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Abstract 

Background  Chronic kidney disease (CKD) has emerged as a mounting public health issue worldwide; therefore, 
prompt identification and prevention are imperative in mitigating CKD-associated complications and mortality rate. 
We aimed to compare the predictive powers of the homeostatic model assessment for insulin resistance (HOMA-IR) 
and the metabolic score for insulin resistance (METS-IR) for CKD incidence in middle-aged and older adults.

Methods  This study used longitudinal prospective cohort data from the Korean Genome and Epidemiology Study. 
A total of 10,030 participants, aged 40–69 years, residing in the Ansung or Ansan regions of the Republic of Korea, 
were recruited between 2001 and 2002 through a two-stage cluster sampling method. We compared the predic‑
tive powers of METS-IR and HOMA-IR for CKD prevalence and incidence, respectively. CKD prevalence was measured 
by the area under the receiver operating characteristic (ROC) curve (AUC), and the indices’ predictive performance 
for CKD incidence were assessed using Harrell’s concordance index and time-dependent ROC curve analysis.

Results  A total of 9261 adults aged 40–69 years at baseline and 8243 adults without CKD were included in this study. 
The AUCs and 95% confidence intervals (CIs) of HOMA-IR and METS-IR for CKD prevalence at baseline were 0.577 
(0.537–0.618) and 0.599 (0.560–0.637), respectively, with no significant difference (p = 0.337). The Heagerty’s inte‑
grated AUC for METS-IR in predicting CKD incidence was 0.772 (95% CI 0.750–0.799), which was significantly higher 
than that of HOMA-IR (0.767 [95% CI 0.742–0.791], p = 0.015).

Conclusion  METS-IR surpassed HOMA-IR in predicting CKD incidence and was as effective as HOMA-IR in predicting 
CKD prevalence. This implies that METS-IR could be a valuable indicator for early detection and prevention of CKD 
among Korean adults.
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Introduction
Chronic kidney disease (CKD) is a widespread and pro-
gressive condition that impacts more than 10% of the 
world’s population, equating to over 800 million people 
globally [1]. CKD is characterized by the gradual loss 
of kidney function over time, which can lead to serious 
complications, such as cardiovascular disease (CVD), 
morbidity, and mortality, if left untreated [2, 3]. It is a 
major public health concern and requires early detection 
and proper management to prevent further kidney dam-
age and improve patients’ quality of life.

Several well-known conditions, such as type 2 diabe-
tes mellitus (DM), hypertension (HTN), obesity, dys-
lipidemia, and metabolic syndrome, are recognized risk 
factors for the development of CKD [4–6]. These condi-
tions are closely linked to insulin resistance (IR), which 
can affect the kidneys by promoting inflammation, oxi-
dative stress, and endothelial dysfunction, contributing 
to the development and progression of CKD  [7]. Previ-
ous studies have shown that IR in patients with CKD is 
closely linked to risk factors that contribute to CVD, such 
as chronic inflammation, endothelial dysfunction, and 
oxidative stress  [8]. Therefore, early identification and 
management of IR can help prevent or delay the onset of 
CKD and its associated complications, highlighting the 
importance of routine monitoring and effective control 
of these conditions in high-risk individuals.

Despite the hyperinsulinemic-euglycemic clamp tech-
nique being the preferred method for measuring insulin 
sensitivity in humans, its invasiveness and impracticality 
makes it unsuitable for large-scale epidemiological stud-
ies  [9]. Therefore, alternative non-insulin-based mark-
ers, such as the homeostasis model assessment for IR 
(HOMA-IR) [10] and the metabolic score for IR (METS-
IR) [11], have been developed as substitutes for assessing 
IR. Some studies have demonstrated the effectiveness and 
usefulness of these two markers as surrogate indicators 
for CKD [12–16]. However, it is unclear which surrogate 
marker is more useful for predicting the prevalence and 
incidence of CKD. Therefore, this study aimed to com-
pare the predictive power of METS-IR and HOMA-IR 
for the prevalence and incidence of CKD over a 14-year 
period in a substantial, community-based Korean pro-
spective cohort.

Methods
Study population
We used data from a community-based cohort study 
(Korean Genome and Epidemiology Study, KoGES_
Ansan_Ansung cohort). The KoGES_Ansan_Ansung 
cohort, which comprised adults aged 40–69  years, was 
conducted biennially from 2001–2002 (baseline) to the 

7th follow-up in 2015–2016. From a total of 10,030 par-
ticipants at baseline, we excluded participants with insuf-
ficient data to calculate METS-IR or HOMA-IR (n = 305) 
and those with missing data at baseline (n = 464). After 
exclusion, a total 9,261 participants (9,063 without CKD 
and 198 with CKD) were included in the first analysis 
to compare the discriminative power of METS-IR and 
HOMA-IR for detecting CKD prevalence. Subsequently, 
we excluded participants with CKD at baseline (n = 198) 
and those who did not follow-up data after baseline 
(n = 820). Finally, 8,243 participants were included in 
the analysis to compare the predictive performance of 
METS-IR and HOMA-IR for detecting CKD incidence. 
The flow chart of the study population is presented in 
the Fig.  1. All participants provided their written con-
sent and agreed to participate in this study. The study was 
approved by the Institutional Review Board of Yongin 
Severance Hospital (IRB No. 9-2022-0090).

