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Abstract 

Background The increased prevalence of insulin resistance is one of the major health risks in society today. Insu-
lin resistance involves both short-term dynamics, such as altered meal responses, and long-term dynamics, such 
as the development of type 2 diabetes. Insulin resistance also occurs on different physiological levels, ranging 
from disease phenotypes to organ-organ communication and intracellular signaling. To better understand the pro-
gression of insulin resistance, an analysis method is needed that can combine different timescales and physiological 
levels. One such method is digital twins, consisting of combined mechanistic mathematical models. We have previ-
ously developed a model for short-term glucose homeostasis and intracellular insulin signaling, and there exist long-
term weight regulation models. Herein, we combine these models into a first interconnected digital twin for the pro-
gression of insulin resistance in humans.

Methods The model is based on ordinary differential equations representing biochemical and physiological pro-
cesses, in which unknown parameters were fitted to data using a MATLAB toolbox.

Results The interconnected twin correctly predicts independent data from a weight increase study, both for weight-
changes, fasting plasma insulin and glucose levels, and intracellular insulin signaling. Similarly, the model can pre-
dict independent weight-change data in a weight loss study with the weight loss drug topiramate. The model can 
also predict non-measured variables.

Conclusions The model presented herein constitutes the basis for a new digital twin technology, which in the future 
could be used to aid medical pedagogy and increase motivation and compliance and thus aid in the prevention 
and treatment of insulin resistance.
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Background
Insulin resistance is increasing in prevalence, partly due 
to a general weight increase in the population, and it is 
one of today’s major health problems. Insulin resistance 
is both a part of, and a precursor of, type 2 diabetes. The 
progression towards these harmful conditions is com-
plex: they usually develop over many years, involving 
both short and long-term changes with dynamics ranging 
from minutes to years. Furthermore, the changes hap-
pen on different biological levels: inside cells, within and 
between organs, and on the whole-body level. A widely 
spread hypothesis for the cause of type 2 diabetes is adi-
posity-driven insulin resistance: an impaired or saturated 
lipid storage capacity in adipose tissue causes ectopic 
accumulation of lipids on other organs and tissues, for 
example in muscle tissue and liver. This lipid accumula-
tion is associated with decreased insulin sensitivity in 
insulin’s target tissues. This decreased insulin sensitivity 
is initially compensated for by increased insulin secre-
tion, but over time leads to pancreatic failure. The result-
ing reduction in insulin secretion leads to the onset of 
type 2 diabetes [1]. It is therefore clear that the progres-
sion of insulin resistance is a complex, multi-level, multi-
timescale process.

Some of the processes and risk factors for insulin 
resistance, such as your genetic risk and age, are not con-
trollable. Still, both insulin resistance and type 2 diabetes 
are preventable, manageable, and possibly even treatable. 
Regarding prevention, maintaining a low weight is viewed 
as one of the most important strategies. Regarding treat-
ment, it has recently been shown that weight reduction is 
sometimes able to reverse type 2 diabetes [2]. For some 
individuals, weight reduction might be more difficult for 
a variety of reasons, and in these cases, a weight reduc-
ing drug might be an option. The choice of drug for pre-
vention, management, and/or treatment is complex due 
to the inherent heterogeneity in type 2 diabetes in differ-
ent individuals, and due to the varying effects of differ-
ent drugs and diet/exercise regimes. This complexity in 
treatment choices, as well as the multi-scale complex-
ity in disease mechanisms, points to a need for a more 
comprehensive understanding of insulin resistance, both 
on a general and an individual level. One method for 
achieving, testing, and visualizing such a comprehensive 
understanding is to represent this understanding using 
mathematical models and digital twins.

Digital twins and mechanistic models have been 
used extensively to study different individual aspects of 
insulin resistance and type 2 diabetes, on both whole-
body, organ or tissue, and cellular level. For whole-body 
weight regulation, there exists models that describe 
body composition as a response to energy intake, such 
as the one developed by Hall et  al. [3]. For the organ 

and tissue level, meal response models such as that 
developed by Dalla Man et  al. are relevant, and have 
even been approved by the US Food and Drug Admin-
istration (FDA) for certain applications [4, 5]. On the 
cellular level, there exists models that describe e.g. 
pancreas, liver, and adipocytes [6–8]. There also exist 
some models that combine these different levels in a 
comprehensive model that can explain both short- and 
long-term dynamics. Such multi-level models include 
the longitudinal model developed by Ha et al. [9], that 
describes two different progressions towards type 2 
diabetes. Another model, developed by  Uluseker et  al. 
[10], combines the Dalla Man model with an adipocyte 
model. A third model by Prana et  al. connects whole-
body weight and fat mass changes due to high caloric 
diet with adiposity driven inflammation and adipocyte 
size [11]. We have also developed such a multi-level 
model, combining an adipocyte model for intracel-
lular insulin signaling with the Dalla Man model for 
organ-organ communication in glucose homeostasis 
[4]. However, to the best of our knowledge there exists 
no multi-level and multi-timescale model that can 
describe data for all three levels, and that can describe 
the progression into diabetes in a mechanistic manner.

Objectives
Herein, we aim at developing a first multi-level, multi-
timescale, and mechanistic mathematical model that 
can also describe the progression to diabetes (Fig. 1a). 
We develop and test the model using data from two 
scenarios: (i) the progression towards insulin resistance 
due to weight gain, with data for fasting glucose and 
insulin levels, as well as intracellular insulin signaling in 
adipocytes (Fig. 1c), and (ii) a weight loss scenario, due 
to decreased energy intake alone, and due to additional 
drug usage (Fig.  1d). Our aim is to have a model that 
can predict relevant biomarkers for type 2 diabetes, 
for example such not measured in the above studies, 
using the model to unravel more processes than those 
directly measured.

Methods
Model equations
The models are built up by standard form ordinary differ-
ential equations (ODEs). All of equations are given in the 
Additional file material, both as equations and as simula-
tion files. Below we only describe the equations that were 
added to the multi-level model in this article, specifically 
those of the insulin resistance model, the weight-meal 
response interconnection, the phenomenological energy 
intake, and the drug response model for topiramate.
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Insulin resistance on organ/tissue leve
The insulin resistance part of the model is inspired by 
the similar insulin resistance equations implemented for 
mice in [12]. The equations used herein are:

where xF  is the relative change in fat mass from initial 
fat mass Finit , F  is the current fat mass, xL is the rela-
tive change in lean tissue mass from initial lean tissue 
mass Linit , L is the current lean tissue mass, fIRCLGI is the 
insulin resistance effect on hepatic and muscle glucose 
uptake, fIREGP is the insulin resistance effect on endog-
enous glucose production, fIRINS is the insulin resistance 
effect on insulin secretion, scale scales all the insulin 
resistance effects from mice to humans, and bCLGI , bEGP , 
bINS are parameters.

