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Vitamin D improves the antidiabetic 
effectiveness of aerobic training via modulation 
of Akt, PEPCK, and G6Pase expression
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Abstract 

Background  Although the effect of Vitamin D Supplementation (Vit D) on several chronic diseases has been well 
conceded, its role in diabetes remains ambiguous. The present study investigated the interactive effects of Aerobic 
Training (AT) and different Vit D doses on Protein Kinase B (Akt), Phosphoenolpyruvate Carboxylase (PEPCK), and Glu-
cose-6-Phosphatase (G6Pase) protein expressions in hepatocytes of type-2 diabetic rats.

Methods  Fifty-six male Wistar rats were divided into 2 groups SHAM (non-diabetic control; n = 8), and diabetic 
(n = 48). Then, diabetic rats were divided into six groups: AT with high doses of Vit D (D + AT + HD), AT with moder-
ate doses of Vit D (D + AT + MD), high doses of Vit D (D + HD), moderate doses of Vit D (D + MD), AT receiving vehi-
cle (sesame oil; D + AT + oil), and control (oil-receiving). D + AT + HD and D + HD groups received 10,000 IU of Vit D; 
while D + AT + MD and D + MD groups receive 5000 IU of Vit D once a week by injection; D + AT + oil and SHAM groups 
received sesame oil. Diabetes was induced via intraperitoneal (IP) injection of streptozotocin (50 mg/kg body weight). 
After 2 months of intervention, serum insulin, glucose, and visceral fat were measured; protein expressions of Akt, 
PEPCK, and G6Pase were assessed by western blotting. The paired t-test, one-way analysis of variance (One-Way 
ANOVA), and the Tukey post hoc test were used at the signification level of P < 0.05.

Results  Our data indicate that the diabeticization of rats increased the level of insulin, glucose, and PEPCK 
and G6Pase protein expressions and decreased the expression of the Akt (P < 0.05 for all variables). Combined 
AT and moderate or high Vit D significantly reduced body weight (P = 0.001; P = 0.001), body mass index (P = 0.001; 
P = 0.002), food intake (P = 0.001; P = 0.001) comparing the pre-test with the post-test, respectively. Also, AT and either 
high or moderate Vit D alone therapies lead to the improvement of the metabolic state, however, their combination 
had a more significant effect on the treatment of type 2 diabetes.

Conclusions  Findings from the present study suggested that combined Vit D supplementation and AT successfully 
improve liver function and attenuate insulin resistance via upregulating Akt and downregulating PEPCK and G6Pase 
expressions, compared with monotherapy.
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Introduction
Type 2 Diabetes mellitus (T2DM) is a chronic metabolic 
disease and the most common type of diabetes, being 
primarily identified by increased blood glucose, and insu-
lin resistance [1], with decreased age of onset in recent 
years, up to 366 million individuals are expected to suffer 
from T2DM by 2030 [2]. Several lifestyle interventions 
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are used for the management of blood glucose levels in 
T2DM [3]. Also, increased liver gluconeogenesis has 
been confirmed as a primary pathological phenomenon, 
often representing abnormal glucose metabolism in the 
liver [4].

Glucose-6-Phosphatase (G6Pase) and Phosphoe-
nolpyruvate Carboxylase (PEPCK) are two fundamental 
liver enzymes converting non‑sugar substances into glu-
cose [4, 5], and their abnormal expression is closely asso-
ciated with enhanced gluconeogenesis, which is referred 
as a marker of T2DM [6]. Hepatocyte gluconeogenesis 
could be regulated under normal insulin signaling by 
both reducing glucose output and increasing peripheral 
tissue glucose uptake which is disturbed in T2DM [7, 8]. 
Therefore, hepatic insulin resistance is a substantial con-
tributor to fasting hyperglycemia in type 2 diabetes [8]. 
Also, the increased circulating pancreatic insulin inhib-
its hepatic glucose output via activating the serine/thre-
onine-Protein Kinase B (Akt) during feeding [9]. Based 
on these studies, PEPCK and G6Pase protein expressions 
regulate Akt activity [9, 10]. It has been recently reported 
that PEPCK and G6Pase protein expressions decrease 
insulin sensitivity via potentiating insulin-mediated sup-
pression of the gluconeogenic program, through Akt 
phosphorylation [4].