Data collection
Anthropometric variables including the height (m), 
weight (kg), and waist circumference (cm) were measured 
by trained medical staff according to standard protocol. 
Body mass index (BMI) was calculated by weight (kg) 
divided by height (m) squared. After a 5-min rest, systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured twice, and the average of two of three 
measured values was recorded. Blood samples were col-
lected after at least 8 h of fasting. Serum creatinine, total 
cholesterol (TC), high-density lipoprotein (HDL), triglyc-
eride (TG), C-reactive protein (CRP), and glucose levels 
were enzymatically analyzed using a Chemistry Analyzer 
(Hitachi 7600, Tokyo, Japan by August 2002 and ADVIA 
1650, Siemens, Tarrytown, NY from September 2002).

Smoking status was categorized into four groups: non-
smoker, former smoker, occasional smoker, and daily 
smoker. Current smoker was further categorized into 
daily smokers and occasional smokers based on whether 
they smoked every day. Alcohol drinking status was 
categorized into non-drinker, former drinker, and cur-
rent drinker. Physical activity was assessed using meta-
bolic equivalent of task (MET)-hours per day (METs-h/
day) using an International Physical Activity Question-
naire  [17]. Total METs-h/day were calculated by multi-
plying the self-reported hours spent per day by the MET 
values calculated based on each activity type [18]. HTN 
was defined as having an SBP of 140 mmHg or more, a 
DBP of 90  mmHg or more, a diagnosis by a physician, 
or current treatment with antihypertensive medica-
tions  [19]. DM was defined as having a fasting plasma 
glucose (FPG) level of 126 mg/dL or more; a plasma glu-
cose level of 200 mg/dL or more 2 h after the 75 g oral 
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glucose tolerance test; a glycosylated hemoglobin more 
than or equal to 6.5%; a diagnosis by a physician; or 
current treatment with anti-diabetic medication ther-
apy [20]. Dyslipidemia was defined as a TC of 200 mg/dl 
or more, a diagnosis by a physician, or current treatment 
with anti-dyslipidemic medication therapy  [21]. Obesity 
was defined as a BMI greater than 25 kg/m2 according to 
the 2018 Korean Society for the Study of Obesity guide-
line  [22]. The detailed protocol used in KoGES is avail-
able on the website (https://​nih.​go.​kr/​ko/​main/​conte​nts.​
do?​menuNo=​300583).

Definitions of METS‑IR and HOMA‑IR
The METS-IR and HOMA-IR were calculated according 
to the following formulas: [11, 23]

(1)	 METS− IR = ln [2× FPG (mg
/

dL)+ fasting

serum TG (mg
/

dL)] × BMI (kg
/

m2)
/

ln [HDL

−C(mg
/

dL)]

(2)	 HOMA - IR = [fasting serum insulin (µU
/

mL)

×FPG (mg
/

dL)
/

405]

Definition of CKD
CKD was defined as an estimated glomerular filtration 
rate (eGFR) of less than 60  mL/min/1.73 m2. The eGFR 
was calculated using the CKD Epidemiology Collabora-
tion (CKD-EPI) equation [24].

Statistical analysis
All data are presented as means ± standard deviations 
(SDs) for continuous variables or numbers (percentages) 
for categorical variables. The independent two sample 
t-test was used to compare differences in continuous 
variables, including age, BMI, waist circumference (WC), 
SBP, DBP, FPG, TC, TG, HDL-C, CRP, eGFR, METS-IR, 
HOMA-IR, and METs, between participants without 
CKD and those with CKD or between participants who 
developed CKD or those who did not. The chi-squared 
test was used to compare differences in categorical vari-
ables, including smoking status, alcohol consumption, 
DM, HTN, and dyslipidemia, between two groups. For 
the 9261 participants at baseline, the receiver operating 
characteristics (ROC) was performed. The areas under 
the ROC curves (AUC) were used to compare the dis-
criminative powers of METS-IR and HOMA-IR for CKD 
prevalence. Post hoc comparisons of the AUC of two 
indices were also performed. The cut-off points for such 
prediction were calculated by using the Youden index.

