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Abstract
Introduction  Metabolomic signatures of type 2 diabetes mellitus (T2DM) in Tibetan Chinese population, a group 
with high diabetes burden, remain largely unclear. Identifying the serum metabolite profile of Tibetan T2DM (T-T2DM) 
individuals may provide novel insights into early T2DM diagnosis and intervention.

Methods  Hence, we conducted untargeted metabolomics analysis of plasma samples from a retrospective cohort 
study with 100 healthy controls and 100 T-T2DM patients by using liquid chromatography–mass spectrometry.

Results  The T-T2DM group had significant metabolic alterations that are distinct from known diabetes risk indicators, 
such as body mass index, fasting plasma glucose, and glycosylated hemoglobin levels. The optimal metabolite panels 
for predicting T-T2DM were selected using a tenfold cross-validation random forest classification model. Compared 
with the clinical features, the metabolite prediction model provided a better predictive value. We also analyzed the 
correlation of metabolites with clinical indices and found 10 metabolites that were independently predictive of 
T-T2DM.

Conclusion  By using the metabolites identified in this study, we may provide stable and accurate biomarkers for 
early T-T2DM warning and diagnosis. Our study also provides a rich and open-access data resource for optimizing 
T-T2DM management.
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Introduction
Diabetes mellitus (DM) is a common chronic metabolic 
disease characterized by hyperglycemia resulting from 
insulin-omission [1]. Type 2 diabetes mellitus (T2DM), 
which accounts for more than 95% of all DM cases [2], 
is an important cause of diabetic complications and the 
high mortality in individuals with DM [3, 4]. Currently, 
approximately 462 million individuals suffer from T2DM 
worldwide, and China obtained roughly 24.4% (102.9 mil-
lion) of all cases [5]. Recent surveys in China estimated 
that the overall prevalence of DM is 10.9%, and that of 
pre-DM is 35.7%. Among Tibetans, the age-standard-
ized prevalence of DM and pre-DM was 6.2% and 19.7%, 
respectively, and continues to increase rapidly [6, 7].

The Tibetan Chinese population is one of the two larg-
est human plateau-dwelling groups globally [8]. The risk 
factors of DM and the characteristics of glucose metabo-
lism in Tibetans have already been extensively reported. 
For example, DM among Tibetans is associated with a 
higher annual family income, alcohol consumption, and 
higher fasting plasma glucose (FPG) level, independent of 
age, sex, and body mass index (BMI) [9]. Tibetans tend 
to reduce fatty acid oxidation and increase glycolysis to 
decrease tissue oxygen demand, resulting in lower FPG 
levels and higher lactate and free fatty acid concentra-
tions [10]. Currently, reports regarding T2DM character-
istics among Tibetans in China remain limited.

Early detection, diagnosis, and treatment of T2DM 
are challenging. Metabolomics identifies changes in 
the metabolic profile and particular metabolic abnor-
malities, thereby a powerful technique for studying dis-
ease-relevant metabolic processes and dysregulation. 
Theoretically, liquid chromatography mass spectrometry 
(LC-MS) is the most common and ideal profiling tech-
nology used for detecting serum biomarkers [11]. Several 
prospective metabolomic investigations have identified 
numerous novel metabolites predictive of T2DM risk, 
including branched-chain amino acids (BCAAs) (e.g., 
leucine, isoleucine and valine) [12, 13], aromatic amino 
acids (phenylalanine and tyrosine) [13–15], other amino 
acids, acylcarnitines and certain lipids [16]. However, 
metabolomic signatures of incident DM among Tibet-
ans remain largely unclear, and effective and reliable bio-
markers for early T-T2DM diagnosis remain unknown. 
Considering the Tibetans’ particular glucose metabolism 
and genetic determinants of Tibetan high-altitude adap-
tation, evidence for the association of Tibetan T2DM 
(T-T2DM) with other amino acids or other types of 
metabolites is still very limited. Furthermore, insight into 
whether ethnic differences in these metabolite concentra-
tions potentially contribute to the higher risk of T2DM 
remains uncertain. Therefore, we need to determine the 
metabolite concentrations, identify the associations with 

T-T2DM, and seek to establish ideal biomarkers for the 
early and accurate diagnosis of T-T2DM.