Exercise Training is a major lifestyle therapy in the 
treatment of type 2 diabetes [11]. Both the acute and 
persistent effects of Aerobic Training (AT) on glucose 
disposal and uptake have crucial implications for T2DM 
patients in terms of transient regulation of glucose home-
ostasis and chronic metabolic control [12]. Increased 
activation and/or expression of fundamental proteins 
that regulate glucose metabolism might be among the 
molecular mechanisms associated with enhanced insu-
lin following AT [13]. Many studies have demonstrated 
improved insulin signaling in response to AT in the 
hepatic tissue [14, 15]; however, the underlying exercise-
mediated mechanisms for increased liver insulin sensitiv-
ity are not well studied.

Vitamin D (Vit D) supplementation is believed to be 
linked with gene polymorphism that impairs glucose 
metabolism [16, 17]. A recent study reported no con-
tribution between extra Vit D supplementation and the 
prevention of diabetes [18], while some studies suggest 
that Vit D, as adjuvant therapy, can effectively improve 
insulin sensitivity and might serve anti‑gluconeogenesis 
properties in obesity-related diseases [17]. However, lim-
ited studies to date have investigated whether the protec-
tive mechanism of Vit D on diabetes is associated with 
hepatocyte gluconeogenesis and the regulation of gluco-
neogenesis‑related protein expression. Our recent study 
in elderly women with Vit D deficiency and NAFLD 
showed significantly reduced anthropometric indices, 

liver enzymes, and glycemic indices [19]. Hoseini et  al. 
[20] investigated the interactive effect of AT and differ-
ent doses of Vit D in female Wistar rats introducing AT 
with high-dose Vit D supplementation as a more favora-
ble method for reducing weight and visceral fat in female 
Wistar rats with metabolic syndrome.

Therefore, finding interventions with anti‑insulin 
resistance and anti-gluconeogenic properties to target 
Akt, PEPCK, and G6Pase may be useful for the treatment 
of T2DM. Thus, we hypothesized that combination or 
monotherapy of AT and Vit D might be useful in improv-
ing glycemic indices, and the protein expression of Akt, 
PEPCK, and G6Pase in liver tissue of streptozotocin-
induced diabetic rats.

Materials
Animal preparation
In this experimental study, fifty-six 10–12-week male 
Wistar rats were obtained from the Laboratory Animal 
Care Center of Medical Sciences University of Kerman-
shah and then were randomly assigned into two groups; 
non-diabetic healthy control (SHAM; n = 8) and diabetic 
(D; n = 48) (Fig. 1). The rats in the diabetic groups (n = 48) 
were then subdivided into six groups AT with high 
(D + AT + HD), and moderate (D + AT + MD) Vit D, high 
(D + HD), and moderate (D + MD) vitamin, AT receiv-
ing vehicle (sesame oil; D + AT + oil), and diabetic con-
trol (oil-receiving; D + C) groups. In order to determine 
the sample size, based on previous research, a moderate 
effect size of 0.5, a power level of 0.8, and a significance 
level of 0.05, with an estimated standard deviation of 1.5, 
and seven-group design with an equal allocation ratio 
was used suggesting a total sample size of 48 rats.

After 2  weeks of adaptation to the new environment, 
rats in the diabetic groups were fed High-Fat Diet in the 
form of pellets [HFD; a mixture of standard mouse food 
powder (365 mg/kg), yeast powder (1 mg/kg), mixed vita-
mins and minerals (60  mg/kg), sheep fat (310  mg/kg), 
chloride Sodium (1  mg/kg), and DL-methionine (3  mg/
kg) (purchased from Beh-Parvar Company)] to induce 
obesity for 2  weeks [21, 22]. Diabetes was induced in 
rats by injecting nicotinamide solution (110 mg/kg body 
weight) and streptozotocin solution (50  mg/kg body 
weight) dissolved in citrate buffer (pH = 4.5) after weight 
increase (above 300  g). Diabetes (glucose levels above 
200 mg/dL) was confirmed by measuring tail vein blood 
using a glucometer (Glucotrend 2, Roche Germany) after 
2  weeks [23]. Animals received no insulin treatment 
throughout the study.