For the 8,243 participants without CKD at baseline, 
univariable and multivariable Cox proportional haz-
ard regression analyses were performed to calculate the 
hazard ratio (HR) with a 95% confidence interval (CI) 
for the incidence of CKD according to single increments 
of METS-IR or HOMA-IR. In Model 1, we adjusted for 
age, sex, BMI, physical activity, smoking, and alcohol 

Participants at baseline survey of KoGES_Ansung study 

(n=10,030)

Participants with or without CKD at the baseline (n = 9,261)

Participants without CKD at baseline who followed-up at 

least once after baseline survey (n = 8,243 )

Excluded 

1) Insufficient data to calculate METS-IR or HOMA-IR (n = 305)

2) Missing data at baseline (n= 464)

Excluded

1) Participants with CKD at the baseline (n = 198)

2) Participants who did not follow-up after baseline survey (n = 820)

Comparison of AUROC for the prevalence of CKD of the two indices at the baseline

Comparison of time-varying AUROC for the incidence of CKD of the two indices

Fig. 1  Flow chart of the study population. KoGES, Korean Genome and Epidemiology Study; METS-IR metabolic score for insulin resistance, 
HOMA-IR homeostatic assessment for insulin resistance, CKD chronic kidney disease, AUROC area under the receiver operating characteristic curve

https://nih.go.kr/ko/main/contents.do?menuNo=300583
https://nih.go.kr/ko/main/contents.do?menuNo=300583
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drinking. In Model 2, we adjusted for the Model 1 vari-
ables plus HTN, DM, dyslipidemia, and CRP.

The indices’ predictive performance for the inci-
dence of CKD was assessed using Harrell’s concord-
ance index and time-dependent ROC curve analyses. 
Heagerty’s integrated AUC (iAUC) and Heagerty’s 
AUC every 2 years were used as time-dependent AUCs 
with an age-adjusted survival analysis. Subgroup anal-
yses by sex, presence of DM, presence of HTN, smok-
ing status, and obesity status were performed, and the 
results are presented as a forest plot. All statistical 

analyses were conducted using SAS version 9.4 (SAS 
Institute Inc., Cary, NC) and R software (version 4.1.1; 
R Foundation for Statistical Computing, Vienna, Aus-
tria). Statistical significance was set at p-value < 0.05.

Results
Clinical characteristics of study participants
The baseline characteristics of the population with and 
without CKD at baseline survey are presented in Table 1. 
Among the 9261 participants, 198 participants had 
CKD at baseline survey. Participants with CKD were 

Table 1  Baseline characteristics of the population with or without CKD at the baseline survey

Values are presented as means ± standard deviations, medians (25th percentiles, 75th percentiles), or numbers (%)

CKD chronic kidney disease, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, HDL high-density lipoprotein, AST aspartate 
aminotransferase, ALT alanine aminotransferase, CRP C-reactive protein, eGFR estimated glomerular filtration rate, METS-IR metabolic score for insulin resistance, 
HOMR-IR homeostatic model assessment for insulin resistance, MET metabolic equivalent of task P-value for the comparison of baseline characteristics between 
participants with CKD and those without CKD at the baseline survey. Significance was set at a p < 0.05
a Never smokers comprised individuals who had never smoked or had smoked < 100 cigarettes in their lifetime. Former smokers comprised adults who had 
smoked ≥ 100 cigarettes in their lifetime and had quit smoking at the time of the survey. Current smoker was further categorized into daily smokers and occasional 
smokers based on whether they smoked every day

Variable Total Without CKD With CKD p-value

N 9,261 9,063 198

Age (years) 52.0 ± 8.9 51.8 ± 8.8 61.2 ± 7.8  < 0.001

Sex 0.014

 Men 4426 (47.8%) 4349 (48.0%) 77 (38.9%)

 Women 4835 (52.2%) 4714 (52.0%) 121 (61.1%)

Body mass index (kg/m2) 24.6 ± 3.2 24.6 ± 3.1 25.2 ± 3.1 0.003

Waist circumference (cm) 82.5 ± 8.8 82.4 ± 8.8 85.9 ± 9.1  < 0.001

SBP (mmHg) 121.3 ± 18.4 121.1 ± 18.4 129.8 ± 17.3  < 0.001

DBP (mmHg) 80.3 ± 11.5 80.2 ± 11.5 83.8 ± 10.3  < 0.001

FPG (mg/dL) 87.4 ± 21.5 87.3 ± 21.3 92.9 ± 27.9 0.005

Total cholesterol (mg/dL) 191.9 ± 35.7 191.5 ± 35.5 207.9 ± 40.9  < 0.001

Triglyceride (mg/dL) 161.2 ± 104.0 160.8 ± 104.0 180.3 ± 99.9 0.007

HDL-cholesterol (mg/dL) 44.7 ± 10.1 44.8 ± 10.1 43.3 ± 10.3 0.043

CRP 0.24 ± 0.54 0.24 ± 0.54 0.31 ± 0.47 0.039

eGFR (CKD-EPI) 92.0 ± 14.3 92.8 ± 13.2 53.4 ± 9.6  < 0.001

HOMA-IR 1.66 ± 1.15 1.66 ± 1.15 1.92 ± 1.17 0.002

METS-IR 37.87 ± 6.66 37.83 ± 6.66 39.81 ± 6.59  < 0.001

Smoking statusa 0.098

 Never smoker 5425 (58.6%) 5298 (58.5%) 127 (64.1%)

 Former smoker 1452 (15.7%) 1417 (15.6%) 35 (17.7%)

 Occasional smoker 268 (2.9%) 265 (2.9%) 3 (1.5%)

 Daily smoker 2116 (22.8%) 2083 (23.0%) 33 (16.7%)