In the present study, we aimed to perform a metabo-
lome-wide analysis of T2DM among Tibetans adults. We 
sought to reveal the clinical characteristics and metabo-
lite signatures associated with T-T2DM. We found phe-
nylalanine metabolism, phenylalanine, tyrosine and 
tryptophan biosynthesis, arachidonic acid metabolism 
as key disturbed pathways in T-T2DM. By employing 
machine learning and correlation analysis, we identified 
ten unique biomarkers and evaluated their diagnostic 
values for T-T2DM.

Research design and methods
Study design and population
In the current study, we recruited 100 patients from 
Hospital of Chengdu Office of People’s Government of 
Tibetan Autonomous Region (Hospital. C.T.) Sichuan, 
China, between 31 and 2020 and 30 October 2021. Our 
study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review 
Board for Clinical Research of Hospital. C.T. A compre-
hensive battery of surveys and a clinical assessment with 
fasting blood draw were conducted by trained, certi-
fied, and bilingual staff at in-person clinic visits from 
October 2020 to October 2021. The study was approved 
by the institutional review boards at all participating 
institutions, and all participants gave written informed 
consent. Inclusion criteria include (1) 20–75 years old; 
(2) diagnostic criteria of 2-DM (an fasting plasma glu-
cose (Glu0) ≧ 7.0mmol/l and/or a 2-h blood glucose 
(Glu120) level ≧ 11.1mmol/l and/or an haemoglobin A1c 
(HbA1c) ≧ 6.5%, all patients); (3) Blood pressure below 
140/90 mmHg; and (4) signed informed consent. Exclu-
sion criteria include (1)T1DM or other specific types 
of diabetes mellitus; (2) acute complications of DM; (3) 
complication of serious primary diseases in cardiovascu-
lar, cerebrovascular, liver, kidney, and the hematopoietic 
system as well as a tumor; (4) suffering from mental ill-
ness and unable to cooperate; (5) pregnant or lactating 
women, or those preparing for pregnancy, women in 
their menstrual period; (6) recent use of psychoactive 
drugs or hormones; and (7) those who have participated 
in other clinical trials within the past 1 month.

Healthy controls, who participated in yearly health 
screenings during the study period and had no clinical 
evidence of glaucoma or a family history of glaucoma, 
were also consecutively enrolled from Hospital. C.T. 
Exclusion criteria of healthy controls: any hematopoietic 
system disorders, any hepatobiliary diseases, any coagu-
lation abnormalities, taking medications that can affect 
blood cell components or serum biochemistry profiles, 
any systemic diseases (such as hypertension, diabetes, 
infections, systemic autoimmune diseases, and cancers), 
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or any other neurodegenerative disorders. According to 
the inclusion and exclusion criteria, a total of 100 healthy 
controls were included (Fig.  1A). Demographics and 
clinical parameters of patients with T2DM (n = 100) and 
healthy controls (n = 100) were shown in Table 1.

Figure 1B provides a detailed workflow of the metabo-
lomics study. First, we collected 200 serum samples from 
the two groups and used metabolomics to identify the 
metabolite biomarkers of T-T2DM. We then used the 
metabolites identified by differential expression analy-
ses to test machine learning models. This analysis high-
lighted potential biomarkers for clinical diagnosis and 
pathways involved in T-T2DM onset and progression.

Measurements of blood glucose and covariates
We collected information regarding gender, age, lifestyle 
factors, medical history, sociodemographic character-
istics, and family history using a standardized question-
naire [17]. Systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) and waist circumference were 
performed following standardized protocols [18]. Body 
mass index (BMI) was calculated as weight in kilograms 
divided by height in meters squared. Centralized labora-
tory tests were performed to determine plasma fasting 
glucose and hemoglobin A1c (HbA1c), and serum uric 
acid, creatinine, liver enzymes and lipids including tri-
glycerides, and total, low-density lipoprotein (LDL), and 
high-density lipoprotein (HDL) cholesterol. For T-T2DM 
participants, 2-h plasma glucose levels were also mea-
sured following a standard 75-g 2-h oral glucose toler-
ance test (OGTT).

