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Abstract
Background Metabolic syndrome (MetS), a clustering of traditional cardiovascular risk factors (CVRF), is currently 
one of the major global public health burdens. However, associations between MetS and non-traditional CVRF 
represented by uric acid (UA), homocysteine (HCY) and hypersensitive C-reactive protein (HsCRP) have not been well 
explored in the elderly population, especially when considering body mass index (BMI).

Methods Participants from the Shanghai Elderly Cardiovascular Health (SHECH) study cohort in 2017 were analyzed. 
MetS was defined using the modified American Heart Association/National Heart, Lung, and Blood Institute Scientific 
Statement. Logistic regression models were used to assess associations of non-traditional CVRF, BMI with MetS.

Results Of the 4360 participants analyzed, 2378 (54.5%) had MetS, the mean (SD) UA was 331 (86) µmol/L, and 
the median (IQR) HCY and HsCRP were 15 (13–18) µmol/L and 1.0 (0.5–2.1) mg/L, respectively. Participants with 
higher non-traditional CVRF tended to have a higher significant risk of MetS (P < 0.001), which did not changed 
substantially in most population subgroups (P-interaction > 0.05). BMI mediated 43.89% (95%CI: 30.38–57.40%), 
37.34% (95% CI: 13.86–60.83%) and 30.99% (95%CI: 13.16–48.83%) of associations of hyperuricemia (HUA), 
hyperhomocysteinemia (HHCY) and high HsCRP (HHsCRP) with MetS, respectively. Abnormal non-traditional CVRF 
combined with overweight/obesity greatly increased MetS risk (adjusted OR(95%CI): HUA + Overweight: 5.860(4.059-
8.461); 6.148(3.707–10.194); HHCY + Overweight: 3.989(3.107-5.121); HHCY + Obese: 5.746(4.064–8.123); HHsCRP + 
Overweight: 4.026(2.906-5.580); HHsCRP + Obese: 7.717(4.508–13.210)).

Conclusions In the Chinese elderly population, HUA, HHCY, and HHsCRP were all significantly and independently 
associated with MetS, supporting the potential of focusing on non-traditional CVRF interventions for preventing and 
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Introduction
Metabolic syndrome (MetS) is currently one of the major 
global public health burdens [1]. MetS is a clustering 
of metabolic and cardiovascular risk factors (CVRF), 
generally including abdominal obesity, hypertension, 
hyperglycemia, and atherogenic dyslipidemia [2], that 
could increase the risk of cardiovascular disease (CVD) 
and adverse outcomes not only through internal sin-
gle components but also through multiple interacting 
states [3]. Epidemiological studies have found that com-
pared to non-MetS individuals, those with MetS had 
a 3-fold increased risk of diabetes mellitus [4], a 2-fold 
increased risk of cardiovascular morbidity and mortal-
ity [5], a 1.5-fold increased risk of all-cause mortality 
[6], and a significant association with cancers [7]. Fur-
thermore, the incidence and prevalence of this disease 
is increasing globally with socioeconomic development, 
lifestyle changes, and especially population aging, affect-
ing approximately one-fifth of the adult population in the 
Asia-Pacific region [8]. In China, the age-specific preva-
lence of MetS is approximately 14%, and is up to 30–40% 
in those aged 60 years and older [9, 10]. Therefore, active 
prevention and control of MetS is crucial to improve 
quality of life for the elderly population.

Alternatively, to improve the science of cardiovascular 
health management, numerous studies have relied on 
MetS components to develop various cardiovascular risk 
assessment tools, such as the Framingham Risk Score, 
the Pooled Cohort Equation, and the China-PAR model, 
which have suggested that the 10-year cardiovascular risk 
increases substantially with increasing numbers of MetS 
components, resulting in individuals being more likely to 
be classified as high risk for clinical intervention or phar-
macological treatment [11–15]. However, relying solely 
on the results of MetS component assessments, particu-
larly in the elderly population, might not be appropriate 
[16, 17]. Therefore, an increasing number of studies have 
focused on the complementary role of non-traditional 
CVRF in the assessment of CVD risk by MetS compo-
nents [18–21].