 Alcohol drinking  < 0.001

 Non-drinker 4239 (45.8%) 4126 (45.5%) 113 (57.1%)

 Former drinker 599 (6.5%) 577 (6.4%) 22 (11.1%)

 Current drinker 4423 (47.8%) 4360 (48.1%) 63 (31.8%)

 METs (hour/day) 23.65 ± 14.80 23.71 ± 14.81 21.10 ± 14.02 0.010

 Diabetes mellitus 1127 (12.2%) 1088 (12.0%) 39 (19.7%) 0.002

 Hypertension 2956 (31.9%) 2836 (31.3%) 120 (60.6%)  < 0.001

 Dyslipidemia 3675 (39.7%) 3562 (39.3%) 113 (57.1%)  < 0.001
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older (p < 0.001) and female (p = 0.014); they had higher 
BMIs (p = 0.003), WCs (p < 0.001), SBPs (p < 0.001), DBPs 
(p < 0.001), FPGs levels (p = 0.005), TC levels (p < 0.001), 
TG levels (p = 0.007), CRP levels (p = 0.039), HOMA-IR 
(p = 0.002), and METS-IR (p < 0.001). They were less likely 
to drink alcohol (< 0.001) and more likely to have DM 
(p = 0.010), HTN (p = 0.002), and dyslipidemia (p < 0.001).

During the mean follow-up period of 10.9 years, among 
the 8,243 participants without CKD at baseline, a total of 
1,506 (18.3%) later developed CKD. Table 2 shows base-
line characteristics of the participants who developed 
CKD and those who did not during the follow-up period. 
Participants who developed CKD were older (p < 0.001) 

and female (p < 0.001); they had higher BMIs (p < 0.001), 
WCs (p < 0.001), SBPs (p < 0.001), DBPs (p < 0.001), 
FPG levels (p = 0.005), TC levels (p < 0.001), TG levels 
(p = 0.007), CRP levels (p = 0.039), HOMA-IR (p = 0.002), 
and METS-IR (p < 0.001). They were less likely to smoke 
(p < 0.001) and drink alcohol (p < 0.001), but were more 
likely to have type-2 DM (p < 0.001), HTN (p < 0.001), and 
dyslipidemia (p < 0.001).

Comparison of discriminative performance 
between METS‑IR and HOMA‑IR for prevalence of CKD
The AUCs and 95% CIs of HOMA-IR and METS-IR for 
CKD prevalence at baseline were 0.577 (0.537–0.618) and 

Table 2  Baseline characteristics of the study population according to new-onset CKD

Values are presented as means ± standard deviations, medians (25th percentiles, 75th percentiles), or numbers (%)

CKD chronic kidney disease, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, HDL high-density lipoprotein, AST aspartate 
aminotransferase, ALT alanine aminotransferase, CRP C-reactive protein, eGFR estimated glomerular filtration rate, METS-IR metabolic score for insulin resistance, 
HOMR-IR homeostatic model assessment for insulin resistance, MET metabolic equivalent of task P-value for the comparison of baseline characteristics between 
participants who developed CKD and those who did not develop CKD at the baseline survey. Significance was set at a p < 0.05

Variable Total No CKD New-onset CKD p-value

N 8243 6737 1506

Age (years) 51.9 ± 8.8 50.3 ± 8.2 58.7 ± 7.8  < 0.001

Sex  < 0.001

 Men 3964 (48.1%) 3371 (50.0%) 593 (39.4%)

 Women 4279 (51.9%) 3366 (50.0%) 913 (60.6%)

Body mass index (kg/m2) 24.6 ± 3.1 24.5 ± 3.1 25.1 ± 3.3  < 0.001

Waist circumference (cm) 82.6 ± 8.8 82.0 ± 8.7 85.1 ± 8.7  < 0.001

SBP (mmHg) 121.1 ± 18.3 119.4 ± 17.4 128.6 ± 20.0  < 0.001

DBP (mmHg) 80.2 ± 11.4 79.6 ± 11.3 83.2 ± 11.6  < 0.001

FPG (mg/dL) 87.1 ± 20.6 86.4 ± 18.9 90.1 ± 26.5  < 0.001

Total cholesterol (mg/dL) 191.4 ± 35.0 190.1 ± 34.6 197.0 ± 36.4  < 0.001

Triglyceride (mg/dL) 160.8 ± 103.5 156.6 ± 100.8 179.4 ± 113.2  < 0.001

HDL-cholesterol (mg/dL) 44.7 ± 10.0 45.0 ± 10.0 43.5 ± 9.9  < 0.001

CRP 0.23 ± 0.54 0.22 ± 0.56 0.27 ± 0.43  < 0.001

eGFR (CKD-EPI) 92.9 ± 13.1 94.9 ± 12.5 84.3 ± 12.2  < 0.001

HOMA-IR 1.66 ± 1.15 1.62 ± 1.07 1.84 ± 1.47  < 0.001

METS-IR 37.85 ± 6.64 37.53 ± 6.53 39.28 ± 6.94  < 0.001

Current smoking (yes)†  < 0.001

 1 4840 (58.7%) 3868 (57.4%) 972 (64.5%)

