Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses were con-
ducted using the clusterProfiler package. Fisher’s exact 
test was used to evaluate the enrichment of the dif-
ferentially abundant proteins, and a p value < 0.05 was 
considered significant. The correlations between dif-
ferentially abundant proteins and metabolites were 
analyzed using Spearman rank correlation analysis, 
and heatmaps were drawn using R 4.1.3. The univari-
ate receiver operating characteristic (ROC) curve by 
using the area under the curve (AUC) was applied to 
assess the accuracy of these changed metabolites and 
proteins to distinguish between the baseline and after 
dapagliflozin treatment.

Results
Influence of dapagliflozin on clinical parameters in newly 
diagnosed T2D patients
Metabolic parameters of the T2D patients before and 
after dapagliflozin treatment are summarized in Table 1. 
Dapagliflozin treatment significantly decreased FBG and 
HbA1c levels compared with baseline (both p < 0.01). 
BMI values were significantly decreased from baseline 
after 12 weeks of dapagliflozin treatment (p < 0.01). Com-
pared with baseline, dapagliflozin treatment significantly 
decreased the FINS and HOMA-IR levels (FINS: p < 0.05; 
HOMA-IR: p < 0.01). However, the levels of TG, TC, 
HDL-C, LDL-C, NEFA, and CREA did not significantly 
change. Decreased eGFR values were also observed after 
dapagliflozin treatment (p < 0.05).

Proteomic analysis of the T2D patients at the baseline 
and after dapagliflozin treatment
In total, 1361 proteins were quantified from 114 samples 
(57 T2D patients at the baseline and after dapagliflozin 
treatment). After pre-processing and missing value filter-
ing, 819 proteins were used for further analysis.

First, principal component analysis (PCA) was used to 
assess the clustering of the T2D patients at the baseline 
and after dapagliflozin treatment (Fig.  1A). The OPLS-
DA analysis indicated clear separations between the base-
line and after dapagliflozin treatment in the T2D patients 
(R2Y = 0.841, Q2 = 0.285, Fig. 1B). The results of the per-
mutation test strongly indicated that the original model 
was valid (R2 intercept = 0.773, Q2 intercept = − 0.356, 
Fig. 1C). A total of 38 proteins were identified, of which 
23 were increased, and 15 were decreased (Addi-
tional file  8: Table  S1 and Additional file  9: Table  S2). 
All these identified proteins were further confirmed by 
the ROC curve analyses (AUC: 0.96, 95% CI 0.92–0.99, 
Additional file  1: Fig. S1). We also marked differentially 
abundant proteins on the volcano plots (Fig. 1D). Dapa-
gliflozin treatment significantly increased sex hormone-
binding globulin (SHBG), transferrin receptor protein 1 
(TFRC), disintegrin and metalloprotease-like decysin-1 
(ADAMDEC1), and apolipoprotein A-IV (APOA4) lev-
els, and decreased fructose-1,6-bisphosphatase 1(FBP1), 
fructose-bisphosphate aldolase B (ALDOB), comple-
ment component C3, fibronectin (FN1), afamin (AFM), 
and attractin (ATRN) levels (Fig.  1D, Additional file  8: 
Table S1 and Additional file 9: Table S2).

Functional enrichment analysis of differentially abundant 
proteins in the T2D patients after dapagliflozin treatment
To determine the characteristics of the differen-
tially abundant proteins, we annotated the GO, and 
the KEGG pathway of the 38 differentially abun-
dant proteins (Additional file  10: Table  S3). The GO 

Table 1 Influence of dapagliflozin on clinical parameters in 
newly diagnosed T2D patients

Data are mean ± standard deviation unless indicated otherwise. TG, FINS, and 
HOMA-IR are shown as medians, the upper and lower quartiles

T2D: type 2 diabetes; BMI: body mass index; TG: triglyceride; TC: total cholesterol; 
HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein 
cholesterol; NEFA: Nonesterified fatty acid; FBG: fasting blood glucose; FINS: 
fasting insulin; HOMA-IR: homeostasis model assessment of insulin resistance; 
HbA1c: hemoglobin A1c; CREA: creatinine; eGFR: estimated glomerular filtration 
rate