Rats were kept under a 12:12  h dark–light cycle, at 
a temperature of 21 ± 2  °C, and with a humidity level of 
45–55%. They were housed in transparent polycarbon-
ate shelves and provided with standard mouse food and 
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water without any restrictions. All stages of the study 
were performed following the guidelines of the Ethics 
Committee of the Razi University of Kermanshah (IR.
RAZI.REC.1401.065). All guidelines of laboratory animal 
studies were considered.

Interventions
Vitamin D supplementation
The vitamin D receptor groups were divided into two 
protocols for the administration of vitamin D supple-
ments (Table  1). The D + AT + HD and D + HD groups 
received a high dose of 10,000  IU/kg of vitamin D sup-
plement weekly, while the D + AT + MD and D + MD 
groups received a moderate dose of 5000  IU/kg of vita-
min D supplement weekly. It is worth noting that in both 
groups, almost 100  IU of vitamin D was derived from 
food sources. In addition to the oral supplementation, 
rats also received a weekly injection of vitamin D mixed 
with sesame oil. This injection served as an additional 
source of vitamin D, contributing to the overall intake of 
the participants. The utilization of sesame oil as a carrier 
for the injection ensured the stability and proper absorp-
tion of the vitamin D supplement [24].

Aerobic training
During the experimental sessions, each session began 
and ended with a 5-min warm-up and cool-down, 

respectively, at a moderate speed ranging from 5 to 10 m/
min [25, 26]. The rats participated in aerobic training 
(AT) on a treadmill, 5 days a week over a duration of eight 
weeks. The training regimen commenced with a 15-min 
session at a speed of 10  m/min, gradually increasing to 
a 30-min session at a speed of 25 m/min, all performed 
on a treadmill set at a slope of 0 degrees. It is notewor-
thy that the running speed served as an indicator of the 
intensity of the aerobic training, with a range of 20 to 
25 m/min considered as an average aerobic activity. This 
intensity level is estimated to be equivalent to approxi-
mately 70–75% of the maximum oxygen consumption 
[25, 27].

Body weight, body mass index, and food intake
Body weight (using a scale; Sartorius, Germany), Body 
length (using a tape measure; nose-to-anus), Body Mass 
Index (BMI), and food intake were recorded weakly 
between 8 and 10 AM. Food Intake (FI) was measured 
by subtracting the weight of the uneaten from the total 
given food [20].

Blood sampling
Forty-eight hours after the last training session, rats 
were anesthetized via intraperitoneal injection of xyla-
zine (5  mg/kg) and ketamine (50  mg/kg) [28]. After 
ensuring full anesthesia, blood samples were taken 

Fig. 1  Flow chart of the study. D + AT + HD: diabetic + aerobic training + high dose of vitamin D; D + AT + MD: diabetic + aerobic training + moderate 
dose of vitamin D; HD: diabetic + high dose of vitamin D; MD: diabetic + moderate dose of vitamin D; D + AT + oil: diabetic + aerobic 
training + sesame oil; D + C: diabetic + sesame oil; SHAM: non-diabetic control

Table 1  Numerical representation of the protocol in different weeks

Week Acquaintance 1st 2nd 3rd 4th 5th 6th 7th 8th

Exercise duration (min) 5 15 15 20 20 25 25 30 30

Rolling speed (m/min) 10 10 10 15 15 20 20 25 25
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by exposing the vena cava following the dissection of 
the abdominal cavity. The supernatant, designated as 
serum, was used to measure glucose, insulin, and serum 
25(OH)D concentration after centrifuging the blood 
samples for 10  min at 4000  g. Serum insulin and glu-
cose concentrations were determined using a rat insulin 
ELISA kit (DRG, Springfield Township, NJ, USA; intra-
assay coefficient of variation = 1.62% and sensitivity of 
1.76  mg/dL) and the colorimetric method (GOD-PAP, 
glucose oxidase aminoantipyrine; Pars Azmoun, Teh-
ran, Iran), respectively. Homeostatic model assessment 
of insulin resistance (HOMA-IR) was calculated using 
the following equation [33]:

A rat 25(OH)D enzyme-linked immunosorbent assay 
(ELISA) kit (Immunodiagnostics system Ltd, Boldon, 
UK) was used to measure serum 25(OH)D concentra-
tion with an intraassay coefficient of variation and sen-
sitivity of the method equal to 1.63% and 1.33  mg/dL, 
respectively.