Hyperuricemia (HUA) [22, 23], hyperhomocysteinemia 
(HHCY) [24, 25] and high hypersensitive C-reactive pro-
tein (HHsCRP) (chronic inflammation) [26]were com-
monly included in the defining extents of MetS, probably 
due to the association of these disorders with insulin 
resistance, the major underlying mechanism of MetS. 
However, the association of these disorders with MetS 

in the advanced age group has not been well established, 
as uric acid (UA) [27], homocysteine (HCY)[28] and 
HsCRP [29] all change with age. Furthermore, the above 
disorders are representative non-traditional risk factors 
for CVD, and significant independent associations with 
CVD are frequently observed and consequently are com-
monly included in traditional cardiovascular risk assess-
ment tools, but the results of these studies suggested that 
the incremental effect of non-traditional CVRF on tradi-
tional risk assessment lacked sufficient validity [18–21]. 
This might be because, beyond comprising independent 
risk factors for CVD, the interaction with MetS compo-
nents was controversial [30, 31].

Abdominal obesity is a core component of MetS, so one 
of the easiest ways to actively prevent and manage MetS 
is to lose weight [32]. Abdominal obesity is typically used 
as a measure of the individual’s visceral fat accumulation, 
and the visual response is more focused on the individ-
ual’s waist and abdomen [33]. Body mass index (BMI) is 
more typically used to reflect an individual’s overall obe-
sity condition, even in the absence of abdominal obesity, 
and BMI has been demonstrated to be associated with 
CVRF and CVD [34]. However, an increasing number of 
studies have found a significant reduction in CVD risk 
when individuals were metabolically healthy and obese 
[35, 36]; additionally, overweight/obesity as assessed by 
BMI has been found to be contradictory to mortality in 
the advanced age group, i.e., the “obesity paradox“ [37, 
38]. Thus, the association direction between BMI in tra-
ditional and non-traditional CVRF might be altered in 
the elderly population.

Accordingly, using database from the Shanghai Elderly 
Cardiovascular Health (SHECH) study, this study aimed 
to investigate (1) the independent association of UA, 
HCY and HsCRP (non-traditional CVRF) with MetS; (2) 
to assess the mediating role of BMI in the association of 
non-traditional CVRF with MetS; and (3) to explore the 
synergistic effect of the combined abnormal status of 
non-traditional CVRF and BMI on MetS.

Methods
Study population
Participants were recruited from the SHECH study, a 
population-based longitudinal study assessing risk fac-
tors for the onset and progression of CVD in noninstitu-
tionalized older adults since 2013. Its design details have 
been described previously [39]. Briefly, 4753 community 

controlling MetS. BMI played moderate mediating roles in associations between non-traditional CVRF and MetS, and 
abnormal non-traditional CVRF combined with overweight/obesity had significant synergistic effects on MetS risk, 
highlighting the importance of better weight management in the elderly population.
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participants aged 60 to 104 years were recruited during 
2017 and detailed health screenings and questionnaires 
were administered to these participants. In this study, 
393 participants were excluded due to missing MetS, thus 
4360 participants were finally included (Supplementary 
Fig. 1).

Data collection
Baseline characteristics of participants were collected 
by trained investigators using a standardized question-
naire that included primarily sociodemographic, life-
style, medication, and disease history. Anthropometric 
measurements including height, body weight, and waist 
circumference (WC) were performed according to the 
recommendations of International Standards for Anthro-
pometric Assessment [40]. Medication and disease his-
tories were obtained through participant self-report 
and confirmed by family physicians making best efforts 
to review outpatient medical records to minimize recall 
bias. Blood pressure (BP) and blood sample acquisi-
tion and measurement have been described in detail in 
the published literature [39]. Biochemical parameters 
included creatinine, UA, HCY, HsCRP, thyroid stimulat-
ing hormone (TSH), aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), glucose, total choles-
terol (TC), triglycerides (TG), LDL-C and high-density 
lipoprotein cholesterol (HDL-C), and all these were mea-
sured using a biochemical autoanalyzer (Cobas 8000, 
Roche Diagnostics, Mannheim, Germany) under stan-
dardized operating procedures.