Characteristic Baseline After treatment p value

Age,y 47.5 ± 12.6

Gender, F/M, n 28/29

BMI, kg/m2 28.17 ± 2.70 26.57 ± 3.33 0.000

TG, mmol/L 1.75 (1.32–2.29) 1.48 (1.12–2.22) 0.083

TC, mmol/L 5.21 ± 1.04 5.10 ± 0.94 0.296

HDL-C, mmol/L 1.15 ± 0.27 1.18 ± 0.30 0.122

LDL-C, mmol/L 3.56 ± 1.02 3.43 ± 0.95 0.222

NEFA, mmol/L 0.71 ± 0.21 0.75 ± 0.22 0.199

FBG, mmol/L 8.78 ± 1.78 6.33 ± 0.91 0.000

FINS, mIU/L 11.60 (8.40–17.00) 9.60(6.65–14.92) 0.026

HOMA-IR 4.34 (2.97–6.43) 2.89 (1.75–4.14) 0.000

HbA1c, % 8.38 ± 1.05 6.59 ± 0.55 0.000

CREA, mmol/L 60.43 ± 11.66 61.77 ± 11.51 0.098

eGFR, mL/min/1.73m2 111.30 ± 10.51 109.91 ± 11.01 0.028
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enrichment analysis showed that these differential 
proteins were mainly concentrated in leukocyte chem-
otaxis and myeloid leukocyte migration in biological 
processes (Fig.  2A), blood microparticle, endoplasmic 
reticulum lumen, and collagen-containing extracellular 
matrix in cell components (Fig. 2B), and glycosamino-
glycan binding in molecular function (Fig. 2C). Based 
on the KEGG database, the main pathways involved 
were complement and coagulation cascades, alcoholic 
liver disease, phagosome, glycolysis/gluconeogenesis, 

pentose phosphate pathway, and fructose and man-
nose metabolism (Fig. 2D).

Metabolomics analysis of the T2D patients at the baseline 
and after dapagliflozin treatment
The stability and reliability of metabolomic data 
were evaluated before data analysis. The overlapping 
display analysis of QC samples revealed the detection 
instrument was stable. The violin plot demonstrated 
that the biases between samples were low (Additional 

Fig. 1 The differential protein expression analysis in the T2D patients at the baseline and after dapagliflozin treatment. A PCA score plot 
of proteomic data in the T2D patients at the baseline (red dots) and after dapagliflozin treatment (green dots). The cumulative fitness (R2 value) 
of the PCA model was 0.558. The t [1] and t [2] values in the figures represent the scores of each sample in principal components 1 and 2, 
respectively. Each dot on the plot represents a sample in the corresponding group. B OPLS-DA score plot of proteomic data in the T2D patients 
at the baseline (red dots) and after dapagliflozin treatment (green dots) (R2Y = 0.841, Q2 = 0.285). Each dot on the plot represents a sample 
in the corresponding group. C Permutation test of OPLS-DA (R2 intercept = 0.773, Q2 intercept = − 0.356). D Volcano plots of the differentially 
abundant proteins in the T2D patients after dapagliflozin treatment. The horizontal axis reflects fold change of the proteins after Log2 logarithmic 
conversion, and the vertical axis reflects FDR corrected p-value (q-value) after − Log10 logarithmic conversion. In the figure, the pink points indicate 
significantly differentially increased proteins, and green points indicate significantly differentially decreased proteins
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file 2: Fig. S2, Additional file 3: Fig. S3, Additional file 4: 
Fig. S4, Additional file  5: Fig. S5, Additional file  6: Fig. 
S6). Collectively, these results indicated the stability and 
reproducibility of the data. In total, 362 metabolites were 
identified in method 1 (M1) data, and 415 metabolites 
were identified in method 2 (M2) data (Additional file 7: 