The effect of the insulin resistance on insulin secretion 
is described by

where Ipo is the amount of insulin in the portal vein, γ is 
the transfer rate constant between portal vein and liver, 
Spo is the insulin secretion into the portal vein, fIRINS is 
the insulin resistance effect on insulin secretion, and tconv 
is a parameter for time conversion between the body 
composition model, defined in the time units days, and 
the other models, defined in minutes. Note that this is 

(1)xF =
F

Finit

(2)xL =
L

Linit

(3)fIRINS = 1+ bINS · log(xF) · scale

(4)fIREGP = 1+ bEGP · log(xF) · scale

(5)fIRCLGI = 1+ bCLGI · log(xF) · scale

(6)
d

dt

(
Ipo

)
=

((
−γ · Ipo

)
+ Spo

)
· fIRINS · tconv

different from the previously reported mouse model, 
where the insulin resistance effect is directly on Spo . One 
of the reasons for this difference is that insulin in the 
portal vein, Ipo , is not explicitly modelled in the mouse 
model.

The effect of insulin resistance on endogenous glucose 
production, EGP , is described by

where kp1 is the extrapolated EGP at zero glucose and 
insulin, kp2 is liver glucose effectiveness, kp3 governs the 
amplitude of insulin action on the liver, Id is a delayed 
insulin signal, kp4 governs the amplitude of portal insulin 
action on the liver.

The effect of insulin resistance on glucose utilization in 
the liver, Uidl , and muscle tissue, Uidm , is affected by insu-
lin resistance as follows:

where Vlmax is the maximum rate of glucose utilization 
in the liver, Gt is the glucose in tissue, Kl is a Michae-
lis–Menten parameter, Vmmax is the maximum rate of 
glucose utilization in muscle, and Km is a Michaelis–
Menten parameter. In our model, insulin resistance does 
not directly influence the glucose utilization in fat tissue, 
Uidf  , since it has been observed in diabetics that glucose 
uptake is significantly changed in muscle and liver but 
not in fat tissue [13, 14].

Insulin resistance on cell level
The insulin resistance on the cell level is implemented as 
a gradual transition between the different parameter sets 
for non-diabetics and diabetics from the previous version 

(7)
EGP = (kp1 − (kp2 · Gp + kp3 · Id + kp4 · Ipo)) · fIREGP

(8)Uidl =
Vlmax ·

Gt
(Kl+Gt )

fIRCLGI

(9)Uidm = xL ·
Vmmax ·

Gt
(Km+Gt )

fIRCLGI

(See figure on next page.)
Fig. 1 Paper overview. A The different physiological effects of insulin resistance on glucose homeostasis. B Schematic overview of the multi-level 
and multi-scale model structure, connecting multiple body levels and timescales. The new reactions (solid lines) include a connection 
from the Body composition model on the whole-body level to the Meal response model on the organ/tissue level, and the intracellular level, 
as well as arrows to and from the new insulin resistance model. Reactions in previously published models are shown as dashed lines. C Schematic 
overview of the analyses made herein, involving two different studies: a weight gain study—the Fast-food study—that was conducted during 12 
weeks, and a weight decrease study on the drug topiramate—the Topiramate study. Fast food study: on the whole-body level, the model 
was trained on weight data as well as fat mass and fat-free mass data, and validated on fat mass and fat free mass, as shown in detail in Fig. 3b, c 
and Fig. 3c respectively. A prediction of further weight increase was also made, shown in Fig. 4a. On the organ/tissue level, the model was validated 
on fasting insulin data, shown in Fig. 3d, and predictions were made of meal response insulin, glucose, and glucose uptake in fat and muscle tissue 
before and after the diet, as shown in Fig. 4b. D Topiramate study: on the whole-body level, the model was trained and validated on weight data 
for placebo and 3 different dosages of Topiramate. The model was then used to predict two other scenarios not explored in the study—an increase 
in energy intake with and without medication—as well as meal responses before and after these scenarios, on both organ/tissue and cell level
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of the model. The effect of diabetes was, as in the previ-
ous model, implemented on three different places in the 
model: IR , GLUT4 , and diabetes . The diabetes effect on 
IR decreases the total amount of IR , and with less insu-
lin receptors, less insulin can bind to the cell, i.e. the cell 

is less sensitive to insulin. The diabetes effect on GLUT4 
decreases the amount of GLUT4 , which means that less 
GLUT4 , can be taken up by the cell. The parameter named 
diabetes reduces the positive feedback from mTORC1 
to IRS1 (Fig.  3E). All these diabetes effects result in an 

Fig. 1 (See legend on previous page.)
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increase in insulin sensitivity and a decrease in glucose 
uptake in the model. The gradual transition of these dia-
betes effects was, as with previous insulin resistance equa-
tions, dependent on the change in fat mass as follows:

where bIR , bGLUT4 , and bdiabetes are parameters.
As mentioned, the diabetes effect was static in the pre-

vious model – the model could either be diabetic, non-
diabetic, but could not transition from one to the other. A 
transition between non-diabetic and diabetic version of the 
model was not possible since the total amount of IR and 
GLUT4 could not change. To make the gradual transition 
to diabetes possible, equations that could change the total 
amount of IR and GLUT4 was therefore added. Specifi-
cally, degradation and protein expression of IR and GLUT4 
was added (Fig.  4C). The protein expressions of IR and 
GLUT4 are then influenced by the insulin resistance func-
tions fIRIR and fIRdiabetes to achieve the gradual decrease of 
IR and GLUT4 that is part of the gradual transition to dia-
betes (Eqs. 15 and 19). For IR , the following equations were 
changed:

where IRm is the insulin receptors ( IR ) found in the cell 
membrane, v1a , v1basal , v1g , and v1r are the unchanged 
reaction rates describing the transition of IRm to and 
from other IR-forms (see the Additional file 1 materials 
and [7]), and vIR is the new reaction rate describing the 
protein expression of IRm , IRi is the internalized form of 
IR , v1e and v1r are the unchanged reaction rates describ-
ing the transition of IRi to and from other IR-forms (see 
the Additional file material and [7]), vIR is the new reac-
tion rate describing the protein expression of IRm , and 
vIRdeg is the new reaction rate describing the degrada-
tion of IRi . The reaction rates vIRdeg and vIR are defined 
as:

(10)fIRIR = 1− bIR · log(xF)

(11)fIRGLUT4 = 1− bGLUT4 · log(xF)

(12)fIRdiabetes = 1− bdiabetes · log(xF)

(13)
d

dt
(IRm) = −v1a− v1basal + v1g + v1r + vIR

(14)
d

dt
(IRi) = v1e − v1r − vIRdeg

(15)vIR = kIR · fIRIR

(16)vIRdeg = IRi

where kIR is a parameter. For GLUT4 , the following 
equations where changed:

where GLUT4m and GLUT4 are the two forms of 
GLUT4 , the first associated with the cellular membrane 
and the other inside the cell cytosol, v7f  and v7b are 
the unchanged reaction rates describing the transition 
between GLUT4m and GLUT4 , vGLUTdeg is the new 
reaction describing the degradation of GLUT4m , and 
vGLUT  is the new reaction rate describing the protein 
expression of GLUT4.

where kGLUT  is a parameter. The membrane form, 
GLUT4m , then effects the inflow of glucose to the cell, 
which is upscaled to Uidf  as described in [15].