Liver isolation, immunoprecipitation, and immunoblotting
The hepatic tissue was isolated, minced, and homog-
enized instantly in extraction buffer (containing 100 
sodium fluoride, 100 sodium pyrophosphate, 10 
sodium vanadate, 10 EDTA, 0.1  mg of aprotinin/mL, 
and 2 PMSF; pH 7.4, mM; 1% Triton-X 100, 100 Tris) 
using a Polytron PTA 20S generator (maximum speed, 
48-degree Celsius, 30  s; model PT 10/35; Brinkman 
Instruments, Westbury, NY). First, the homogenized 
tissue was centrifuged for 40  min at 11,000  rpm and 
48C to remove insoluble material. The tissue super-
natants were used for immunoprecipitation (contain-
ing 2.0  mg total protein) with antibodies against Akt 
at 48C overnight, followed by SDS–PAGE, transferred 
to nitrocellulose membranes, and blotted with PEPCK, 
and G6Pase antibodies. The immunoblotting experi-
ments were performed by separating the sample protein 
from150 mg liver protein extracts using SDS–PAGE, 
transferring to nitrocellulose membranes, and blotting 
with anti-Akt, anti-PEPCK, and anti-G6Pase (Santa 
Cruz Biotechnology, Inc., Santa Cruz, CA). Protein 
denaturation was done by boiling in Laemmli buffer in 
both immunoblotting [100  mM dithiothreitol (DTT)] 
and immunoprecipitation (50  mM DTT) experiments 
(Laemmli1970). A chemioluminescence kit was used 
to label specific bands (Sigma-Aldrich, St Louis, MO). 
Band intensities were visualized by X-ray film exposure 
of the membranes and quantified by optical densitom-
etry (Scion Image Software; ScionCorp, Frederick, MD) 
[29].

(

fasting insulin[mU/mL)× fasting glucose[mmol/L]/22, 5
)

Statistical analysis
All data were expressed as mean ± SD. The Shapiro–Wilk 
was used to check the normality of data distribution, 
paired t-test analyzed the paired data to analyze paired 
data of body weight, BMI, and FI and one-way ANOVA 
followed by a Tukey test was used to compare between 
groups at significance level P < 0.05 using SPSS version 
26.

Results
Table  2 shows the alteration of body weight, BMI, FI, 
and in both diabetic rats (n = 48) and SHAM (n = 8). Sig-
nificant differences were observed in body weight, BMI, 
FI, and between D and SHAM at the beginning and 
after 8 weeks of intervention. Body weight, BMI, and FI 
increased significantly in SHAM, while they decreased 
significantly in the D + AT + HD, D + AT + MD, 
D + AT + oil, D + HD, and D + MD groups at the end of 
the study compared with the beginning (P < 0.01) with 
the highest reduction in D + AT + HD (Table 2).

As Table 3 shows, there was a significant difference in 
insulin, glucose, HOMA-IR, and serum 25-hydroxyvi-
tamin D between the diabetic and SHAM groups. Fur-
thermore, there were significant differences in insulin, 
glucose, and HOMA-IR between the diabetic groups, 
with the lowest level observed in the D + AT + HD group 
and the highest level observed in the D + C group. The 
results also indicate a statistically significant differ-
ence in serum 25-hydroxyvitamin D between the dia-
betic groups, except for the D + HD and D + MD groups 
(P = 0.189). The D + AT + HD group had the highest level 
of 25-hydroxyvitamin D, while the D + C group had the 
lowest level (Table 3).

Furthermore, the D + AT + HD, D + AT + MD, D + HD, 
D + MD, and D + AT + oil groups showed significantly 
higher levels of serum 25-hydroxyvitamin D compared to 
the D + C group (P < 0.05 for all three variables) (Table 3).