Supporting Information). Repeated detected metabolites 
and a small number of metabolites with coefficients of 
variation (CV) over 50% in QC were excluded. Finally, a 
total of 704 metabolites in 23 categories were identified. 
The levels of the proposed metabolite structural 
identification were classified by using the report standard 

Fig. 2 Functional annotation and enrichment analysis of the differentially abundant proteins in the T2D patients at the baseline 
and after dapagliflozin treatment. A–C GO functional enrichment analysis of the differentially abundant proteins in the T2D patients 
after dapagliflozin treatment. The three major categories of enriched GO functional classification: Biological Process (A), Cellular Component (B) 
and Molecular Function (C). D KEGG functional enrichment analysis of the differentially abundant proteins in the T2D patients after dapagliflozin 
treatment. The size of the dot represents the number of the differentially abundant proteins annotated to the pathways, and the color of the dot 
represents the FDR corrected p-value
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by metabolomics Standards Initiative [17]. The resultant 
metabolomics data are presented in Additional file  11: 
Table  S4. Besides, more detailed chemical information 
about retention time, exact m/z of adducts, MS2 
fragments and so on for the differential metabolites are 
also presented.

Multivariate statistical analyses of these metabolites 
were performed using PCA and OPLS-DA. First, the 

clustering of the metabolomic data was assessed using 
PCA (Fig.  3A). The OPLS-DA analysis indicated clear 
separations between the baseline (red dots) and after 
dapagliflozin treatment (green dots) in the T2D patients 
(R2Y = 0.795, Q2 = 0.351, Fig. 3B). The results of the per-
mutation test strongly indicated that the original model 
was valid (R2 intercept = 0.632, Q2 intercept = − 0.382, 
Fig.  3C). A total of 35 metabolites were significantly 

Fig. 3 The differential metabolites analysis in the T2D patients at the baseline and after dapagliflozin treatment. A PCA score plot of metabolomic 
data in the T2D patients at the baseline (red dots) and after dapagliflozin treatment (green dots). The cumulative fitness (R2 value) of the PCA model 
was 0.590. The t [1] and t [2] values in the figures represent the scores of each sample in principal components 1 and 2, respectively. Each dot 
on the plot represents a sample in the corresponding group. B OPLS-DA score plot of metabolomic data in the T2D patients at the baseline (red 
dots) and after dapagliflozin treatment (green dots) (R2Y = 0.795, Q2 = 0.351). Each dot on the plot represents a sample in the corresponding group. 
C Permutation test of OPLS-DA (R2 intercept = 0.632, Q2 intercept = − 0.382). D Volcano plots of the differentially abundant metabolites in the T2D 
patients after dapagliflozin treatment. The horizontal axis reflects fold change of the metabolites after Log2 logarithmic conversion, and the vertical 
axis reflects FDR corrected p-value (q-value) after − Log10 logarithmic conversion. In the figure, the pink points indicate significantly differentially 
increased metabolites, and green points indicate significantly differentially decreased metabolites
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changed, of which 17 were increased, and 18 were 
decreased (Additional file  12: Table  S5 and Additional 
file  13: Table  S6). All these identified metabolites were 
further confirmed by the ROC curve analyses (AUC: 
0.98, 95% CI 0.96–1.00, Additional file  1: Fig. S1). We 
also marked differentially abundant metabolites on the 
volcano plots (Fig.  3D). Dapagliflozin treatment signifi-
cantly increased several amino acids levels, including 
aspartyl-leucine (Asp-Leu), aspartyl-isoleucine (Asp-Ile), 
aspartyl-phenylalanine (Asp-Phe), taurine, and citrul-
line, and decreased 1,5-anhydrosorbitol, gluconolactone, 
ribose, hexose, succinic acid, xanthine and uric acid lev-
els (Fig.  3D, Additional file  12: Table  S5 and Additional 
file 13: Table S6).