The now gradual adiposity driven effect of insulin resist-
ance on the positive feedback from mTORC1 to IRS1 , v2c , 
was applied in the same way as the parameter diabetes was 
in the previous model:

where IRS1p is the amount of phosphorylated form of 
IRS1 , k2c is a parameter, mTORC1a is the amount of 
mTORC1a.

Weight‑meal response interconnection
As shown in Eq. 9, the change in lean tissue mass, xL , 
has a direct effect on the glucose utilization in muscle 
tissue. This effect is a part of the connection between 
the whole-body weight model and the meal response 
model. The glucose utilization in fat tissue, Uidf  , is also 
affected by the weight model, specifically by the change 
in fat mass:

where, similarly to the utilization in the other tissues, 
Vfmax is the maximum rate of glucose utilization in mus-
cle, and Kf  is a Michaelis–Menten parameter.

Equations  9, 22 also show the connection between 
the whole-body and the organ/tissue level: the glucose 
uptake in muscle and fat tissue changes with the change 

(17)
d

dt
(GLUT4m) = v7f − v7b− vGLUTdeg

(18)
d

dt
(GLUT4) = −v7f + v7b+ vGLUT

(19)vGLUT = kGLUT · fIRGLUT4

(20)vGLUT = GLUT4m

(21)v2c = IRS1p · k2c ·mTORC1a · fIRdiabetes

(22)Uidf = xF · Vf max ·

(
Gt

Kf + Gt

)



Page 6 of 20Herrgårdh et al. Diabetology & Metabolic Syndrome          (2023) 15:250 

in lean and fat mass respectively. Furthermore, the glu-
cose rate of appearance, Ra , changes with the total body 
weight ( BW ):

where f  is the fraction of intestinal glucose absorption 
which appears in plasma, kabs is the absorption rate, Qgut 
is the glucose content in the gut, and BW  is the body 
weight. In the earlier model, BW  was a constant, while 
here it is a variable in the whole-body level as described 
in [3].

To merge the different models, a parameter 
tconv = 24 · 60 was introduced to the models correspond-
ing to time expressed in minutes, i.e., the organ/tissue 
level model and the cell model, to change the unit for 
time into days.

Phenomenological energy intake
We added an equation for accounting for differences in 
energy intake throughout the study period:

where EIvehicle(t) is the energy intake over time, EIbaseline 
is the energy intake at baseline, �EImax is the maximum 
change in energy intake, here fixed at the change in 
energy intake that the participants were asked to follow, 
�EIss is the change in energy intake at steady state, t is 
the time, h1 is the hill coefficient, and thalf  is the time-
point where half of EIvehicle (t) has been reached.

Drug response model for topiramate
The energy intake was also altered with respect to the 
drug topiramate according to

where EI(t) is the energy intake that influenced by topira-
mate, h2 , Imax , and ICh

50 are parameters, and C is the con-
centration of topiramate in plasma. To get C , we adopted 
the standard two-compartment pharmacokinetic model 
with first-order absorption from [15]

(23)Ra = f · kabs ·
Qgut

BW

(24)

EIvehicle = EIbaseline −�EImax + (�EImax −�EIss)
th1

th1half + th1

(25)EI(t) = EIvehicle ·

(
1− Imax ·

Ch2

Ch2 + ICh2
50

)

(26)
d

dt
(A) = −Ka · A

(27)

d

dt
(C) = Ka ·

A

V
− K23 · C + K23 · C2− K10 · C

Here A is the absorption compartment, into which 
the daily dosages of topiramate are administered, Ka , 
V  , K23 , K10 , and K32 are parameters, and C2 is the 
topiramate concentration in tissue.

Parameter estimation
Almost all of the 146 parameters in this multi-scale 
model were fixed at their values obtained from previ-
ous studies. These fixed parameters on the whole-body 
model were determined from literature values that 
have been validated on weight-loss data for both obese 
and nonobese women and men [16], and some param-
eters are determined from demographics (e.g. height, 
age, etc.). The organ/tissue level has been trained and 
validated on both healthy and type 2 diabetics with 
normal weight, and we used the parameters for the 
healthy group herein [4]. The cell-level model was also 
trained on both type 2 diabetic and healthy subjects, 
more specifically on data obtained from experiments 
on their subcutaneous fat cells, and the parameters for 
the healthy subjects were used herein [6]. The param-
eters estimated in this article are one scaling parameter 
of the insulin resistance model, the scaling parameter 
of the diabetes effects in the cell-level model, the new 
parameters in the cell-level model, those parameters 
corresponding to the phenomenological energy intake 
equation, and finally the parameters of the meal 
response model. The different parameters are estimated 
using different data and in different ways.

Most parameters were optimized using an optimization 
algorithm. Specifically, the parameters were estimated by 
minimizing the difference between model simulations, 
denoted, and experimental data, denoted  ŷ(θ) . The cost 
function used is the conventional weight least square, i.e.,

where the subscript  i  denotes the data point, where 
N   denotes the number of data points, and where SEM 
denotes the standard error of the mean for the data 
uncertainty [17]. In practice, this parameter estimation 
was accomplished using the enhanced scatter search 
(eSS) algorithm from the MEIGO toolbox [18]. The opti-
mization was restarted multiple times, run in parallel at 
the local node of the Swedish national supercomputing 
center (NSC). The parameter estimation was allowed to 
freely find the best possible combinations of parameter 
values within boundaries.

(28)
d

dt
(C2) = K32 · C − K32 · C2

(29)V(θ) =

N∑

i=1

(
yi − ŷi
SEMi(t)

)

2
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We use a χ2-test to evaluate the agreement between 
model simulations and data. To be more specific, we use 
the inverse of the cumulative χ2-distribution function for 
setting a threshold, T 0

χ2 , and then compare the cost func-
tion V (θ) with this threshold:

where Fcdf−inv

x2
 us the inverse density function, α is the 

significance level, and v is the degrees of freedom, which 
was the same as the number of data points in the training 
data sets. The model is then rejected if the model cost is 
larger than T 0

χ2.
The parameters that were not estimated using an algo-

rithm were estimated manually due to simplicity, but the 
fit to data was assessed in the same way as for the opti-
mization algorithm, i.e. with a χ2-test (Eq. 2). Note that 
apart from these explicitly mentioned parameters, all 
other parameters were optimized using an optimization 
algorithm (Eq. 29).

The scaling parameter of the insulin resistance model 
(scale,  Table  1), which accounts for the scale difference 
in fat tissue between mice and humans, was estimated by 
hand. The data used for this manual fitting was the fasting 
insulin data from the Fast-food study [17, 18] (Fig. 3D).