Sample collection
Participants were asked to fast for at least 8 h before the 
examination, consume only water and necessary medi-
cations, and to refrain from smoking or physical activity 
before undergoing the fasting examination procedures. 
Venous blood samples were collected, processed, and fro-
zen (at -80 °C) on-site toward the beginning of the visit.

Serum metabolomics profiling by liquid chromatography 
mass spectrometry (LC-MS) (LC-MS)
The prepared samples were analyzed using an ultra-
performance HPLC (UHPLC) system (1290, Agilent 
Technologies) with a UPLC HSS T3 column (2.1  mm × 
100 mm, 1.8 mm, Waters) coupled to Q Exactive Focus 
(Thermo Fisher Scientific, MA, USA), via a previously 
described method with some modifications [19]. Addi-
tional details are provided in the Supplementary Mate-
rial Methods section.

Machine learning prediction on metabolomics data
For each pairwise comparison, based on the features 
selected by the differential metabolite analysis, random 

forest classification was applied by R and Bioconductor 
packages ‘random forest’ and ‘ggplot2’. The random forest 
classification (RFC) for identifying T-T2DM was trained 
on 140 randomly selected subjects (67 healthy subjects, 
73 with T-T2DM), and then tested on the remaining sub-
jects (33 healthy subjects, 27 with T-T2DM). The analysis 
was conducted with 5 repetitions of 10-fold cross-valida-
tion, using cross-validation error curves to select features 
as described elsewhere [20]. To improve the sensitivity 
of the integrated biomarker profiling (IBP) prediction 
model for T-T2DM, analysis of variance, Mean Decrease 
in Accuracy, and Gini impurity were used to rank poten-
tial biomarkers by importance [21]. The Receiver operat-
ing characteristic (ROC) curves and area under the curve 
(AUC) were calculated by R package ‘pROC’. The AUC, 
accuracy, sensitivity, specificity, and precision were used 
to evaluate the model performance. Detailed methods are 
in the Supplementary Material Methods section.

Data analysis
The clinical characteristics of patients were compared 
using the Fisher’s exact test for categorical variables and 
the Wilcoxon rank-sum test for continuous variables. 
These metabolites were annotated using the KEGG 
database (https://www.genome.jp/kegg/pathway.html), 
Human Metabolome Database (HMDB) (https://hmdb.
ca/ metabolites) and LIPID MAPS Structure Database 
(http://www.lipidmaps.org/). Principal components anal-
ysis (PCA) and Partial least squares discriminant analy-
sis (PLS-DA) were performed at metaX [22]. We applied 
univariate analysis (t-test) to calculate the statistical sig-
nificance (P-value). The metabolites with VIP > 1 and 
P-value < 0.05 and fold change ≥ 1.2 or FC ≤ 0.833 were 
considered to be differential metabolites. Clustering heat 
maps were plotted by Pheatmap package in R language. 
Volcano plots were performed by ggplot2 in R. The cor-
relation between metabolites and clinical characteristics 
were analyzed by corrplot package in R (method = pear-
son), P-value < 0.05 was considered as statistically sig-
nificant. The metabolic pathways were considered as 
enrichment by impact values, when P-value of metabolic 
pathway < 0.05, metabolic pathway was considered as sta-
tistically significant enrichment.

The variables were selected based on variable impor-
tance in the projection (VIP > 1.0) from the peak height. 
In addition to the multivariate statistical method, Stu-
dent’s t-test was also applied to measure the significance 
of each lipid. The resultant p values for each metabolite in 
all cross-comparisons were corrected by the Bonferroni 
correction. The resultant P values from ANOVA were 
further adjusted by the false discovery rate (FDR) based 
on the Hochberg-Benjamini method. Significantly altered 
variables were defined and further identified by VIP > 1.0, 
P < 0.05, and FDR < 0.05.

https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/
https://hmdb.ca/
http://www.lipidmaps.org/
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Fig. 1  Study design. (A) The flowchart of patients enrolled in this study. T1DM, type 1 diabetes mellitus; DM, diabetes mellitus; T-T2DM, Tibetan type 2 
diabetes mellitus; T-HC, Tibetan healthy controls. (B) Overview of workflow in this study. LC-MS, liquid chromatography-mass spectrometry
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Statistics
All the statistical analyses were performed by statistical 
software R (R version R-3.4.3) with corresponding pack-
ages available. P-value ≤ 0.05 (or FDR = 5% for multiple 
hypothesis testing) was used to define significance.