Combined analysis of Proteins and Metabolites in the T2D 
patients after dapagliflozin treatment
We further conducted correlation analysis between the 
differentially abundant proteins and metabolites to eval-
uate the protein-metabolites relationship in the T2D 
patients (Fig.  4 and Additional file  14: Table  S7). Xan-
thine was positively related to ALDOB, 1,4-alpha-glucan-
branching enzyme (GBE1), 4-hydroxyphenylpyruvate 
dioxygenase (HPD), and aminoacylase-1(ACY1). The lev-
els of complement component C9 were negatively asso-
ciated with various metabolites, such as gluconolactone, 
ribose, 3,4-dihydroxybutyric acid, 3-methylglutaconic 
acid, methylsuccinic acid, and 3-hydroxymethylglutaric 
acid, respectively. The levels of citrulline showed a strong 

negative correlation with complement component C3. 
Combined analysis of the differentially abundant proteins 
and metabolites by KEGG indicated that the main sign-
aling pathways involved were glycolysis/gluconeogenesis 
and pentose phosphate pathway (Table 2).

Discussion
The present study showed that dapagliflozin treatment 
significantly decreased BMI, FBG, HbA1c, and 
HOMA-IR levels in T2D patients. Multivariate model 
analysis indicates clear separations of proteomic and 
metabonomic data between the baseline and after 
dapagliflozin treatment in T2D patients. A total of 38 
differentially abundant proteins including 23 increased 
and 15 decreased proteins, and 35 differentially abundant 
metabolites including 17 increased and 18 decreased 
metabolites, were identified. In addition to influencing 
glucose metabolism (glycolysis/gluconeogenesis and 
pentose phosphate pathway), dapagliflozin significantly 
increased SHBG, TFRC, ADAMDEC1, and APOA4 
levels, and decreased complement C3, FN1, AFM, ATRN, 
xanthine, and uric acid levels.

Our study was consistent with the previous studies and 
showed that SGLT2i significantly increased TFRC levels in 
T2D patients [18, 19]. TFRC can transfer  Fe2+ into cyto-
plasm, and increased cytosolic  Fe2+ further facilitates the 
synthesis of ATP in cardiomyocytes and heme in eryth-
roid precursors, which has been believed as a possible 
mechanism for the beneficial effect on major heart failure 

Fig. 4 Combined analysis of differential proteins and metabolites in the T2D patients after dapagliflozin treatment. Heat map of correlation 
between differential protein and differential metabolite expression. The horizontal axis represents proteins, and the vertical axis represents 
metabolites
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events of SGLT2i [20, 21]. Interestingly, the present study 
found that SHBG was significantly increased in the T2D 
patients after dapagliflozin treatment. SHBG is produced 
in the liver and plays an important role in regulating the 
bioavailability of testosterone and estradiol [22]. Insulin 
resistance and hyperinsulinemia cause decreased synthesis 
and production of SHBG by inhibiting hepatocyte nuclear 
factor 4α (HNF-4α) expression in the liver [23, 24]. Dapa-
gliflozin treatment diminished FINS and increased insulin 
sensitivity, which might explain the increase of SHBG after 
dapagliflozin treatment. It is worth noting that dapagli-
flozin treatment significantly increased ADAMDEC1 and 
APOA4 levels of the T2D patients in the present study. 
ADAMDEC1 was the most significant differential pro-
tein in the T2D patients after dapagliflozin treatment in 
the present study. Both ADAMDEC1 and APOA4 act as 
anti-inflammatory proteins and are mainly synthesized in 
the gastrointestinal tract in humans [25–27]. Adamdec1-
deficient mice manifest elevated inflammatory response, 
exaggerated bacterial translocation, and higher mortal-
ity during chemical or bacterial-induced colitis [25]. A 
recent study showed that APOA4 had an anti-inflamma-
tory effect in alleviating dextran sulfate sodium-induced 
colitis in mice [28]. APOA4 is also involved in regulating 
lipid absorption and metabolism, and glucose homeosta-
sis [29, 30]. Decreased circulating APOA4 concentration 
is associated with a higher risk of coronary artery disease 
and diabetes [29, 31]. Therefore, these results suggested 
that dapagliflozin might regulate the function and immune 
status of the gastrointestinal tract. Dapagliflozin treatment 
significantly decreased FBP1 and ALDOB levels in the 
T2D patients in the present study. Both FBP1 and ALDOB 
were primarily abundant in the liver and kidney, and play 
key roles in gluconeogenesis and glycolysis [32, 33]. Pre-
vious studies have shown that plasma ALDOB levels were 
elevated in obesity and non-alcoholic fatty liver disease 
(NAFLD) in both humans and mice [34, 35]. Metformin 