 2 1299 (15.8%) 1080 (16.0%) 219 (14.5%)

 3 244 (3.0%) 206 (3.1%) 38 (2.5%)

 4 1860 (22.6%) 1583 (23.5%) 277 (18.4%)

Regular drinking  < 0.001

 1 3750 (45.5%) 2901 (43.1%) 849 (56.4%)

 2 513 (6.2%) 404 (6.0%) 109 (7.2%)

 3 3980 (48.3%) 3432 (50.9%) 548 (36.4%)

Mets (hour/day) 24.04 ± 14.90 23.89 ± 14.78 24.70 ± 15.42 0.064

Type 2 diabetes 969 (11.8%) 664 (9.9%) 305 (20.3%)  < 0.001

Hypertension 2579 (31.3%) 1858 (27.6%) 721 (47.9%)  < 0.001

Dyslipidemia 3217 (39.0%) 2526 (37.5%) 691 (45.9%)  < 0.001
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0.599 (0.560–0.637), respectively (Fig.  2). Although the 
AUC of METS-IR was higher than that of HOMA-IR, 
there was no significant difference (p = 0.337). The cut-
off points of the discriminative performance of HOMA-
IR and METS-IR for the prevalence of CKD were 1.3 and 
35.5, respectively. The positive predictive value (PPV) for 
HOMA-IR was 0.026, with a negative predictive value 
(NPV) of 0.958. For METS-IR, the PPV was also 0.026, 
while the NPV was 0.987.

Longitudinal relationship between METS‑IR, HOMA‑IR, 
and incidence of CKD
Table 3 shows the HR and 95% CI for CKD incidence accord-
ing to single increments of METS-IR and HOMA-IR. The 
HR and 95% CI of CKD incidence for each 1-point increase 
in the METS-IR and the HOMA-IR were 1.04 and 1.03–1.04 
(p < 0.001) and 1.12 and 1.08–1.15 (p < 0.001), respectively. 
There were significant associations between METS-IR, 
HOMA-IR, and CKD incidence even after adjusting for age, 
sex, BMI, physical activity, smoking, alcohol drinking, DM, 
HTN, dyslipidemia, and CRP.

Comparison of predictive performance of METS‑IR 
and HOMA‑IR for CKD incidence
Table  4 shows the age-adjusted Harrell’s C-index and 
Heagerty’s iAUC. The Harrell’s c-index of METS-IR was 
significantly higher than those of HOMA-IR (C-index: 
0.772, 95% CI 0.760–0.784 for METS-IR vs 0.762, 0.750–
0.774 for HOMA-IR, p < 0.001). The Heagerty’s iAUC of 
METS-IR was 0.775 (95% CI 0.750–0.799), which was 
significantly higher than that of HOMA-IR (Heagerty’s 
iAUC: 0.767, 95% CI 0.742–0.791) (p = 0.015). Heagerty’s 
incident/dynamic AUC for METS-IR was significantly 
higher than that of HOMA-IR up to 8  years, and there 
was no difference in Heagerty’s incident/dynamic AUC 
between the two indicators since then. The predictive 
performance of both METS-IR and HOMA-IR for CKD 
incidence was not significantly different from that of 
MET-IR alone.

Figure  3 shows the predictive performance for CKD 
incidence by subgroup analysis according to sex, pres-
ence of DM, presence of HTN, smoking status, and obe-
sity status. The predictive performances of METS-IR 
were significantly higher those of HOMA-IR regardless 
of sex (men; p < 0.001 and women; p < 0.001), presence of 
DM (DM; p = 0.036 and non-DM; p < 0.001), presence of 
HTN (HTN; p < 0.001 and non-HTN; p = 0.001), smoking 
status (smoker; p = 0.002 and non-smoker; p < 0.001), and 
obesity status (obese; p < 0.001 and non-obese; p = 0.010).

Fig. 2  Comparison of predictive power for prevalent chronic kidney 
disease of metabolic score for insulin resistance and homeostasis 
model assessment for insulin resistance. A comparison was made 
between the predictive powers of METS-IR and HOMA-IR 
for prevalent CKD in the 9261 participants at baseline using the area 
under the receiver operating characteristic curves. The cut-off 
values for such prediction were determined using the Youden index. 
ROC receiver operating characteristic, CKD chronic kidney disease, 
METS-IR metabolic score for insulin resistance, HOMA-IR homeostatic 
assessment model for insulin resistance, AUC​ area under the receiver 
operating characteristic curve, PPV positive predictive value, NPV 
negative predictive value

Table 3  Cox proportional hazard regression model for CKD 
incidence of two different insulin resistance indices

METS-IR metabolic score for insulin resistance, HOMR-IR homeostatic model 
assessment for insulin resistance, CKD chronic kidney disease, HR hazard ratio, 
CI confidence intervals, BMI body mass index, HTN hypertension, DM diabetes 
mellitus, CRP C-reactive protein

Model 1: Adjusted for age, sex, BMI, physical activity, smoking, and alcohol 
drinking