Result
Cohort characteristics, sample collection
Table  1 enumerates the characteristics of the Tibetan 
participants. We included 100 patients with T-T2DM (40 
females and 60 males) and 100 healthy controls (T-HC; 
50 females and 50 males). The median (interquartile 
range, IQR) age of all participants was 47 (32–54) years. 
The T-T2DM cohort aged 32–65 years old, with a BMI of 
18.20–38.97 kg/m2. Factors such as sex, BMI, low-density 
lipoprotein cholesterol level, and total cholesterol level 
were not significantly different between the T-T2DM and 
T-HC groups. The T-T2DM group was more likely to be 
hypercholesterolemic and had significantly higher tri-
glyceride levels and lower serum uric acid and creatinine 
levels than the T-HC group. The mean values for FPG 
and 2-hour oral glucose tolerance test in the T-T2DM 
group were 7.90 ± 2.08 and 9.19 ± 1.16 mmol/L, respec-
tively. Clearly, the T-T2DM group had higher levels of 

FPG and glycosylated hemoglobin (HbA1c) than the 
T-HC group.

Individual metabolites and risk of diabetes
To identify the serum metabolome features of the 
patients in the T-T2DM and T-HC groups, we gen-
erated untargeted metabolome profiles from fasting 
serum samples by means of LC-MS. Figure  2  A shows 
the median expression of 30 differentially expressed 
metabolites in the two groups. Both the principal com-
ponents analysis score plot (Fig. 2B) and orthogonal par-
tial least squares discriminant analysis (OPLS-DA model: 
R2Y(cum) = 0.88, Q2Y(cum) = 0.85, Fig.  2C), which were 
validated by permutation tests (200 permutations), 
revealed significant metabolite differences between the 
T-T2DM and T-HC groups. Overall, 1369 metabolites 
have been detected in serum. Among them, 412 (30.09%) 
significantly correlated with incident T-T2DM. Further-
more, 236 of these 412 metabolites largely included lip-
ids and lipid-like molecules (11.41%), organic acids and 
derivatives (8.74%), and organoheterocyclic compounds 
(7.77%), and 14.8% were within 6 other metabolites 
(Fig.  2D). Of these 412 significant metabolites, 32 were 
positively associated with DM risk, while the 380 remain-
ing metabolites showed an inverse association (Fig. 2E). 
To identify differentially expressed metabolites by pair-
wise comparisons, we conducted a nonparametric Wil-
cox rank-sum test on each metabolite (Supplementary 
Tables 1 and Fig. 2F). The metabolites were mainly com-
ponents of amino acid metabolism and lipid metabolism. 
The top 5 metabolites showing upregulated expression 
were glutamine-asparagine-lysine (QNK), phenylalanine-
proline-lysine (FPK), cyclo (glycyltryptophylprolylglycy
lvalylglycyl-β-hydroxytyrosyl), thymopentin and 6beta-
Naltrexol-d3. Conversely, N-methyloctan-1-amine, 
quercetin, 2-(4,4-diphenyl-1-piperidinobuta-1,3-dienyl) 
phenyl acetate, phenylalanine-proline-histidine (FPH) 
and N,N’-di[4-(2,6-dimethylmorpholino)phenyl]thiourea 
were the top 5 metabolites demonstrating downregulated 
expression.

Correlation network of differential metabolites in serum
To explore the impact of metabolite alterations on 
T-T2DM, we conducted pathway and network analy-
ses. As shown in Fig.  3A, we generated bubble plots to 
illustrate top significant pathways enriched by these 
biomarkers for each pairwise comparison. In the path-
way analyses, phenylalanine metabolism; phenylalanine, 
tyrosine, and tryptophan biosynthesis; arachidonic acid 
metabolism, and riboflavin metabolism were superior. 
Consistently, our network analyses showed many key 
metabolites linked to T-T2DM development, includ-
ing L-phenylalanine, phenylpyruvate, 2-hydroxyphen-
ylacetate, arachidonate, and acetoacetate, and they were 