decreased hepatic glucose production by inhibiting FBP 
[36]. Notably, the present study also found dapagliflozin 
treatment significantly reduced the complement C3 levels 
of the T2D patients. Complement C3 leads to the devel-
opment and deterioration of metabolic disorders and 
cardiovascular disease by promoting insulin resistance 
and inflammation [37, 38]. Many studies have shown that 
complement C3 levels were higher in multiple metabolic 
diseases, including obesity, diabetes, and NAFLD, and an 
energy-restricted diet decreased plasma C3 levels in men 
with obesity [39–42]. A recent study found that dapagliflo-
zin treatment decreased mRNA and protein expression of 
C3 in the kidney of the db/db mice [43]. These changes in 
proteins might be associated with the beneficial effect of 
dapagliflozin on cardiovascular and renal outcomes.

Enrichment of pathways in the KEGG database further 
supports the beneficial effects of dapagliflozin. Pathway 
analysis using KEGG annotation showed that three of 
them were related to glucose metabolism. The decrease 
of metabolites in the glycolysis/gluconeogenesis pathway 
may be due to SGLT2i directly inhibiting the reabsorp-
tion of glucose, fatty acids and other fuel sources in renal 
tubules [44]. SGLT2i inhibits the activation of glycolysis 
and contributes to the reduction of subsequent metabolic 
pathways related intermediates, including the pentose 
phosphate pathway, the hexosamine pathway, and lipid 
synthesis [45]. Endogenous fructose can be increased 
in response to hyperglycemia induction. SGLT2i also 
reduces the amount of glucose converted to fructose 
while blocking glucose absorption into the proximal 
tubule [45].

In the present study, we found that the function 
of dapagliflozin was enriched in leukocyte chemot-
axis and myeloid leukocyte migration, which has been 
reported in other diseases, such as glycogen stor-
age disease type Ib (GSD-Ib) [46]. The reason for this 
change might be that SGLT2i could reduce neutrophil 

Table 2 Significant changed pathways of combined analysis of proteins and metabolites by KEGG

q value is the FDR adjusted p value and calculated from the enrichment analysis

NO Pathway name Class Names q value

1 Glycolysis/gluconeogenesis Protein Fructose-1,6-bisphosphatase 1(FBP1) 4.71E−02

Protein Fructose-bisphosphate aldolase B(ALDOB) 2.36E−06

Protein 4-trimethylaminobutyraldehyde dehydrogenase 
(ALDH9A1)

2.24E−02

Metabolite Hexose 2.29E−06

2 Pentose phosphate pathway Protein Fructose-1,6-bisphosphatase 1(FBP1) 4.71E−02

Protein Fructose-bisphosphate aldolase B(ALDOB) 2.36E−06

Metabolite Gluconolactone 6.90E−07

Metabolite Ribose 1.58E−06

Metabolite Hexose 2.29E−06
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1,5-anhydroglucitol-6-phosphate (1,5AG6P), a powerful 
inhibitor of hexokinases, which further affects the glyco-
lysis and energy metabolism of bone marrow cells [46]. 
The findings suggested a potential anti-inflammatory 
effect of dapagliflozin.