The results of protein expression of Akt, PEPCK, and 
G6Pase are shown in Figs. 2, 3, and 4. The protein expres-
sion results for Akt, PEPCK, and G6Pase are depicted 
in Figs.  2, 3, and 4. There were significant differences 
observed in the protein expression of Akt, PEPCK, and 
G6Pase between the diabetic groups and the SHAM 
group. One-way ANOVA analysis also revealed signifi-
cant differences in the protein expression of Akt, PEPCK, 
and G6Pase among the diabetic groups. Furthermore, the 
groups D + AT + HD, D + AT + MD, D + HD, D + MD, and 
D + AT + oil showed an upregulation of Akt and a down-
regulation of PEPCK and G6Pase compared to the D + C 
group (Figs. 2, 3, 4).  

Based on the results, D + AT + HD exhibited a more 
significant upregulation of Akt (p = 0.024, p = 0.016, 
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p = 0.001, and p = 0.001) and a downregulation of PEPCK 
(p = 0.029, p = 0.021, p = 0.001, and p = 0.001) and 
G6Pase (p = 0.019, p = 0.015, p = 0.002, and p = 0.001) 
compared to D + AT + MD, D + AT + oil, D + HD, and 
D + MD, respectively. However, the differences between 
D + AT + MD and D + AT + oil in terms of Akt upregu-
lation and PEPCK and G6Pase downregulation were 
not statistically significant. Additionally, D + AT + MD 
induced a more significant upregulation of Akt (p = 0.001 
and p = 0.001) and a downregulation of PEPCK (p = 0.001 
and p = 0.001) and G6Pase (p = 0.002 and p = 0.001) com-
pared to D + HD and D + MD, respectively.

Moreover, significant differences were observed in the 
protein expression of Akt, PEPCK, and G6Pase between 
D + HD and D + MD (P < 0.05 for all three variables).

Discussion
This study investigated the effects of aerobic train-
ing and different doses of Vitamin D supplementation 
on body composition, glycemic control, and protein 
expression of key gluconeogenic proteins in streptozo-
tocin (STZ)-induced diabetic rats. The results of this 
trial demonstrated the beneficial effects of an 8-week 
aerobic training (AT) with high or moderate doses of 

Vitamin D supplementation on improving body com-
position, fasting insulin (FI) levels, insulin metabolism, 
and the expression of Akt, PEPCK, and G6Pase in STZ-
induced diabetic rats.

In line with previous studies [30, 31], all diabetic rats 
showed symptoms of type 2 diabetes mellitus (T2DM) 
such as weight gain and visceral fat accumulation due to 
hyperglycemia. However, this study found that 8 weeks 
of high or moderate Vitamin D supplementation, com-
bined with AT, resulted in significant decreases in 
body weight, BMI, and FI in rats with T2DM. Impor-
tantly, these reductions were more significant when 
combining Vitamin D with AT compared to separate 
interventions. This suggests that adequate Vitamin D 
is crucial to achieving the beneficial effects of AT on 
weight loss. Consistent with our results, other studies 
have reported attenuated body weight, BMI, and FI fol-
lowing Vitamin D supplementation [32, 33]. Vitamin D 
supplementation may alter body weight by improving 
lipid metabolism through various mechanisms, such as 
inhibiting parathyroid hormone (PTH) secretion [34], 
altering lipoprotein lipase activity [35], suppressing the 
expression of uncoupling proteins in brown adipocytes 
[36], and affecting resting energy expenditure (REE) 

Table 2  Comparison of mean ± SD of body weight, BMI, FI and WC before and after intervention

Data analysis was done by paired t-test, and the analysis of one-way analysis of variance test followed by post hoc Tukey’s test

BMI: body mass index; FI: food intake; D + AT + HD: diabetic + aerobic training + high dose of vitamin D; D + AT + MD: diabetic + aerobic training + moderate dose 
of vitamin D; HD: Diabetic + High Dose Of Vitamin D; MD: diabetic + moderate dose of vitamin D; D + AT + oil: diabetic + aerobic training + sesame oil; D + C: 
diabetic + sesame oil; SHAM: non-diabetic control

The mean values followed by different letters (A, B, C, D, E, F, and G) mean significantly different at the 0.05 level (p < 0.05). The values followed by the same letter are 
not significantly different. Dissimilar letters represent a significant difference between the groups
† P: Statistical analysis was done by paired sample t-test