(30)T 0
x2

= F
cdf−inv

x2
(1− a, v)

The scaling of the three diabetes effects—IR, GLUT4, 
and diabetes—(bIR,  bGLUT, and  bdiabetes,  Table  2)  were 
adjusted by hand to fit to the level of diabetes seen in the 
cellular data from the Fast-food study (Fig. 3G). The three 
diabetes effects have their own range of diabetic to non-
diabetic values (Fig.  3E, F) – 55–100 for IR, 50–100 for 
GLUT4, and 15.5–100 for diabetes. These ranges of dia-
betes effects were then scaled using one scaling param-
eter, scaling them towards a percentage of diabetes that 
corresponded to an acceptable fit to the cellular data after 
the fast-food diet.

The parameters added to the cell model to enable a 
gradual change due to insulin resistance, kGLUT4 and 
kIR (Eqs. 13, 14, 15, 16, 17, 18, 19, 20) (Table 2), were also 
adjusted manually. These parameters were adjusted so 
that the initial values of total IR and total GLUT4 had a 
steady state at 100%.

The last parameters to be adjusted manually were the 
parameters of the insulin resistance equations (Eqs.  10, 
11, 12), bIR, bGLUT4, and bdiabetes (Table 2). These parame-
ters were adjusted so that the initial values of total IR and 
total GLUT4 reached the scaled values from the estima-
tion to cellular data within the time span of the Fast-food 
study (Fig. 4D).

Two sets of parameters were adjusted using an optimi-
zation algorithm: the energy intake parameters (Table 1) 
and the meal response parameters (Table 3). The parame-
ters relating to the energy-intake equation were estimated 
using data from the Topiramate study. This estimation 
data consists of body-weight time-course data, which is 
denoted  BW. The meal-response parameters were esti-
mated using the baseline values of fasting plasma insu-
lin and glucose from the Fast-food study, and were only 
changed when used in the training and predictions relat-
ing to the Fast-food study (i.e., the training and predic-
tion related to the Topiramate study used the parameters 
from the original article [4]). These parameters were kept 
within tight bounds (a factor of 1) of the parameter val-
ues from the original model [4].

A further set of parameters were determined by the 
population demographics, and those as such function as 
a possible personalization. These parameters include the 
initial values for weight, fat mass, fat free mass or lean 
mass, age, height, change in energy intake, and topira-
mate dosage. Equations giving an estimate for the fat 
free mass and fat mass are included in the model, that 
can be used if these measurements are not readily avail-
able. Some further initial values could also be used for 
personalization but was instead estimated by the model 
in this work since values for them were not available in 
data, and these include the initial values of resting metab-
olism, extracellular fluid, glycogen mass, rate of glucose 

Table 1 Parameters on the whole-body level that were 
estimated to both the Fast-food study and Topiramate data

Parameter Description

lmax Maximal drug effect

IC50 Drug effect at 50%

h2 Hill coefficient of drug effect

h1 Hill coefficient of energy intake

dEIss Change in energy intake at steady state

thalf Timepoint where half of EIvehicle(t) has been reached

scale Scaling of insulin resistance effect between human 
and mouse

Table 2 Parameters on the cell level that were estimated to the 
cell-level Fast-food study-data

Parameter name Description

bIR Effect of insulin resistance on IR-levels

bGLUT Effect of insulin resistance on GLUT4-
levels

bdiabetes Effect of insulin resistance on diabetes-
levels

kIR Rate of IR expression

kGLUT Rate of GLUT4 expression

scaleCell Scaling of diabetes on cell level
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appearance, endogenous glucose production, glucose uti-
lization and insulin secretion.

For detailed description of all parameters, see the 
Additional file material. All parameters not changed were 
fixed and set to values used in Nyman et al. (2011), and 
these values are also  listed in the Additional file  1. We 
exploited the modular structure of the model by fitting 
the weight model on its own. In the final simulation with 
the multi-level model, all aspects of the model are simu-
lated at the same time.

Model simulation
We exploited the unidirectional structure of the multi-
level model to only simulate those parts of the model 
that are needed. In other words, the whole-body part 
of the model is not impacted by other parts of the 
model and could therefore be simulated on its own, for 
instance when estimating the parameters in that part 
of the model to only the weight data. In contrast, the 
entire multi-level model was simulated for the tissue- 
and cell-levels.

The initial values used in the simulations can be 
found in the Additional file material.

We used MATLAB R2020b (MathWorks, Natick, MA) 
and the IQM toolbox (IntiQuan GmbH, Basel, Switzer-
land) for the entire modelling work performed [19].

Uncertainty estimation
The uncertainty of both the parameters and the model 
simulations for estimation, validation, and predictions 
were gathered as proposed in [20] and as implemented 
in [21]. In short, the desired property (i.e., the fasting 
plasma glucose and insulin levels in the Fast-food study 
(Fig.  3) and the weight data in the Topiramate study 
(Fig.  4)) were either maximized or minimized, while 
requiring the cost to be below the χ2-threshold. See [21] 
for more details on how the uncertainty estimation was 
done.

Data
No new experimental data was collected in this study. 
We therefore refer to the methods sections in the original 
articles [22–26] for the corresponding details experimen-
tal methods. Information on the population demograph-
ics and what data that was used for estimation and 
validation respectively are given in the results section. 
All data besides that cell data from the Fast-food study 
was digitized from figures or read out from tables in their 
respective articles. The digitization was done using the 
WebPlotDigitizer [27]. All data are shown as means with 
SEM shown as error bars. For the Topiramate study, no 
SEM values were given. Therefore, the SEM values used 
in the statistical analysis (Eq. 1) were estimated to be 30% 
of the corresponding mean value.

Results
Mechanistic, multi‑level, and multi‑timescale model
The multi-level model (Fig.  2) is comprised of three 
interconnected models, previously published on their 
own, plus a new insulin resistance model adopted from 
rodents [12]. Firstly, the whole-body model describes 
changes on body-composition [3], which produces 
input to the new sub-model for the progression of insu-
lin resistance. Secondly, the tissue-level model describes 

Table 3 Parameters on the organ/tissue level that were estimated 
to the Fast-food study-data (specifically the initial values of glucose 
and insulin). For the Topiramate study, the values from [4] where 
used 