Table 1  Demographic and clinical characteristics of the enrolled 
patients with T2DM (N = 100) and health controls (N = 100)
Characteristics T2DM 

(n = 100)
HC (n = 100) P value

Gender

male, % 60 (60) 50 (50) 0.155

female, % 40 (40) 50 (50)

Age (years) 51.41 ± 9.05 40.44 ± 11.26 < 0.0001

Current smoker, % 28 (28) - -

Current drinker, % 23 (23) - -

BMI (kg/m2) 25.84 ± 3.41 24.90 ± 3.83 0.069

Waist circumference, cm 94.9 ± 9.38 - -

Systolic blood pressure 
(SBP)

119.21 ± 12.37 -

Diastolic blood pressure (DBP) 77.83 ± 7.93 - -

LDL cholesterol (mmol/L) 2.63 ± 0.78 2.79 ± 0.70 0.123

Total cholesterol (mmol/L) 4.47 ± 0.92 4.61 ± 0.80 0.264

Triglycerides (mmol/L) 1.53 ± 0.76 1.31 ± 0.75 0.038

Serum uric Acid (mg/dL) 331.51 ± 69.44 369.02 ± 93.32 0.001

Serum Creatinine 
(µmol/L)

59.19 ± 12.45 64.55 ± 10.15 0.001

ALT (U/L) 33.09 ± 21.04 - -

AST (U/L) 20.69 ± 11.67 - -

GGT (U/L) 59.06 ± 54.91 -

Fasting glucose (mmol/L) 7.90 ± 2.08 5.24 ± 2.46 < 0.0001

2 h OGTT (mmol/L) 12.17 ± 3.66 - -

HbA1c (%) 10.33 ± 2.47 5.91 ± 1.07 < 0.0001
Note: values are presented as the mean ± SD or n (%). T2DM, type 2 diabetes 
mellitus. HC, health controls. BMI, Body Mass Index. AST, aspartate 
aminotransferase, ALT, alanine aminotransferase, GGT, gamma- glutamyl 
transpeptidase. OGTT, oral glucose tolerance test. HbA1c, glycated haemoglobin
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significantly altered in the T-T2DM and T-HC groups 
(Supplementary Tables 2 and Fig. 3B).

Machine learning for the pairwise predictions of T-T2DM 
from serum metabolite expression
For verifying the values of the identified metabolites in 
predicting T-T2DM status, we established the random 
forest classification (RFC) model to investigate whether 
metabolic profiling could predict DM development in 
Tibetans, independent of the primary diagnostic criteria 
of DM (Glu0, Glu120, and HbA1c). Initially, the predic-
tive performance of metabolites for T-T2DM prediction 

was examined using randomly selected participants clas-
sified into the training (n = 140) and validation datasets 
(n = 60). The area under the receiver operating character-
istics (ROC) curve (AUC) was 99.0% (95% CI: 97.4–100%, 
Fig.  4A). Then, we assessed the individual contribution 
of each feature to the classification accuracy via the ran-
dom forest variable importance analysis for each class in 
the two models by the Mean Decrease in Accuracy and 
Gini impurity, which indicates the importance of the 
feature for the classification performance. Figure  4B-C 
illustrates the relative importance of the 20 most predic-
tive metabolites. The top 5 predictive metabolites were 

Fig. 2  Detection of differentially expressed metabolites by pairwise comparison of T-T2DM. (A) Hierarchical clustering of differentially expressed metabo-
lites. The median expression levels of metabolites (n = 30) for two groups are presented in the heatmap. (B) Score plots from the PCA model derived from 
the UPLC-MS profile of serum in two groups. (C) Score plots from the OPLS-DA model from metabolic profiles of two groups. (D) Pie-chart for the clas-
sification of significant differentially expressed metabolites (n = 412) according to meta-intensity. (E) Volcano plot of significantly differentially expressed 
metabolites with marking the top 5 up and down expression differential metabolites (Red represents up-regulated, blue represents down-regulated 
metabolites). (F) Representative box plots for top up-regulated and down-regulated metabolites

 