Model 2: Model 1, HTN, DM, dyslipidemia, and CRP

CKD Incidence

HR 95% CI P-value

METS-IR (per 1 increment)

 Unadjusted 1.04 1.03–1.04  < 0.001

 Model 1 1.06 1.05–1.08  < 0.001

 Model 2 1.06 1.03–1.07  < 0.001

HOMA-IR (per 1 increment)

 Unadjusted 1.12 1.08–1.15  < 0.001

 Model 1 1.06 1.03–1.10  < 0.001

 Model 2 1.04 1.00–1.08 0.031
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Discussion
We found significant associations between METS-IR 
and incidence of CKD, as well as between HOMA-IR 
and incidence of CKD using the data from a large com-
munity-based prospective cohort with a 14-year follow-
up. Our results suggest that there was no significant 
difference in the predictive abilities of METS-IR and 
HOMA-IR for CKD prevalence at baseline. Consider-
ing the comparable predictive abilities of METS-IR and 
HOMA-IR for CKD prevalence, our findings suggest that 
it may be more practical to use lower cut-off values of 1.3 
for HOMA-IR and 35.5 for METS-IR in clinical settings, 
rather than the widely accepted cut-off value of 2.5 for 
defining IR.

Our results showed that, contrastingly, METS-IR had a 
higher predictive ability for CKD incidence compared to 
HOMA-IR (Heagerty’s iAUC: 0.775 vs. 0.767). Even after 
the subgroup analysis of potential risk factors for CKD 
incidence, METS-IR remained a better predictor. Fur-
thermore, the combination of both indices did not signif-
icantly enhance the predictive power of CKD incidence 
compared with using METS-IR alone. 

There could be several reasons for the superior pre-
dictive ability of METS-IR over HOMA-IR for CKD 

incidence. One possible explanation is that METS-IR is 
better at describing peripheral IR compared to HOMA-
IR  [11]. CKD could be more closely associated with 
peripheral IR than hepatic IR. This is because post-recep-
tor signal defects, such as reduced PI3K/Akt activity in 
skeletal muscle and adipose tissue, are recognized as 
the primary cause of insulin resistance in patients with 
CKD  [7, 25]. Previous studies have demonstrated that 
dysfunction in the PI3K/Akt signaling pathway may lead 
to the inhibition of anti-lipolytic function, a rise in free 
fatty acid release, elevation in serum TG levels, and the 
onset of ectopic fat deposition, ultimately leading to lipo-
toxicity and IR [26].

Second, the superiority of METS-IR is its effective-
ness as a screening and predictive tool for diseases 
related to metabolic syndrome  [27, 28]. Metabolic syn-
drome is closely linked to CKD, as the kidney is a highly 
sensitive target organ for metabolic syndrome  [29]. 
Numerous studies have provided significant evidence 
linking IR and chronic inflammation to metabolic syn-
drome, which can lead to anomalies in lipid and glucose 
metabolism [30–32].

Third, METS-IR includes BMI, which can provide valu-
able insights into the nutritional status of individuals 

Table 4  Comparison of the predictive power for CKD incidence between METS-IR and HOMA-IR using time-dependent receiver 
operating characteristics curves analysis

METS-IR metabolic score for insulin resistance, HOMA-IR homeostatic model assessment for insulin resistance, iAUC​ integrated area under the receiver operating 
characteristic curve, AUC​ area under the receiver operating characteristic curve. All values were adjusted for age

Harrell’s 
C-index

Heagerty’s 
iAUC​

Heagerty’s 
incident/
dynamic 
AUC 
(2 years)

Heagerty’s 
incident/
dynamic 
AUC 
(4 years)

Heagerty’s 
incident/
dynamic 
AUC 
(6 years)

Heagerty’s 
incident/
dynamic 
AUC 
(8 years)

Heagerty’s 
incident/
dynamic 
AUC 
(10 years)

Heagerty’s 
incident/
dynamic 
AUC 
(12 years)

Heagerty’s 
incident/
dynamic AUC 
(14 years)

METS-IR, (1) 0.772 (0.760, 
0.784)

0.775 (0.750, 
0.799)

0.769 (0.742, 
0.795)

0.793 (0.777, 
0.810)

0.798 (0.780, 
0.814)

0.780 (0.763, 
0.797)

0.743 (0.721, 
0.766)

0.745 (0.723, 
0.767)

0.741 (0.707, 
0.776)

HOMA-IR, (2) 0.762 (0.750, 
0.774)

0.767 (0.742, 
0.791)

0.740 (0.711, 
0.766)

0.781 (0.763, 
0.798)

0.788 (0.769, 
0.805)

0.776 (0.757, 
0.793)

0.743 (0.719, 
0.766)

0.740 (0.717, 
0.764)

0.737 (0.704, 
0.771)

METS-
IR + HOMA-
IR, (3)

0.773 (0.761, 
0.784)

0.776 (0.752, 
0.800)

0.768 (0.739, 
0.795)

0.794 (0.778, 
0.810)

0.798 (0.780, 
0.814)