Parameter Description

VG Distribution volume of glucose

k1 Rate parameter glucose kinetics

k2 Rate parameter glucose kinetics

Gb Basal plasma glucose

VI Distribution volume of insulin

m1 Insulin kinetics rate parameter

m2 Insulin kinetics rate parameter

m4 Insulin kinetics rate parameter

m5 Insulin kinetics rate parameter

m6 Insulin kinetics rate parameter

HEb Baseline hepatic insulin extraction

Ib Basal plasma insulin

Sb Basal insulin secretion

kmax Glucose emptying max rate

kmin Glucose min rate

kabs Rate of intestinal absorption

kgri Rate of grinding

f Fraction of intestinal absorption appears in plasma

b Rate of appearance parameter

dd Rate of appearance parameter

kp1 Extrapolated EGP at zero Glucose and Insulin

kp2 Liver Glucose effectiveness

kp3 Amplitude of insulin action on liver

kp4 Amplitude of portal Insulin action on liver

ki Delay between Insulin signal and Insulin action

p2U Rate constant of Insulin action on the peripheral 
Glucose utilization

K Pancreatic responsivity to glucose rate of change

alpha Delay between glucose rate of change

beta Pancreatic responsivity to glucose

gamma Transfer rate constant between portal vein & liver

ke1 Rate of renal extraction

ke2 Cut-off for renal extraction
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the meal response of plasma glucose, organ-specific glu-
cose uptake, and insulin regulation [4]. Thirdly, the cel-
lular level describes intracellular insulin signaling in 
adipocytes [6]. The whole-body model has previously 
been trained and validated on weight-change data [3], 
and the interconnected tissue-level and cell-level model 
was previously trained and validated on meal-response 
data and intracellular insulin-signaling data from human 
adipocytes [6]. The insulin resistance model (Fig.  2a, 
green box) is, as in [12], driven by adiposity, specifically 
the relative increase in fat mass from baseline ( FFinit  ). The 
insulin resistance affects the tissue-level model in three 
ways: [1] it decreases glucose utilization in muscle and 
liver tissue ( Uidm , Uidf  ) (Eq. 155 158,159 in Additional file 
material), [2] it increases endogenous glucose produc-
tion ( EGP ) (Eq. 154 in Additional file material), and [3] 
it increases insulin secretion ( Ipo ) (Eq. 153 in Additional 
file material). The insulin resistance model also influ-
ences the cell-level model in three ways: by decreasing 
the protein expression of IR and GLUT4 , and reducing 
a positive feedback from mTORC1 to IRS1 . The connec-
tion between the whole-body model and the tissue-level 
model is top-down, and comprises three parts: (1) muscle 
uptake ( Uidm ) is dependent on muscle mass, (2) adipose 
tissue uptake ( Uidf  ) is dependent on fat free mass, and (3) 
rate of appearance of glucose ( Ra ) is dependent on total 
body weight ( BW  ). All model equations and parameter 
values can be found in the Supplement.

The model explains total weight change data and can 
correctly predicts data on all three levels in the fast‑food 
study
The whole-body model was trained on total body weight 
data, describing change in total body weight, obtained 
from a weight-increase study [23]. In this study, the 
healthy young male participants were told to increase 
their energy intake by around 3480 kcal per day by eating 
at least two extra meals of fast-food, and by decreasing 

their physical activity for four weeks (Fig. 3a). The model 
agrees well with the total body weight data, used for 
training the model (Fig. 3b). The model can also predict 
the increase in fat and fat free mass on the whole-body 
level (Fig.  3c). The interconnection between the whole-
body and the tissue-level model was tested by compar-
ing simulations from the entire multi-level model with 
tissue- and cell-level data from the weight-increase study 
(Fig. 3d, e). As can be seen in Fig.  3d, the experimental 
data for fasting insulin lies within the predicted bounds 
(light yellow area). The solid purple line shows the simu-
lation with the lowest cost from the training to the weight 
data. Only one scaling parameter was adjusted to the 
data in Fig. 3d.

The prediction of the cell-level insulin response 
data for the intracellular metabolites IRS1− p and 
PKB− p was scaled using one parameter to switch the 
three diabetes parameters (Fig.  3e, f ) in the model to 
22% towards diabetes. As shown in Fig.  3g, this pre-
diction also looks good, and is supported by a χ2  test, 
( V (θ) = 19.3 < 21 = χ2

cum,inv(12, 0.05) ) for IRS1− p 
and ( V (θ) = 19.9 < 21 = χ2

cum,inv(12, 0.05) ) for 
PKB− p.

The multi‑level model can predict whole‑body‑, tissue‑ 
and cell‑level data based on weight increase data
All the simulations lie close to experimental data, as in 
Fig. 3b-d, g and, meaning that the model can both explain 
training data and correctly predict independent valida-
tion data. It is therefore meaningful to look at predictions 
of other non-measured variables. The trained and vali-
dated model was therefore used to predict a continuation 
of the Fast-food diet for an additional 8  weeks, result-
ing in a continued weight increase (Fig. 4a left). During 
these additional weeks, the fasting plasma glucose and 
insulin levels reached prediabetic levels [28] (Fig. 4a mid-
dle and right). The meal response of plasma and glucose 
also increased, while the glucose uptake in muscle and fat 

Fig. 2 Detailed overview of the entire multi-level and multi-timescale model structure on the different levels. New reactions, added in this paper, 
are represented by solid lines, any color, while old reactions are represented with dashed lines. A Whole-body level. The body composition model 
takes change in energy intake as input, i.e., the difference in energy intake ( EI ) and energy expenditure ( EE ). This difference translates to the outputs: 
changes in the masses of fat ( F ), lean tissue ( L) , and glycogen (Gly ). The total sum of these masses is the body weight ( BW ). The insulin resistance 
model (green box) takes the change in fat mass ( xF ) as input. B The following factors influence the glucose concentration on the tissue/organ level: 
the insulin resistance, xF , the change in lean tissue ( xL ), and BW . More specifically, insulin resistance (green short arrows) increases endogenous 
glucose production ( EGP ) and insulin secretion ( Ipo ), and decreases glucose uptake in both muscle ( Uidm ) and liver tissue ( Uidl ). Furthermore, 
xL increases Uidm , xF increases glucose uptake in fat tissue ( Uidf ), and BW increases the rate of appearance of glucose ( Ra ). C Finally, the amount 
of insulin in fat tissue translates to insulin input on the cell level. More specifically, insulin binds to the insulin receptor ( IR ), causing a signaling 
cascade that ultimately results in glucose transporter 4 ( GLUT4 ) being translocated to the plasma membrane to facilitate glucose transport. The 
new reactions on the cell level are the protein expressions of IR and GLUT4 (black arrows going to), the effect of insulin resistance on the protein 
expression of IR and GLUT4 (green arrows), as well as the degradation of IR and GLUT4 (black arrows going out). These new reactions enable 
a gradual decrease in IR and GLUT4 , moving the cell towards diabetes

(See figure on next page.)
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tissue decreased and increased respectively (Fig. 4b). The 
predictions of total IRS1 and PKB expression at the cellu-
lar level got closer to the diabetic levels (Fig. 4d).

The model describes and predicts weight changes 
from topiramate study
The model was further validated on a weight-
decrease study with the drug topiramate [22]. The 
participants in this study were obese but other-
wise healthy, and between 18 and 75  years of age. 