*Significantly different in comparison pre and post-within the groups
¥ Significantly different comparing Δ between groups
a P-value: Statistical analysis was done by one-way analysis test

Variables D + AT + HD D + AT + MD D + HD D + MD D + AT + oil D + C SHAM P-valuea

Body weight (g)

 Before 316.87 ± 1.72 316.87 ± 1.72 308.75 ± 2.60 306 ± 2.50 313.87 ± 1.88 313.87 ± 1.88 224.12 ± 4.96

 After 281.62 ± 2.06 286.62 ± 2.38 293.37 ± 2.55 295.62 ± 2.26 293.50 ± 2.20 293.50 ± 2.20 228.87 ± 5.27

 P† 0.001* 0.001* 0.001* 0.001* 0.001* 0.001* 0.001*

 Δ − 35.25 ± 0.462A − 30.25 ± 2.434B − 15.37 ± 0.517D − 10.37 ± 0.744E − 20.37 ± 0.517C 16.75 ± 0.464G 4.75 ± 0.460F 0.001¥

BMI (kg/m2)

 Before 0.78 ± 0.138 0.79 ± 0.061 0.83 ± 0.068 0.75 ± 0.083 0.81 ± 0.059 0.81 ± 0.105 0.60 ± 0.062

 After 0.70 ± 0.122 0.72 ± 0.056 0.79 ± 0.064 0.72 ± 0.081 0.76 ± 0.056 0.85 ± 0.111 0.61 ± 0.064

 P† 0.001* 0.002* 0.004* 0.011* 0.003* 0.004* 0.046*

 Δ − 0.08 ± 0.0158A − 0.06 ± 0.005B − 0.04 ± 0.003D − 0.02 ± 0.002E − 0.05 ± 0.004C 0.04 ± 0.006G 0.01 ± 0.001F 0.001¥

FI (g/d)

 Before 20.25 ± 2.12 18.87 ± 1.35 17.25 ± 1.48 16.75 ± 1.48 18.12 ± 2.16 19.87 ± 1.88 12.75 ± 1.66

 After 16.37 ± 1.68 15.75 ± 1.28 15.12 ± 1.24 15.12 ± 1.52 15.43 ± 2.63 22.62 ± 1.76 13.37 ± 1.50

 P† 0.001* 0.001* 0.003* 0.013* 0.002* 0.001* 0.049*

 Δ − 3.87 ± 1.246A − 3.12 ± 0.640ABCD − 2.12 ± 0.640DE − 1.62 ± 0.231E − 2.68 ± 0.883CDE 2.75 ± 0.462β 0.62 ± 0.744F 0.001¥
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in adipose tissue [37], as well as decreasing fatty acid 
absorption [38].

Additionally, AT has been shown to increase the oxida-
tion of adipose tissue [39, 40] and intramuscular triacyl-
glycerols by increasing the catecholamine response [41, 
42] and enhancing the ability of skeletal muscles to use 
fatty acids through increased adipose tissue and muscle 
blood flow [42, 43].

Our study found that 8-week 5000 IU/week Vitamin D 
supplementation significantly decreased insulin resist-
ance in diabetic rats compared to the control (C) group. 
This finding is consistent with a study by Hoseini et  al. 
[20], which reported that Vitamin D supplementation 
combined with AT significantly improves dyslipidemia 
and insulin resistance in ovariectomized rats. Another 
study by Hoseini et  al. [20] suggested that 8-week exer-
cise with 5000  IU/week Vitamin D supplementation 
reduced insulin levels and HOMA-IR significantly in 
Vitamin D-deficient women with fatty liver [19]. How-
ever, there are also studies with contradictory results 
[20]. For example, Garg et al. (2015) reported no signifi-
cant effect on insulin secretion or resistance following 
6  months of 4000  IU/day Vitamin D supplementation 

in Vitamin D-deficient women with polycystic ovary 
syndrome (PCOS) [44]. Insulin plays a critical role in 
regulating triglyceride and hepatic glucose production, 
stimulating glucose uptake in muscles, and inhibiting 
adipose tissue lipolysis and muscle proteolysis mecha-
nisms. Insulin resistance can disrupt these processes, 
leading to metabolic complications [45, 46]. Vitamin D 
may regulate insulin metabolism by stimulating a second 
messenger system, leading to increased insulin secre-
tion and sensitivity, possibly through increasing calcium 
influx and intracellular glucose within beta cells, as well 
as suppressing the release of pro-inflammatory cytokines 
[47]. Therefore, improved insulin metabolism by Vitamin 
D supplementation may decrease the risk of metabolic 
complications related to insulin resistance.