Celibacy was considered active if an individual was cur-
rently unmarried, divorced, or widowed. Current smok-
ing was defined as smoking more than 100 cigarettes in a 
lifetime and still smoking. Current drinking was defined 
as drinking 1 or more alcoholic beverages each week dur-
ing the previous year. Physical activity was considered 
active if at least 4 days of exercise or recreational activi-
ties were performed per week and more than 30 min per 
day. Coffee/tea addiction was defined as consuming at 
least one cup of coffee or tea per day for the past month. 
BMI was calculated as weight in kilograms divided by 
height in meters squared and was classified as under-
weight (< 18.5  kg/m2), normal weight (18.5-23.9  kg/m2), 
overweight (24.0-27.9  kg/m2) and obese (≥ 28.0  kg/m2) 
according to Chinese standards [41].

HUA was defined as UA greater than 420 µmol/L for 
both genders, given that all participants were of advanced 
age [42]. HHCY was defined as HCY greater than 15 
µmol/L [43]. HHsCRP was defined as HsCRP greater 
than 3.0 mg/L [44]. Arteriosclerotic CVD (ASCVD) was 
defined as a history of myocardial infarction, stable or 
unstable angina, coronary or other arterial revascular-
ization, stroke, transient ischemic attack, or atheroscle-
rotic peripheral artery disease [11]. Thyroid dysfunction 

was defined as TSH outside the reference range (0.27–
4.20 µIU/mL) or a history of thyroid disease. Liver dys-
function was defined as AST greater than 40 U/L, ALT 
greater than 50 U/L or a history of liver disease. Kidney 
dysfunction was defined as estimated glomerular filtra-
tion rate (GFR) less than 60 mL/min/1.73m2 or a history 
of kidney disease [45].

Outcome ascertainment
In this study, MetS was defined using the modified Amer-
ican Heart Association/National Heart, Lung, and Blood 
Institute Scientific Statement [2]. Participants were diag-
nosed with MetS if three or more of the following disor-
ders were present: (1) abdominal obesity: WC ≥ 90 cm in 
males and ≥ 80 cm in females; (2) hyperglycemia: fasting 
plasma glucose (FPG) ≥ 5.6 mmol/L (100 mg/dL) or medi-
cation for elevated glucose; (3) hypertension: BP ≥ 130/85 
mmHg or antihypertensive medications in patients with 
a history of hypertension; (4) fasting TG ≥ 150 mg/dL (1.7 
mmol/L) or medication for elevated TG; and (5) fasting 
HDL-C < 40 mg/dL (1.03 mmol/L) in males and < 50 mg/
dL (1.30 mmol/L) in females, or medication for reduced 
HDL-C.

Statistical analysis
Normality tests were initially performed for continu-
ous variables, and natural logarithm (Ln) transforma-
tions were applied to variables with severely skewed 
distributions.

Continuous variables were reported as mean (standard 
deviation, SD) or median (interquartile range, IQR) as 
appropriate, and differences were compared using inde-
pendent samples t-test or Mann-Whitney U-test. Cat-
egorical variables were reported as frequency (%), and 
differences were compared using Pearson’s χ2 test or Fish-
er’s exact test. Spearman’s rank correlation coefficients 
(ρ) were calculated to initially assess strength of associa-
tions of non-traditional CVRF and BMI with MetS.

Logistic regression models were used to assess associa-
tions of non-traditional CVRF with MetS and to calcu-
late odds ratios (OR) and 95% confidence intervals (CI). 
In the model, non-traditional CVRF was fully explored 
at the ordinal (lowest tertile as reference), binary (none 
as reference), and continuous (Per SD increment), scale, 
and adjusted for confounders potentially affecting asso-
ciations according to previous studies [46, 47]. The 10th, 
50th, and 90th percentiles of UA, Ln HCY, and Ln HsCRP 
were used as knots in restricted cubic splines to simulate 
possible nonlinear associations of non-traditional CVRF 
with MetS [48].