Fig. 2 (See legend on previous page.)
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Fig. 3 Results of model training and validation on Fast-food study data. A. Comparison between model uncertainty (light purple area) for the best 
model simulation (the dark purple line) with the training data (purple error bars) or validation data (grey error bars). On the whole-body level, 
data for B weight and C fat mass ( FM ) and fat free mass ( FFM ) was used for training and validation. On the tissue/organ level, data for D glucose 
and insulin was used for training and validation. E The diabetes effects on the cell level model–decrease in IR , decrease in GLUT4 , and diabetes , 
representing an attenuation of. F Scaling of the three diabetes parameters (with the chosen values indicated with triangles) and the resulting 
behavior of the simulation curves as dose responses to insulin, to match the fit to data in G. Data and simulations of the dose responses 
of phosphorylated PKB , PKB308− p and phosphorylated IRS1 , IRS1− p in response to the indicated concentrations of insulin for 10 min 
and normalized 0–100%. The predicted simulation before the Fast-food diet (blue solid line) use the non-diabetic parameters from [7] as they were, 
which gave a good agreement with data (blue error bars with circles). The three diabetes parameters were scaled to get the predicted simulation 
after the diet (purple dashed line) to fit to the corresponding data (purple error bars with squares)
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Fig. 4 A Model simulation of weight, fasting plasma glucose and insulin for a predicted continuation of the Fast-food diet for an additional 8 
weeks. Prediabetic levels (28) are shown as purple dotted line. Two meals are simulated during the period, before and the predicted 12 weeks (blue 
and red pizza icons respectively). B Meal response simulations before (blue solid line) and after (red dashed line) the predicted 12-week Fast-food 
diet for plasma insulin, plasma glucose, and glucose uptake in muscle and fat tissue. C The updates made to the cell level of the model and insulin 
resistance (green box). The added reactions include a protein expression IRm , degradation of IRi , protein expression of GLUT4 , and degradation 
of GLUT4m . The insulin resistance influences the protein expression of IRm and GLUT4 (green arrows). These updates enable the gradual change 
in total IR and GLUT4 due to increased insulin resistance seen in D. After the 4 weeks of the Fast-food study, the total IR and GLUT4 (solid purple) 
have reached the values estimated from data in Fig. 3f, g. After the additional 8 weeks, total IR and GLUT4 (dashed purple) have gone down further 
towards but not completely reached the diabetic value (dotted red line, based on the diabetic values of these parameters determined in (6)). 
E Cell response to the simulated meals before (blue solid line) and after the 12 weeks (red dashed line), specifically the response of PKB308− p 
and IRS1− p
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Fig. 5 A Overview of the Topiramate study, in which the patients were treated with three different dosages of the weight-loss drug topiramate, 
and instructed to eat on average 600 kcal less per day and also took different dosages of the weight loss drug Topiramate. The results of the model 
training and validation on topiramate data are shown as purple lines for the best simulation, purple error bars for the data, and shaded purple 
areas for model uncertainty, for the B fit to placebo data, C fit to weight data for Topiramate dosages 64 mg/day and 192 mg/day, and D model 
validation on Topiramate dosage 96 mg/day, where the validation data is shown as gray error bars. The first data point was used to set initial 
conditions for the corresponding simulations. E The trained model was used to make predictions made for two different scenarios not done 
during the Topiramate study: increasing the energy intake with 1200 kcal/day for 1 year, without topiramate treatment (solid purple line) 
and with 192 mg/day topiramate treatment (dashed purple line). F Predictions of meal responses before the predicted diet and topiramate 
intervention (blue solid line), after 1 year of energy intake increase without treatment (red solid line) and with treatment (purple dashed line) 
for plasmainsulin and plasmaglucose on the organ/tissue level, and G IRS1− p and PKB308− p on the cell level
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The model was trained on two doses of topira-
mate—64 and 192  mg/day—and then validated on a 
third dosage—96  mg/day. The model training passes 
a χ2  test ( V (θ) = 3.0 < 36 = χ2

cum,inv(24, 0.05) ). 
As shown in Fig.  5, the validation lies within the 
predicted bounds, and it also passes a χ2  test 
( V (θ) = 4.8 < 21 = χ2

cum,inv(12, 0.05)).

The multi‑level model can predict tissue‑ and cell‑level 
data based on weight decrease
As shown in Fig. 5b, c, d, the simulations describe accu-
rately both experimental estimation and validation data. 
It is therefore, as with Fig.  3b, c, d, g 5and the weight-
increase scenario, meaningful to look at predictions for 
the population in the Topiramate study as well. Such 
predictions on the organ/tissue—and cell level were 
made using the fit of the whole-body model to the weight 
data from the Topiramate study. Specifically, two sce-
narios that were not part of the Topiramate study were 
both predicted and compared: [1] an increase in energy 
intake by 1200  kcal per day for 1  year without topira-
mate treatment, and [2] the same increase in energy 
intake (1200  kcal/day for 1  year) but with topiramate 
treatment, 192 mg/day (Fig. 5e). In the first scenario, the 
weight increases with almost 15  kg (Fig.  5e, solid line), 
while in the scenario with topiramate, the model predicts 
a decrease in weight (Fig.  5e, dashed line), despite the 
increase in calories. When looking at a meal response at 
the organ/tissue level, before and after the predicted year 
of weight increase or decrease (Fig. 5f ), both the plasma 
insulin and glucose levels have increased after one year 
without drug treatment (red solid lines) compared with 
before (blue solid lines). After 1  year of energy-intake 
increase with topiramate treatment (purple dashed 
lines), the plasma insulin and glucose levels have instead 
decreased slightly. Similar changes can also be seen in the 
meal response on the cellular level (Fig. 5g)—PKB308− p 
protein levels have increased after 1 year of only increase 
in energy intake compared to before, and the same pro-
tein level had decreased after 1 year of topiramate treat-
ment, while IRS1− p has decreased after 1 year of energy 
intake increase only and slightly decreased after 1 year on 
topiramate.

Discussion
Summary of main findings
Herein, we have presented a first multi-level, multi-time-
scale, and mechanistic model of the progression of insu-
lin resistance in humans. The model describes insulin 
resistance development on three different biological lev-
els: whole-body composition (Figs. 2a, 3b, c, 4a, and 5c), 
plasma glucose and insulin (Figs. 2b, 3d, 4b, and 5d), and 
intracellular adipocyte insulin signaling (Figs. 2c, 3g, 4d, 

e and 5e). The model agrees with the multi-level dataset 
from the Fast-food study [24, 25], both describing estima-
tion data (Fig. 3b) and correctly predicting independent 
validation data (Figs.  3c, d, g). For this weight-increase 
study, we predict traditional biomarkers which had not 
been measured, such as oral glucose tolerance test and 
other intracellular signaling intermediaries (Fig.  4). The 
model also agrees with whole-body weight-loss data from 
the Topiramate study (Fig. 5b, c) [22]. Moreover, for this 
study, we use the model to predict changes in a glucose 
tolerance test and intracellular insulin signaling (Fig. 5d, 
e). Finally, we illustrate how this model potentially can 
be used to improve health in future eHealth technologies 
(Fig. 6).