Based on the results of the present study, AT alone 
significantly decreased insulin resistance in diabetic rats 
compared to the high-dose (HD), moderate-dose (MD), 
and control (C) groups. Several molecular pathways 
could contribute to the decrease in insulin resistance 
following AT, including the upregulation of insulin-
responsive transporters and insulin signal transduction 
[48, 49]. The activation of the insulin signaling pathway 

Fig. 2  Comparison between mean ± SD of AKT protein expression 
between groups. D + AT + HD: diabetic + aerobic training + high dose 
of vitamin D; D + AT + MD: diabetic + aerobic training + moderate 
dose of vitamin D; HD: diabetic + high dose of vitamin D; MD: 
diabetic + moderate dose of vitamin D; D + AT + oil: diabetic + aerobic 
training + sesame oil; D + C: diabetic + sesame oil; SHAM: non-diabetic 
control. Values were calculated using a One-Way analysis of variance 
followed by post hoc Tukey’s test. The mean values followed 
by different letters (A, B, C, D, E, F, and G) mean significantly different 
at the 0.05 level (p < 0.05). The values followed by the same letter are 
not significantly different. Dissimilar letters represent a significant 
difference between the groups

Fig. 3  Comparison between mean ± SD of PEPCK protein expression 
between groups. D + AT + HD: diabetic + aerobic training + high dose 
of vitamin D; D + AT + MD: diabetic + aerobic training + moderate 
dose of vitamin D; HD: diabetic + high dose of vitamin D; MD: 
diabetic + moderate dose of vitamin D; D + AT + oil: diabetic + aerobic 
training + sesame oil; D + C: diabetic + sesame oil; SHAM: non-diabetic 
control. Values were calculated using a One-Way analysis of variance 
followed by post hoc Tukey’s test. The mean values followed 
by different letters (A, B, C, D, E, F, and G) mean significantly different 
at the 0.05 level (p < 0.05). The values followed by the same letter are 
not significantly different. Dissimilar letters represent a significant 
difference between the groups
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suppresses the gluconeogenic pathways [50], resulting in 
a rapid fall in hepatic glucose production. Furthermore, 
AT improves insulin sensitivity by reducing inflam-
matory cytokines and oxidative stress responses, thus 
ameliorating the pathophysiologic pathways of insulin 
resistance [51].

The major finding of this study was the upregulation of 
hepatic Akt expression, along with the downregulation 
of PEPCK and G6Pase expression, after the combina-
tion of Vitamin D supplementation, AT, and a high dose 
of Vitamin D compared to the control group. This was 
accompanied by a decrease in blood glucose concentra-
tion. Similar findings of enhanced hepatic insulin signal-
ing and inhibited PEPCK activity have been reported in 
previous studies following physical exercise in animal 
models of obesity [52] or T2DM [53, 54].

In accordance with our results, earlier studies indicated 
an increase in liver Akt mRNA [55], and a decrease in 
PEPCK, and G6Pase following AT [54, 56]. However, the 
underlying exercise-mediated mechanisms need to be 
elucidated, Akt signaling pathway regulates the expres-
sion of CREB and FoxO1 which may be associated with 
the expression of PEPCK and G6Pase [4, 57].

Although, not much is known about the effects of 
simultaneous Vit D supplementation in mediating AT 
effects on hepatic metabolic regulators. The results of the 
present study represent a possibility of the interconnec-
tion between Akt, and gluconeogenic protein expressions 
(PEPCK and G6Pase) with Vit D receptor signaling path-
ways in the regulation of metabolism. These results sug-
gest that gluconeogenic enzymes are associated with the 
improvement of hepatic insulin signaling and that exer-
cise and Vit D supplementation are effective therapies for 
controlling diabetes by targeting hepatocyte gluconeo-
genesis regulation.