In addition, there are several previous evidences 
showing that dapagliflozin plays a protective role in the 
kidney and heart through lysosomal, phagocytic and 
autophagy pathways [47–49]. The protective effect of 
empagliflozin in non-diabetic chronic kidney disease 
(CKD) mice is partially mediated by the complement 
system, as demonstrated by RNA sequencing [50]. Our 
study found that dapagliflozin also affected complement 
components and the coagulation cascade, which were 
related to the reduction of atherosclerotic plaque [51]. 
Additionally, enrichment analysis of cell components 
found that the potential targets were mainly distributed 
in blood microparticle and extracellular matrix, which 
are related to the function of dapagliflozin in protecting 
vascular endothelium [52]. Animal studies have 
demonstrated that the functional benefit of dapagliflozin 
on the kidney was accompanied by a reduction in 
extracellular matrix accumulation [53]. The extracellular 
matrix, composed of proteins (especially collagen) and 
glycosaminoglycans (mainly proteoglycans), not only 
provides the necessary physical scaffold for cellular 
components, but also provides an environment for cell 
morphogenesis, differentiation, and homeostasis.

Therefore, these results suggested that in addition 
to the hypoglycemic effect, dapagliflozin can also 
provide multi-organ protection, and reveal the potential 
underlying mechanisms.

The present study showed that 1,5-anhydrosorbitol 
was the most differentially abundant metabolite 
in T2D patients after dapagliflozin treatment. 
1,5-anhydrosorbitol is a naturally dietary inert polyol 
[54, 55]. In the kidney, 1,5-anhydrosorbitol competes 
with glucose for reabsorption [54, 55]. Therefore, the 
decreased circulating 1,5-anhydrosorbitol levels were 
associated with increased urinary glucose excretion. 
We also found dapagliflozin treatment significantly 
decreased other monosaccharides levels including ribose 
(five-carbon sugar) and hexose (six-carbon sugar) in T2D 
patients. In addition, a decrease in succinic acid was also 
observed after dapagliflozin treatment. Succinic acid is a 
dicarboxylic acid and is produced in the tricarboxylic acid 
cycle in mitochondria [56]. These results suggested that 
dapagliflozin significantly influenced glucose metabolism. 
As we all know, dapagliflozin treatment generates a 
state of negative  energy  balance by increasing urinary 
glucose excretion [2–4]. In the present study, several 
amino acids, including Asp-Leu, Asp-Ile, and Asp-
Phe, were significantly increased in T2D patients after 

dapagliflozin treatment, which might be associated with 
increased protein catabolism in negative energy balance. 
Interestingly, we also found increased taurine levels in 
the T2D patients after dapagliflozin treatment. Low 
circulating taurine has been observed in many diseases, 
such as diabetes and heart failure [57, 58]. In animal 
models, taurine could improve adipocyte hypertrophy, 
promote thermogenesis, and inhibit high-fat diet induced 
weight gain [59]. In addition, taurine has been proven 
to increase the activity of respiratory chain complexes I, 
accelerate ATP generation, and further improve cardiac 
contractility [60–62]. The present study was consistent 
with many previous studies and showed that SGLT2i 
significantly decreased uric acid in T2D patients [63, 
64]. SGLT2i may directly or indirectly reduce circulating 
uric acid via several mechanisms including facilitating 
urinary uric acid excretion, inhibiting xanthine oxidase 
via stimulating sirtuin-1, and suppressing inflammatory 
response [65]. Uric acid has long been considered an 
independent predictor of worse outcomes in patients 
with heart failure [66]. The decrease in uric acid was 
also believed to partly mediate the beneficial effect of 
SGLT2i on cardiovascular and kidney endpoint events 
[63, 64, 67]. Therefore, increased taurine and reduced 
uric acid might be associated with the beneficial effect of 
dapagliflozin on cardiovascular and renal outcomes.