New strengths and possibilities with our new modular 
and multi‑scale model for insulin resistance
An important strength of this model is that it combines 
three well-determined and validated models into an 
interconnected multi-scale model. Having a multi-scale 
model is an important strength since the progression 
of diabetes in reality is multi-scale, as seen in the data 
(Fig.  3). Despite this importance, there existed no pre-
viously available multi-scale model that could describe 
such data. Nevertheless, there exists models that describe 
the different levels separately: the Hall model for whole-
body weight describes changes over months and years 
[3]; the Dalla Man model for the meal response describes 
the interplay between plasma glucose and insulin [4]; and 
the Brännmark model that describes intracellular insulin 
signaling data in adipocytes [6, 7]. However, these three 
models had previously not been connected into a single 
model, in part because the arguably most central connec-
tion between them—adiposity-driven insulin resistance 
—had not previously been modelled. Herein, we have 
for the first time connected these three well-established 
models and levels into a multi-scale model, by introduc-
ing a new model for the progression of insulin resistance. 
This is the first such human, multi-scale insulin resist-
ance model. The connecting kit, the adiposity-driven 
insulin resistance model, has been adopted from a cor-
responding multi-scale model for mice [12], even though 
the three constituent models for the three levels and 
timescales, come from existing models that were specific 
to humans. Moreover, the cell level model has also been 
adjusted to allow a continuous development of insulin 
resistance, by allowing some of the model’s steady states 
to instead change over time. A final important aspect 
of this multi-scale model is that it is modular, meaning 
that the different subsystems and organs described in the 
model can be changed to other models with more or less 
details [29, 30].
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Fig. 6 A Personalizing a digital twin using data from one person to train and validate a passive digital twin, such as the one presented herein, 
and making the digital twin active. This personalization can be in the form of input parameters, such as age and height, parameters estimated 
and validated on time-series data, such as meal response glucose, and input parameters representing activities, such as energy intake or topiramate 
dosage. B Using the digital twin to predict and compare scenarios with different lifestyles and/or treatments. In this example, the digital twin is used 
to predict two scenarios. In scenario 1, the digital twin simulates an increase in energy intake for 40 years (from 40 to 80 years of age) and a resulting 
increase in BMI—from overweight to obese levels (BMI over 25 and 30 kg/m2, respectively)—and an increase in fasting plasma glucose—from 
prediabetic to diabetic levels (fasting glucose above 5.6 and 7 mmol/l, respectively). In Scenario 2, the digital twin simulates a decrease in energy 
intake with a weight-loss drug such as topiramate, resulting in a decrease to healthy levels of BMI and fasting plasma glucose. C Following 
the chosen lifestyle and getting continuous feedback by zooming in on 4 weeks of the predicted fasting plasma glucose (solid line) and comparing 
with data (blue squares) collected by the user. Zooming in even more and looking at meal response glucose before and after the 4 weeks, one can 
see that the glucose curve is higher before (left box) compared to after (right box), indicating an improvement in meal response glucose levels 
as well
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Another strength with our new model is that it can 
describe not only estimation data, but also correctly pre-
dict independent validation data, and can thus also be 
used to predict non-measured variables. The model cor-
rectly describes estimation data of weight change from 
both the Fast-food study (Fig.  3b) and the Topiramate 
study (Fig.  5c). Furthermore, the model also correctly 
described independent validation data from both these 
studies. For the Fast-food study, the model describes 
independent data on changes in fat mass and fat free 
mass (Fig. 3c), fasting glucose and insulin concentrations 
(Fig.  3d), and the insulin response of the intracellular 
signaling metabolites (Fig.  3e). In all these predictions, 
the model only changed one parameter: the scale differ-
ence between mice and humans in the insulin resistance 
model. For the Topiramate study, the model describes 
independent data for weight change using a dosage 
of topiramate that was not used for fitting, 96  mg/day 
(Fig. 5d). Because of the success of these validation tests, 
we then used the model to make predictions of the grad-
ual changes of some of the things that were not measured 
in the original study. For example, we could predict how 
the glucose levels and fluxes change during the studies, 
as well as how intracellular signaling is changing. These 
kinds of predictions are something that the earlier model 
cannot do, since they require the interplay between the 
different layers. These predictions of additional non-
measured variables can in principle be tested by doing 
new studies where these variables are measured, and this 
could either validate the current model even further, or 
reject the model, and both these outcomes would provide 
new mechanistic insights regarding the progression of 
insulin resistance.

Limitations with our model
The current version of the model has some limitations. 
One such limitation is that the implementation of the fat-
dependent insulin resistance is a minimal model, using 
relatively simple expressions. Specifically, the model lacks 
relevant details and hypotheses assumed to be involved 
in insulin progression. One such mechanistic hypoth-
esis is ectopic fat storage and inflammation in liver and 
pancreas [31, 32]. Inflammation is also often believed to 
play a role in the adipose tissue itself, as is the varying 
cell size distributions of adipocytes [33, 34]. These things 
could be included in future, more detailed versions of the 
model. However, all of these are processes that are not 
covered by the model’s current level of detail, and among 
processes currently included, the progression of insu-
lin resistance is mechanistic, in the sense that it affects 
the right included mechanisms. For instance, the endog-
enous production of glucose from the liver is known 

to be impacted by insulin resistance, and this impact is 
included, even though the underlying mechanisms for 
this impact are not included. To include such underly-
ing mechanisms would allow us to simulate a wider array 
of drugs, including e.g. anti-inflammatory drugs like 
cd44-inhibitors [35, 36], or drugs that influence the size 
of adipocytes like metformin [37]. These potential addi-
tions could thus be useful for both drug development 
and individualized prevention. Apart from this lack of 
mechanistic detail, the current implementation of insulin 
resistance progression is given by a logarithmic expres-
sion (Eq.  153–155,160–162 in Additional file matrials). 
This expression thus excludes potential transient and/or 
adjustment processes in the body. Also, the current pro-
gression of insulin resistance has only been validated on 
a relatively small weight span and population, meaning 
that higher or lower weight changes and other time scales 
might not be accurately represented by the model.

Another potential limitation with the current model 
concerns how the interconnection was introduced. Spe-
cifically, the interconnection is top down only—the 
whole-body level only influences the organ/tissue level 
only goes in one direction, that is from the top-level 
(whole-body) to the lower level (organ/tissue/cell), and 
is not reversible. This implementation of the connection 
means that the meal response or meal response dynam-
ics does not affect the whole-body composition changes, 
which, in reality, it does. A future implementation of the 
interconnection could describe how short-term changes 
in meal response dynamics would lead to short-term 
changes in ectopic fat storage, which over time would 
lead to long-term changes in fat mass, and therefore 
also overall body weight. To implement such a two-way 
interconnection between the levels, the model should 
represent fat tissue in greater detail, including e.g., prolif-
eration and death of adipocytes, the effects of differently 
sized adipocytes, the amount of fat in each adipocyte, 
and ectopic fat storage [33, 34, 38, 39]. Other more realis-
tic interconnections include for example different hunger 
and fat-mass regulating hormones (such as leptin, adi-
ponectin, various inflammation mechanisms, intracellu-
lar mechanisms on more organs than fat tissue), as well 
as the interplay between glucose, proteins, and fat [21, 
40–43].

A third potential drawback is that the model is heav-
ily focused on adipose tissue and the adipocytes, and 
their involvement in insulin resistance. This adipocen-
tric explanation is one of the most popular ones for the 
progression of insulin resistance, but not the only one. 
Other explanations do exist, such as various genetic 
explanations, inflammation in other organs and/or due to 
ectopic fat storage [33, 33, 38, 39, 44–46]. It is also pos-
sible that there are several mechanisms leading to insulin 
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progression that are true at the same time or for different 
clusters of people with insulin resistance. There are also 
at least some evidence for the existence of a range of dif-
ferent diabetic subtypes [47, 48], and that there are also 
different possible pathways to diabetes and insulin resist-
ance [9]. Ideally, all different hypotheses should be imple-
mented and compared.