To explain mediating effects of BMI in associations of 
non-traditional CVRF with MetS, causal mediation anal-
yses were performed in a general counterfactual frame-
work that provides clear definitions of causal mediation 
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and associated effects [49]. Under this framework, total 
effect could be decomposed into: natural direct effect 
(NDE) and natural indirect effect (NIE), both measured 
as OR(95%CI) [50]. NDE represented effects of non-
traditional CVRF on MetS independent of BMI; NIE 
represented effects of non-traditional CVRF on MetS 
explained by BMI. Mediating effects were measured by 
percentage mediated (95%CI), as the percentage of total 
effect mediated by the mediator.

To assess joint associations of non-traditional CVRF 
and BMI with MetS, participants were further divided 
into eight groups according to non-traditional CVRF 
(normal/abnormal) and ordinal BMI (underweight/nor-
mal weight/overweight/obese) and OR (95% CI) for MetS 
was estimated in different groups compared to those with 
normal status of non-traditional CVRF and BMI. Con-
sidering ordinal BMI, interactions of abnormal status of 
non-traditional CVRF and BMI were more interested. 
For multiplicative interactions, the product term of both 
was additionally included in the model, and OR (95% CI) 
of the product term was used as measure of interaction at 
the multiplicative scale. For additive interactions, relative 
excess risk due to interaction (RERI) (95% CI) was used 
as measure of interactions at the additive scale, calculated 
using coefficients and corresponding standard errors of 
both exposed and product terms, as well as covariance 
matrix [51].

The primary analyses were also performed in demo-
graphic subgroups, including age group (< 75 yrs/≥ 75 yrs, 
defined as advanced age by the World Health Organiza-
tion [52]), gender (male/female), occupation (office staff/
operator/farmer/other), education (≤ 6 yrs/6-12 yrs/> 12 
yrs), and monthly income (≤ 2500 ¥/> 2500 ¥), to examine 
the robustness and possible variations of findings.

All statistical analyses were performed using SAS, ver-
sion 9.4 (SAS Institute, Inc., Cary, NC, USA). Two-sided 
P-values < 0.05 were considered statistically significant.

Results
Baseline characteristics
The mean age (SD) of the 4360 participants was 72 (7) 
years, 1939 (44.5%) were male, 1013 (23.2%) were farm-
ers, and 2349 (53.9%) had more than 2500 ¥ monthly 
income. The mean (SD) UA was 331 (86) µmol/L, and the 
median (IQR) HCY and HsCRP were 15 (13–18) µmol/L 
and 1.0 (0.5–2.1) mg/L, respectively. 2378 (54.5%) par-
ticipants were found to have MetS, and the prevalence of 
MetS was higher among participants who were current 
smokers, current alcohol drinkers, and had ASCVD, liver, 
kidney and thyroid dysfunction (P <  0.05) (Table 1).

Associations of non-traditional CVRF with MetS
UA was significantly correlated with traditional CVRF 
(P < 0.001), except for FPG (ρ = 0.005, P = 0.756), and 

positively correlated with number of MetS components 
(ρ = 0.141, P < 0.001). No significant correlations were 
found for HCY with FPG, DBP, TG and number of MetS 
components (P > 0.05). HsCRP was significantly posi-
tively correlated with traditional CVRF (P < 0.001), except 
for HDL-C (ρ = -0.217, P < 0.001). BMI presented moder-
ate correlation with WC (ρ = 0.587, P < 0.001), standard-
ized score of MetS (ρ = 0.465, P < 0.001) and number of 
MetS components (ρ = 0.407, P < 0.001). Furthermore, 
there were significant positive correlations of BMI with 
UA (ρ = 0.178, P < 0.001), HCY (ρ = 0.047, P = 0.001) and 
HsCRP (ρ = 0.200, P < 0.001) (Supplementary Table 1). 
Although correlations between traditional and non-tradi-
tional CVRF were found, most were relatively weak and 
therefore required further analyses.

In the adjusted model, abnormal non-traditional CVRF 
was significantly associated with MetS. Specifically, 
MetS risk was significantly increased by 88.4% (95%CI: 
1.513–2.345) in HUA than non-HUA; by 32.1% (95%CI: 
1.127–1.549) in HHCY than non-HHCY; and by 48.2% 
(95%CI: 1.212–1.812) for HHsCRP than non-HHsCRP. 
The adjusted logistic regression model at the continuous 
scale showed no substantial changes, except for Ln HCY 
(OR(95%CI): 1.074(0.990-1.165)) (Table 2).