The integration of metabolomics and proteomics 
provides a comprehensive understanding of metabolic 
changes after dapagliflozin treatment, which is difficult 
to achieve with one platform alone. Dapagliflozin 
reduces circulating uric acid levels by inhibiting 
xanthine oxidase. Many patients with hyperuricemia 
are accompanied by obesity, diabetes, hypertension, 
and chronic kidney diseases. When the level of 
circulating uric acid is decreased, ALDOB related to 
fructose metabolism [68], GBE1 related to glucose 
hydrolysis [69], and ACY1 related to amino acid 
metabolism and insulin homeostasis are decreased 
[70], which indicates that dapagliflozin treatment 
not only reduces uric acid but also improves the 
occurrence of complications. HPD mediates tyrosine 
metabolism, and disturbed tyrosine catabolism is 
associated with the deterioration of liver function 
[71]. The positive correlation between xanthine and 
HPD indicates that the stability of uric acid levels 
changes synchronously with the improvement of liver 
function. SGLT2i is effective in alleviating chronic 
kidney diseases, partly through downregulation of 
the complement system. The multi-organ benefits 
of dapagliflozin can significantly promote energy 
metabolism. The differential metabolites identified by 
our study are located in the tricarboxylic acid cycle 
(glucolactone, 3-methylpentenoic acid, methylsuccinic 
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acid) [72–74], ribose and urea cycle (citrulline) [75], 
and these metabolites are negatively correlated with 
the complement system, which are associated with 
the beneficial effects of dapagliflozin on the kidney 
and the improvement of metabolism. SGLT2i reduce 
glucose load by increasing glycosuria, thereby causing 
changes in glucose metabolism. SGLT2i inhibit hepatic 
glycolysis by inhibiting pyruvate kinase [76]. Animal 
experiments have also demonstrated that the down-
regulation of Phosphoenolpyruvate carboxykinase 
(PEPCK) and Glucose-6-phosphatase (G6Pase) 
activities by Adenosine 5 ‘-monophosphate (AMP)-
activated protein kinase/ cAMP-response element 
binding protein (AMPK/CREB) signaling pathway can 
inhibit hepatic gluconeogenesis, and the activation of 
AMPK/ Glycogen synthase kinase 3β (GSK3β) signaling 
pathway in  vivo can promote glycogen synthesis [77]. 
This is consistent with our KEGG enriched pathways. 
These associations provide valuable insights into the 
complex relationships between differential proteins 
and metabolites. Based on the results of this integrated 
analysis, we strongly recommend prioritizing future 
studies of the relationship among these metabolites/
proteins. These studies have the potential to shed 
light on key mechanisms underlying the multiorgan 
metabolic benefits of dapagliflozin.

The present study has some limitations. First, this study 
was a single-center study with a relatively small sample 
size. Hence, some confounders might influence the 
results. Second, this study was lack of a healthy control 
group with matched age, gender, and BMI. Thus, it was 
unclear whether metabolite or protein differed between 
healthy control and T2D patients. Third, according to 
the Human metabolomics Database, there are many 
isomers of hexose with Chemical formula C6H12O6, 
of which D-glucose is the predominant one with the 
highest concentration, and myo-inositol is another 
dominating hexose in human blood. Due to the technical 
limitation of the analytical method employed in current 
research, the isomers of hexose cannot be distinguished 
by using reverse phase separation, in consequence, this 
metabolic feature was chemically structurally annotated 
as hexose (and primarily, a sum of glucose and myo-
inositol). Finally, it will be more convincing if we add the 
ROC analysis using a new batch of samples. However, 
our sample size was too small for a validation data set, 
so ROC curve analysis could not be performed. Our 
current study is only a preliminary report that serves as 
a basis for future research. Nevertheless, an integrated 
evaluation of proteomics and metabolomics provides a 
valuable direction for explaining the beneficial effect of 
SGLT2i. Further randomized-controlled studies with a 
large sample size are needed to confirm our results.

Conclusions
The present study showed that serum proteomics 
and metabolomics were significantly changed after 
dapagliflozin treatment. As a hypoglycemic agent, 
dapagliflozin treatment mainly influenced glycolysis/
gluconeogenesis and pentose phosphate pathway. 
Moreover, dapagliflozin increased SHBG, TFRC, and 
anti-inflammatory proteins (ADAMDEC1 and APOA4) 
levels, and decreased C3, xanthine, and uric acid levels. 
These changes in proteins and metabolites might be 
associated with the beneficial effect of dapagliflozin on 
cardiovascular and renal outcomes.
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