0.780 (0.763, 
0.798)

0.744 (0.721, 
0.766)

0.746 (0.724, 
0.768)

0.742 (0.708, 
0.776)

Difference 
(1)–(2)

0.010 (0.006, 
0.014)

0.008 (0.001, 
0.016)

0.029 (0.019, 
0.041)

0.013 (0.007, 
0.019)

0.010 (0.004, 
0.016)

0.004 (0.001, 
0.010)

− 0.000
(− 0.007, 
0.007)

0.005
(− 0.003, 
0.013)

0.003 (− 0.008, 
0.014)

Difference 
(1)–(3)

− 0.000 
(− 0.001, 
0.000)

− 0.001 
(− 0.003, 
0.000)

0.002 
(− 0.000, 
0.004)

− 0.001 
(− 0.003, 
0.001)

− 0.000 
(− 0.002, 
0.001)

− 0.000 
(− 0.002, 
0.001)

− 0.001 
(− 0.003, 
0.001)

− 0.001 
(− 0.004, 
0.001)

− 0.001 
(− 0.004, 
0.001)

Difference 
(2)–(3)

− 0.010 
(− 0.014, 
− 0.007)

− 0.009 
(− 0.018, 
− 0.002)

− 0.028 
(− 0.039, 
− 0.018)

− 0.014 
(− 0.020, 
− 0.008)

− 0.010 
(− 0.017, 
− 0.005)

− 0.005 
(− 0.010, 
0.000)

− 0.000 
(− 0.007, 
0.005)

− 0.006 
(− 0.014, 
0.002)

− 0.004 
(− 0.015, 
0.007)

P-value: (1) 
vs. (2)

 < 0.001 0.015  < 0.001  < 0.001  < 0.001 0.035 0.532 0.135 0.314

P-value: (1) 
vs. (3)

0.507 0.112 0.973 0.078 0.190 0.367 0.249 0.097 0.152

P-value: (2) 
vs. (3)

 < 0.001 0.003  < 0.001  < 0.001  < 0.001 0.047 0.444 0.104 0.245



Page 8 of 11Yoon et al. Diabetology & Metabolic Syndrome          (2023) 15:230 

with CKD. Given that many patients with CKD are 
affected by protein-energy malnutrition, they may pre-
sent with a micro-inflammatory state, low BMI, progres-
sive skeletal muscle wasting, and insufficient nutritional 
and caloric intake [33]. Studies have indicated that indi-
viduals with CKD frequently suffer from anorexia, lead-
ing to a decrease in daily food intake, which can result in 
malnutrition and reduced plasma albumin levels, nega-
tively impacting muscle protein synthesis and metabo-
lism  [34].  Therefore, METS-IR is deemed to be a more 
reliable predictor of CKD than HOMA-IR, since it con-
sists of three direct components of metabolic syndrome 
(glucose, TG, and HDL-C levels) and one indirect com-
ponent (BMI). A study conducted among the Chinese 

population demonstrated that METS-IR is linked to CKD 
and albuminuria. For each 1-unit increase in METS-IR, 
the risk of both CKD and albuminuria rose by 2%. It has 
also been reported that the higher the METS-IR, the 
higher the risk of CKD (odds ratio (OR): 1.02, 95% CI 
1.01–1.03) [35].

Fourth, METS-IR reflects the impact of chronic inflam-
mation on IR in individuals with CKD. In the early stages 
of CKD, patients typically have elevated levels of circu-
lating inflammatory cytokines, such as tissue necrosis 
factor alpha (TNF-α), interleukin-6, interferon gamma, 
and lipopolysaccharide. These circulating inflammatory 
cytokines are produced by various organs in the body, 
including the kidneys, adipocytes, liver, or muscles [36, 

Fig. 3  Forest plot showing the predictive power for incident chronic kidney disease by subgroups according to sex and diabetes mellitus, 
hypertension, smoking, and obesity status. During the 14 year follow-up period, Heagerty’s integrated AUC was used as time-dependent AUC 
with an unadjusted survival analysis framework approach. A bootstrapping method to calculate the differences and 95% CI of Heagerty’s integrated 
AUC between the METS-IR and HOMA-IR. DM diabetes mellitus, HTN hypertension, METS-IR metabolic score for insulin resistance, HOMA-IR 
homeostatic model assessment for insulin resistance, AUC​ area under the receiver operating characteristic curve, CI confidence interval
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37]. The activation of p44/42 kinase by TNF-α suppresses 
early insulin receptor signaling, which disrupts insulin’s 
antilipolytic function and triggers the production of free 
fatty acids through lipolysis in adipose tissues, leading 
to increased serum TG levels [38]. Additionally, HDL-C 
suppresses the production of several pro-inflammatory 
cytokines and chemokines, and reduces the expression 
of adhesion molecules, demonstrating its anti-inflamma-
tory properties  [39].  Therefore, METS-IR is considered 
to be a better indicator of chronic inflammation than 
HOMA-IR.