Page 7 of 12Meng et al. Diabetology & Metabolic Syndrome          (2023) 15:146 

4-acetyl-4-(ethoxycarbonyl)heptanedioic acid, threo-
nine-histidine-cysteine (THC), (±)12(13)-DiHOME, 
N-methyloctan-1-amine, and 2-methylbutyl beta-D-glu-
copyranoside by Gini importance. Supplementary Fig. 1 
shows the paired differences in metabolite concentra-
tion between two groups. Moreover, we generated ROC 
curves from a fivefold cross-validation for all metabolites 
and successfully constructed a model containing the five 
most predictive metabolites (Fig. 4D). The model exhib-
ited an AUC of 99.9% for T-T2DM prediction (Fig. 4E). Its 
prediction performance was estimated, and the T-T2DM 
group in the training and validation sets could be more 
broadly separated than the T-HC (Fig.  4F). group. We 
also calculated the AUCs of the traditional diagnostic 
metrics (BMI, fasting glucose and HbA1c, AUC = 0.5871, 
95%CI = 0.5078–0.6664, AUC = 0.9138, 95%CI = 0.8669–
0.9607, AUC = 0.9747, 95%CI = 0.9534–0.9960, respec-
tively, Fig. 4G) and compared the prediction performance 
of T-T2DM risk factors such as age, triglycerides, serum 
uric acid, and creatinine (Fig. 4H). Together, these results 
indicated that the metabolite prediction model provided 
a better predictive value than the clinical features.

Potential biomarker panel discovery for predicting T-T2DM
Given that the diagnostic value of serum metabolites 
for T-T2DM remains unknown, we systemically ana-
lyzed correlations between top 50 predictive metabolites 
of Gini importance and the clinical parameters of each 
patient (Supplementary Table  3). Impressively, most of 
the metabolites negatively correlated with age, triglyc-
erides, FPG, and HbA1c, Meanwhile, four metabolites, 
namely, 3-(2-methylpropyl)-octahydropyrrolo[1,2-a]
pyrazine-1,4-dione, FPK, vincristine, cyclo(glycyltrypt

ophylprolylglycylvalylglycyl-β-hydroxytyrosyl) and thy-
mopentin were significantly associated with increased 
T-T2DM risk (Fig. 5A). Furthermore, the predictive abil-
ity of T-T2DM was analyzed by ROC analysis. As shown 
in Fig. 5B, the top 5 predictive metabolites of Gini impor-
tance, especially THC, (±)12(13)-DiHOME and N-meth-
yloctan-1-amine, had a stronger predictive power than 
FPG. These five metabolites were also identified as poten-
tially predictive markers for T-T2DM (Fig. 5C). We then 
assessed pairwise Pearson correlations between levels of 
these metabolites. The top 5 decreased metabolites and 
four increased metabolites showed strong mean corre-
lations (r = 0.59, Fig. 5D). Collectively, changes in serum 
metabolites mentioned above may be effective biomark-
ers for determining T-T2DM onset and progression.

Discussion
Few studies have specifically reported the clinical char-
acteristics of T2DM in Tibetan Chinese population. 
Hence, this retrospective cohort study described the 
detailed clinical features of Tibetans with T2DM in com-
parison with those of the healthy population. We found 
that the age, higher triglyceride, FPG, and HbA1c levels, 
and lower serum uric acid and creatinine levels were sig-
nificant risk factors of T-T2DM. These risk factors were 
equally likely to develop long-term cardiovascular and 
kidney diseases [23]. The association of factors such as 
age [24], hypertriglyceridemia [25], and FPG [26],and 
HbA1c levels [27] with the risk of T2DM has been 
established. However, the association of the serum uric 
acid and creatinine levels with T2DM presence remains 
undetermined. Serum uric acid has been reported to be 
negatively associated with FPG, HbA1c, and high-density 

Fig. 3  Correlation network of differential metabolites in serum. (A) KEGG analysis of significant functional pathways involved according to the dif-
ferentially expressed metabolites. (B) Network analysis based on the top 10 KEGG pathways and their differential metabolites. The edges indicate the 
correlations between metabolites and metabolites, the size of node indicates the improtance of pathway (Red nodes represents metabolites, blue nodes 
represents pathways)
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lipoprotein cholesterol [28, 29]. Other studies dem-
onstrated lower serum uric acid level in the context of 
hyperglycemia, similar to our results [30, 31, 29], In addi-
tion, reduced serum creatinine levels were significantly 
associated with increased T2DM risk [32, 33]. This asso-
ciation could be explained by hyperfiltration of glomeruli 
and ectopic accumulation of adipose tissue combined 
with low muscle mass [34–36].