There are also some limitations relating to the analysis 
of the model. Firstly, some of the parameters of the model 
were estimated manually instead of with an optimization 
algorithm as the rest of the parameters. These parameters 
could however just as well be optimized using a proper 
optimization algorithm, which would be more time and 
labor effective when personalizing active digital twins.

In the fasting insulin data from the Fast-food study 
(Fig. 3D), the second measurement after the initiation of 
the weight increase is clearly larger than the third meas-
urement. A similar initial increase and subsequent slight 
decrease in fasting insulin can also be observed in the val-
idation data (Fig. 3G), further indicating a potential phys-
iological mechanism behind this behavior that the model 
cannot capture. There are several potential explanations 
for this behavior. One is that the participants’ beta-cells 
have already started to malfunction due to the substantial 
increase in calories. Even if beta-cell malfunction, even-
tually culminating in diabetes, is usually assumed to be a 
slower process, it is possible that the early stages of this 
process can be observed already within weeks, especially 
given such high increase in energy intake. Another alter-
native is that the initial peak is an acute response to the 
increase which then dies out when the new level has been 
established.

Even if parts of the uncertainties in the model fit to the 
Fast study data (Fig. 3B–D) are comparable to uncertain-
ties in data, for other time points they are not, such as 
the end points of fat free mass and fasting insulin. This 
discrepancy between data and prediction uncertainty is 
especially large when looking at it from a clinical per-
spective, and further work therefore needs to be done 
before the model is clinically applicable.

A validation on another high caloric intake study [49] 
was also made, where the model predicts the right quali-
tative response, but slightly overestimates the increase in 
weight, fat mass, glucose, and insulin (S1-3). This over-
estimation is probably due to differences in population 
demographics and study protocol between the studies 
that the model cannot capture. One such difference is 
the amount of exercise. The Fast-food participants were 
told to not exercise at all and restrict their movement 
in general as much as possible during the intervention, 
something that was not imposed on or even noted for 
the participants in the validation study. It is our experi-
ence also from before that the underlying Hall model 

underestimates the importance of exercise on weight 
changes, so these results bring further evidence to the 
fact that the importance of exercise on weight changes 
should be improved in future versions of our model.

Future applications of our multi‑scale model: digital twins, 
eHealth, and drug development
The multi-scale model presented herein is a so called pas-
sive digital twin. A passive digital twin is, in contrast to 
an active digital twin, not personalized using individual 
data, even though it could be. Both active and passive 
digital twins can be useful in an eHealth scenario. Pas-
sive twins can for example be used to describe general 
dynamics of disease progression and be used as a medical 
pedagogics tool. For example, when looking at the pro-
gression of insulin resistance, the model can show how an 
increased energy intake can result in a weight increase, 
and eventually also to progression towards insulin resist-
ance and type 2 diabetes. To simulate such illustrations 
of the effect of daily habits could both help to convey 
medical knowledge in a comprehensive way and increase 
motivation to making life-style changes. Active digital 
twins can also help with medical pedagogics and motiva-
tion, but with the additional benefit of being able to make 
personalized predictions. Such predictions could poten-
tially also be used to help motivate patients to adhere to 
prescribed drugs or to more stringently follow their pre-
scribed diet and exercise-schemes. Furthermore, mecha-
nistically based, multi-scale models for the progression 
of insulin resistance and type 2 diabetes could poten-
tially also be used to evaluate different care interventions. 
For example, when using weight loss as a prevention or 
1 treatment for diabetes, a digital twin can be used for 
comparison of different options—topiramate could be 
compared to other interventions, both by comparing the 
effects on weight loss and other relevant biomarkers. All 
of these potential applications of a digital twin could be 
further increased by connecting the digital twin with a 
machine learning risk model-based drug development, 
and systems pharmacology, creating a hybrid model. This 
hybrid model could then be used to calculate a person-
alized or general risk for different diseases, like diabetes 
or cardiovascular diseases, given a certain scenario simu-
lated by the digital twin. Then, when comparing different 
weight-loss drugs, their relative effect on the risk of dis-
ease could also be compared [50, 51].

Outline of possible future clinical usage
Predictions such as the ones made in Figs.  4, 5e–g can, 
among other things, potentially be used in health care. 
More specifically, an active version of a digital twin, 
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which has been personalized using data from one person 
(Fig.  6a), can be used to simulate and predict different 
scenarios (Fig. 6b). Such personalization can be achieved 
through adding measurements and covariates as input 
to the model or through training and validating on indi-
vidual time-series data, such as from meal response 
measurements of plasma glucose (Fig.  6a). An example 
of how a personalization can be done in this manner is 
described in more detailed in [40]. The personalized 
model can then, for example, be used to simulate how 
different diets can result in either an increase or decrease 
in weight, such as the two scenarios shown in Fig.  6b. 
Such simulated scenarios can then be compared with 
each other, either for pedagogical and motvational pur-
poses or for treatment evaluation. When used for peda-
gogical and motivational purposes, the simulations can 
be used to increase the understanding of the physiologi-
cal effects that different lifestyles and/or treatments have 
on your physiology over extended periods of time. Such 
an increased understanding could then hopefully lead to 
better motivation to follow a certain lifestyle or treatment 
intervention. When using the simulations for treatment 
evaluation, the scenarios can be compared in order to 
chose the lifestyle and/or treatment most suited for the 
particular person using it, both in terms of outcome (e.g. 
which diet results in the most decreased risk of diabetes) 
and what changes you can and are willing to do in your 
life (e.g. which diet with a good enough outcome could 
you see yourself comply to). Finally, the multi-time scale 
and multi-level aspect of the model can potentially be 
utilized to get continuous feedback on the chosen life-
style and/or treatment (Fig. 6c), by zooming in on shorter 
time scales (as in Fig.  6c big blue box) and comparing 
with collected data, or simulating something else in the 
digital twin (e.g. the glucose response in plasma following 
a meal, as in Fig. 6c left and right small boxes). This feed-
back can help to evaluate the life style—does this chosen 
intervention seem to work for me as predicted?

Conclusions
In conclusion, the multi-scale model presented herein 
constitutes the basis for an active or passive digital twin 
technology that could be used to aid medical pedagogics 
and increase motivation and compliance, and can as such 
aid in prevention and treatment of insulin resistance.

Abbrevitions
IR  Insulin receptor
IRS1  Insulin receptor substrate 1
PKB  Protein kinase B
EGP  Endogenous glucose production

Ipo  Insulin in the portal vein
ODEs  Ordinary differential equations
FDA  Food and drug administration
FM  Fat mass
FFM  Fat free mass
EI  Energy intake
EE  Energy expenditure
BW  Body weight
PKB308-p  Phosphorylated PKB
IRS1-p  Phosphorylated IRS1
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