Strengths and limitations
This study’s strength was using a randomized, placebo-
controlled, single-blind trial with a low dropout rate, 
measuring and controlling daily food, and evaluating the 
protein expression alterations in liver tissue of streptozo-
tocin-induced diabetic rats. There are a few limitations 
in this study. First, the evaluation of insulin resistance in 

Table 3  Comparison of mean ± SD of visceral fat, insulin, glucose, HOMA-IR, and vitamin D after the intervention among the groups

Data analysis was done by the analysis of one-way analysis of variance test followed by post hoc Tukey’s test

HOMA-IR: homeostatic model assessment for insulin resistance; Vit D: serum 25-hydroxyvitamin D; D + AT + HD: diabetic + aerobic training + high dose of vitamin D; 
D + AT + MD: diabetic + aerobic training + moderate dose of vitamin D; HD: diabetic + high dose of vitamin D; MD: diabetic + moderate dose of vitamin D; D + AT + oil: 
diabetic + aerobic training + sesame oil; D + C: diabetic + sesame oil; SHAM: non-diabetic control

The mean values followed by different letters (A, B, C, D, E, F, and G) mean significantly different at the 0.05 level (p < 0.05). The values followed by the same letter are 
not significantly different. Dissimilar letters represent a significant difference between the groups
¥ Significantly different between groups
a P-value: Statistical analysis was done by one-way analysis test

Variables D + AT + HD D + AT + MD D + HD D + MD D + AT + oil D + C SHAM P-valuea

Insulin (μU/mL) 3.33 ± 0.23F 3.51 ± 0.03E 4.52 ± 0.03C 4.90 ± 0.02B 3.81 ± 0.03D 6.21 ± 0.02A 1.66 ± 0.020G 0.001¥

Glucose (mmol/L) 173.75 ± 2.37F 214.25 ± 2.54E 240.62 ± 2.66C 266.37 ± 2.66B 233.37 ± 1.68D 292.87 ± 2.90A 121.75 ± 2.49G 0.001¥

HOMA-IR 1.43 ± 0.08F 1.86 ± 0.03E 2.68 ± 0.04C 3.22 ± 0.04B 2.19 ± 0.02D 4.49 ± 0.04A 0.49 ± 0.01G 0.001¥

Vit D (nmol/L) 143.75 ± 2.81A 125.62 ± 1.40C 140.62 ± 2.13AB 122.62 ± 2.32CD 86.37 ± 2.26F 80.12 ± 2.03G 104.62 ± 2.38E 0.001¥

Fig. 4  Comparison between mean ± SD of G6Pase protein expression 
between groups. D + AT + HD: diabetic + aerobic training + high dose 
of vitamin D; D + AT + MD: diabetic + aerobic training + moderate 
dose of vitamin D; HD: diabetic + high dose of vitamin D; MD: 
diabetic + moderate dose of vitamin D; D + AT + oil: diabetic + aerobic 
training + sesame oil; D + C: diabetic + sesame oil; SHAM: non-diabetic 
control. Values were calculated using a One-Way analysis of variance 
followed by post hoc Tukey’s test. The mean values followed 
by different letters (A, B, C, D, E, F, and G) mean significantly different 
at the 0.05 level (p < 0.05). The values followed by the same letter are 
not significantly different. Dissimilar letters represent a significant 
difference between the groups
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the current study was only based on HOMA-IR. We did 
not evaluate the hepatic glucose production, and altera-
tions of transcriptional factors such as TRB3, FoxO1, 
and PGC-1α signaling in the present study. Second, 
some of the insignificant results might be related to the 
short duration of the intervention. So, further studies are 
required with a longer duration and higher sample size to 
confirm our findings.

Conclusions
Our data provide evidence that AT and Vit D sup-
plementation improves insulin sensitivity by target-
ing hepatocyte gluconeogenesis and the regulation 
of gluconeogenesis‑related protein expression. Taken 
together, combined treatment with both AT and Vit D 
has an advantage in controlling diabetes via altering Akt, 
PEPCK, and G6Pase expression in animal models of 
T2DM. Further investigations are required to evaluate 
the effect of exercise on the selective Akt pathway inhibi-
tors and the physiological relevance of this cross-talk.
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