Physiological changes have been identified in Tibetans 
living at high altitudes, and many studies have unveiled 
the genetic bases of these physiological changes and a 
distinct metabolic signature for this population [37]. 
Tibetans may be vulnerable to glucose intolerance, with 
polycythemia as an indication of hypoxia adaptation [38]. 
Tibetans reportedly have higher oxidative stress than the 
Han counterparts, and a higher oxidative stress is asso-
ciated with glucose intolerance and arteriosclerosis [39, 

40]. The hypoxia-inducible factor pathway and metabolic 
features such as low cardiac phosphocreatine-to-ATP 
ratios, increased cardiac glucose uptake, and lower mus-
cle mitochondrial densities have been observed in the 
high-altitude–adapted Tibetan native population [41]. 
These unique features contribute to Tibetans’ distinct 
metabolic changes.

To our knowledge, this study is the first to report novel 
predictive metabolic markers and altered metabolic pro-
files of T2DM among Tibetans in China. Significantly 
high levels of aromatic amino acids and BCAAs (leucine, 
isoleucine, and valine), low carbon number lipids (myris-
tic, palmitic, and stearic acid), and significantly reduced 
pyroglutamic acid, glycerophospohlipids, and sphingo-
myelins are associated with T2DM [42, 43]. In the cur-
rent study, the amino acids phenylalanine, tyrosine, 
and tryptophan were downregulated in the T-T2DM 

Fig. 4  Establishment of integrated biomarker profiling. (A) AUC of the integrated 412 differential metabolites based on random forest classification (RFC) 
model. (B) the Mean Decrease in Accuracy (MDA) of 20 potential biomarkers. (C) Gini impurity of 20 potential biomarkers. (D) Distribution of 5 trials of 
10-fold cross-validation error in random forest classifiers. The model was trained with 412 differential metabolites in the training set (T-T2DM group, n = 73; 
diabetes group, n = 67). The black solid curve showed the trials. The red line indicated the number of picked features in the optimal set. (E) AUC of the 5 
selected potential biomarkers from the RFC model. (F) The prediction performance of the model consisted of 5 potential biomarkers in the train and test 
sets. (G) ROC curves for traditional markers BMI, fasting glucose and HbA1c. (H) ROC curves for risk factors of T-T2DM (age, triglycerides, serum uric acid 
and creatinine)
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group compared with those in the HC group. Moreover, 
BCAA derivatives such as 4-hydroxyisoleucine (VIP 
value = 1.012, Q-value < 0.001, fold-change (T-T2DM/T-
HC) = 0.689) and N-acetylvaline (VIP value = 1.145, 
Q-value < 0.001, fold-change (T-T2DM/T-HC) = 0.794) 
were downregulated in the T-T2DM group. In particular, 
4-hydroxyisoleucine is useful for DM treatment because 
of its capacity for increasing insulin secretion [44]. Con-
versely, the levels of tripeptide compounds including 
QNK and FPK were increased in the T-T2DM group, 
and their increase was associated with DM risk. Further, 
β-hydroxybutyric acid (BHA) is a ketone body that has 

been described as an early biomarker of DM or diabetic 
ketoacidosis (DKA) [45, 46]. In DKA, increased free fatty 
acid oxidation and acidosis will lead to reduced mito-
chondrial redox state (nicotinamide adenine dinucleotide 
plus hydrogen-to-NAD1 ratio), promoting BHA produc-
tion. Consistent with these results, the BHA level in our 
study (VIP value = 2.186, Q-value < 0.001, fold-change 
(T-T2DM/T-HC) = 1.499) was significantly higher in the 
T-T2DM group than in the T-HC group. Monitoring 
serum BHA levels may help early diagnose T-T2DM and 
detect DKA.