The final possible explanation for the superior predic-
tive power of METS-IR over HOMA-IR is that Koreans 
typically have a smaller pancreatic volume and higher 
pancreatic fat content than their Western counterparts 
with similar BMIs and body fat indices; this can result in 
reduced pancreatic secretions. Therefore, using HOMA-
IR may underestimate IR in Koreans [40].

Our study revealed an interesting finding that the 
predictive power of both METS-IR and HOMA-IR for 
CKD incidence increased until year 8 of follow-up, but 
decreased after year 10, leading to a similar predictive 
power. This suggests that factors other than IR may affect 
CKD development over time. One possible factor is the 
function of pancreatic beta cells, which have been shown 
to be impaired without a change in pancreatic beta cell 
mass in patients with CKD. Furthermore, beta cell dys-
function alone may be enough to cause glucose intoler-
ance [41]. Moreover, Koreans are known to have a genetic 
trait that lowers their insulin secretion compared to their 
Western counterparts [42]. Therefore, in the presence of 
IR, beta cells typically increase insulin secretion several-
fold as a compensatory response [43]. However, Koreans 
are often unable to increase pancreatic insulin secretion 
sufficiently, regardless of obesity [44]. Second, the causes 
of IR in CKD are complex and can be influenced by mul-
tiple factors. Various risk factors, such as physical inac-
tivity, oxidative stress, vitamin D deficiency, metabolic 
acidosis, anemia, and microbial toxins, may contribute to 
IR in CKD. Additionally, the impact of these factors on 
patients with CKD may vary over time. [4] For example, 
a study has shown that in patients with CKD, vitamin D 
deficiency can inhibit the secretion of insulin in response 
to glucose stimulation. Additionally, the same study 
found that vitamin D supplementation can raise insu-
lin levels in  vivo [45]. Furthermore, several risk factors, 
such as autoimmune diseases, genetic disorders, environ-
mental pollution, and increased prevalence of DM and 
HTN, have been identified as important contributors to 
CKD [46–49]. Further studies are required to identify the 
precise molecular mechanisms responsible for the patho-
genesis of IR in CKD and investigate other high-risk fac-
tors to predict CKD.

HOMA-IR has been validated and is a useful sur-
rogate index to measure IR in clinical application; 
however, the serum insulin is not a routine labora-
tory measurement in usual clinical settings. Therefore, 
potential alternative indicators of IR, such as triglyc-
eride-glucose (TyG) index, have also been studied and 
validated. In the present study, the AUC for HOMA-
IR and TyG were not significantly different at base-
line (p for AUC comparison = 0.693), and the AUC for 
HOMA-IR and TyG were also not significantly differ-
ent at baseline (p for AUC comparison = 0.382) (Addi-
tional file 1: Figure S1). Interestingly, Harrell’s C index 
for TyG was significantly greater than that of HOMA-
IR, but there was no significant difference in Harrell’s 
C index between METS-IR and TyG. Additionally, 
Heagerty’s iAUC for TyG was significantly higher than 
that of HOMA-IR (p = 0.007); however, Heagerty’s 
iAUC for METS-IR was significantly higher than that of 
TyG (p = 0.011) (Additional file 1: Tables S1, S2).

This study had some limitations. Firstly, the study 
population was limited to Koreans; therefore, the find-
ings may not be applicable to other ethnic groups. 
Second, since we used metabolic parameters and 
anthropometric measurements which were measured 
in a baseline survey, changes in METS-IR and HOMA-
IR during the follow-up period could not be considered. 
Despite these weaknesses, to the best of our knowledge, 
this study is the first to investigate the effect of METS-
IR and HOMA-IR on CKD incidence using large-scale 
population-based data.

In the present study, we found that both METS-IR 
and HOMA-IR have a high predictive power for CKD 
development, but METS-IR was superior to HOMA-IR. 
Given its convenience and economic feasibility com-
pared to HOMA-IR, METS-IR could be an effective 
tool for early detection and prevention of CKD in the 
Korean population.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13098-​023-​01214-7.

Additional file 1: Figure S1. Comparison of predictive power for 
prevalent chronic kidney disease of metabolic score for insulin resistance, 
homeostasis model assessment, and triglyceride –glucose index  for 
insulin resistance. A comparison was made between the predictive pow‑
ers of METS-IR and HOMA-IR for prevalent CKD in the 9261 participants 
at baseline using area under the receiver operating characteristic curves. 
The cut-off values for such prediction were determined using the Youden 
index. ROC receiver operating characteristic, CKD chronic kidney disease, 
METS-IR metabolic score for insulin resistance, HOMA-IR homeostatic 
assessment model for insulin resistance, TyG triglyceride-glucose index, 
AUC area under the receiver operating characteristic curve, PPV positive 
predictive value, NPV negative predictive value. Table S1. Comparison 
of the predictive power for CKD incidence between HOMA-IR and TyG 
using time-dependent receiver operating characteristics curves analysis. 
Table S2. Comparison of the predictive power for CKD incidence between 

https://doi.org/10.1186/s13098-023-01214-7
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METS-IR and TyG using time-dependent receiver operating characteristics 
curves analysis.
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