Fig. 5  Potential biomarkers panel discovery for predicting T-T2DM. (A) A heat map shows the correlation between the top 50 metabolites of Gini im-
purity and clinical features (Red asterisks represent a positive correlation and blue asterisks represent a negative correlation). (B) ROC curves for each of 
the 5 selected potential biomarkers from the RFC model. (C) ROC curves for the five increased metabolites of the top 50 metabolites of Gini impurity. (D) 
The heat map illustrates Pearson correlations between potential biomarkers panel (Red circles, positive correlation; blue circles, negative correlation, the 
number inside each circle is Pearson correlation coefficient)
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In network analyses, the metabolomic signatures were 
associated with phenylalanine metabolism; phenylala-
nine, tyrosine, and tryptophan biosynthesis; arachidonic 
acid metabolism, and riboflavin metabolism. Phenylala-
nine stimulates insulin secretion and further regulates 
compensatory mechanisms in the early stages of insulin 
resistance. Once compensated insulin secretion is met, 
individuals could subsequently progress to overt T2DM. 
Our results of metabolite changes in T-T2DM are consis-
tent with recent findings in which decrease in aromatic 
amino acid levels occur after T2DM progression [47, 48]. 
In addition, the T-T2DM group had significantly reduced 
levels of free arachidonate and prostaglandin H2 in ara-
chidonic acid metabolism; this significant decrement 
may also be a cause of glucose and lipid metabolism dis-
orders in this group [49].

Several prospective metabolomic studies have investi-
gated T2DM risks and biomarkers in a Chinese popula-
tion by machine learning [48, 50]. A validated integrated 
biomarker profiling (IBP) was constructed using amino 
acids, L-carnitine, and acetyl-L-carnitine for the pre-
diction of impaired fasting glucose and T2DM disease 
risks [50]. The present study used RFC to select the top 
5 biomarkers of Gini impurity that have a good predic-
tion ability of T-T2DM disease risk for IBP construction. 
These five biomarkers were 4-acetyl-4-(ethoxycarbonyl)
heptanedioic acid, THC, (±)12(13)-DiHOME, N-meth-
yloctan-1-amine, and 2-methylbutyl beta-D-glucopy-
ranoside. The predicted performance of the model was 
satisfactory and better than the traditional markers of 
T2DM. These predictive metabolites negatively corre-
lated with age, triglycerides, FPG, and HbA1c. Of note, 
(±)12(13)-DiHOME, an adipokine from brown adipose 
tissue, is closely related to the homeostasis of blood glu-
cose and the metabolism balance of fatty acids and other 
lipids [51]. In addition, (±)12(13)-DiHOME is a peroxi-
some proliferator-activated receptor-γ receptor agonist 
that lowers blood glucose by enhancing systemic insulin 
sensitivity [52, 53]. However, (±)12(13)-DiHOME dele-
tion in T-T2DM individuals could potentially contribute 
to a tightly linked interplay of increased oxidative stress 
and reduced insulin secretion, resulting in hyperglycemia 
secondary to inability to compensate for reduced insulin 
sensitivity.

This study has some limitations that should be consid-
ered. First, this study included patients from one institu-
tion only, and the sample size is small. Second, to capture 
a large number of metabolites, we used an untargeted 
metabolomic approach that could not measure the abso-
lute values of metabolites. Nevertheless, this limitation 
did not impede our ability to estimate the associations 
between metabolites and the risk of T-T2DM. Third, 
some unmeasured factors (e.g., changes in lifestyle fac-
tors, or other diseased states over time) might have 

influenced our findings. Hence, our prospective study 
results should be interpreted with caution. Last, we only 
applied one machine learning method. More machine 
learning methods and further deep mining or algorithms 
may be needed. And our machine learning model was 
validated in the same cohort of subjects. We need to 
increase the sample volume for validating the results in 
an external cohort.

In conclusion, this study systematically profiled 
wide-ranging serum metabolites that were found to be 
associated with DM risk in Tibetan adults. Through 
metabolomics and a machine learning method, we have 
established the IBPs of T-T2DM and discovered potential 
biomarkers for predicting T-T2DM. Our findings may 
provide valuable diagnostic tools for the clinical imple-
mentation and design of effective novel therapeutic tar-
gets to achieve earlier T-T2DM prevention, diagnosis, 
and treatment.
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