The splines between non-traditional CVRF and MetS 
showed that UA (P-nonlinear = 0.109) and Ln HCY 
(P-nonlinear = 0.076) were not significantly nonlinearly 
associated with MetS, except for Ln HsCRP (P-Pnonlin-
ear<  0.001). MetS risk increased with increasing UA, but 
MetS risk did not change substantially with increasing Ln 
HCY and Ln HsCRP to approximately 3.0 μmol/L and 1.0 
mg/L, respectively (Fig. 1).

Mediating role of BMI in associations of non-traditional 
CVRF with MetS
In this study, the mean BMI of those with MetS was 25.7 
(3.3) kg/m2, significantly higher than that of those with-
out MetS (P < 0.001). In the adjusted model, indirect 
associations via BMI implied a 28.7% (95%CI: 1.183–
1.391) increase in MetS risk for HUA, a 10.4% (95%CI: 
1.041–1.168) increase in MetS risk for HHCY, and a 
12.5% (95%CI: 1.047–1.203) increase in MetS risk for 
HHsCRP. Proportions of associations of HUA, HHCY, 
and HHsCRP with MetS mediated by BMI were 43.89% 
(95%CI: 30.38–57.40%), 37.34% (95%CI: 13.86–60.83%), 
and 30.99% (95%CI: 13.16–48.83%), respectively. The 
adjusted mediation model at the continuous scale showed 
no substantial changes, except for Ln HCY OR(95%CI): 
1.038(1.008–1.069), percentage mediated(%): 48.58(-
6.03-103.20), (Table 3).



Page 5 of  15You et al. Diabetology & Metabolic Syndrome          (2023) 15:129 

Characteristic Total
(n = 4360)

Non-MetS
(n = 1982)

MetS
(n = 2378)

P-value

Demographics
 Age (yrs) 72 (7) 72(7) 72(7) 0.521

 Age group (yrs) 0.156

  < 75 3099(71.1) 1390(70.1) 1709(71.9)

  ≥ 75 1230(28.2) 581(29.3) 649(27.3)

 Male 1939(44.5) 1045(52.7) 894(37.6) < 0.001

 Celibacy 718(16.5) 311(15.7) 407(17.1) 0.153

 Occupation 0.023

  Office staff 638(14.6) 310(15.6) 328(13.8)

  Operator 1279(29.3) 618(31.2) 661(27.8)

  Farmer 1013(23.2) 445(22.5) 568(23.9)

  Other 1132(26.0) 490(24.7) 642(27.0)

 Education (yrs) 0.042

  ≤ 6 1311(30.1) 566(28.6) 745(31.3)

  6–12 2302(52.8) 1071(54.0) 1231(51.8)

  > 12 480(11.0) 236(11.9) 244(10.3)

 Income (¥/month) 0.002

  ≤ 2500 1572(36.1) 667(33.7) 905(38.1)

  > 2500 2349(53.9) 1115(56.3) 1234(51.9)

Lifestyle
 Current smoking 523(12.0) 308(15.5) 215(9.0) < 0.001

 Current drinking 370(8.5) 206(10.4) 164(6.9) < 0.001

 Physical activity 3425(78.6) 1533(77.3) 1892(79.6) 0.051

 Multivitamin intake 61(1.4) 25(1.3) 36(1.5) 0.347

 Coffee/tea addiction 322(7.4) 153(7.7) 169(7.1) 0.512

Medication History
 Hypolipidemic drugs 484(11.1) 36(1.8) 448(18.8) < 0.001

 Hypotensive drugs 2306(52.9) 737(37.2) 1569(66.0) < 0.001

 Hypoglycemic drugs 637(14.6) 107(5.4) 530(22.3) < 0.001

Comorbidity
 Abdominal obesity 2693(61.8) 795(40.1) 1898(79.8) < 0.001

 Hyperglycemia 1892(43.4) 330(16.6) 1562(65.7) < 0.001

 Hypertension 3690(84.6) 1438(72.6) 2252(94.7) < 0.001

 High TG 1880(43.1) 212(10.7) 1668(70.1) < 0.001

 Low HDL-C 1482(34.0) 94(4.7) 1388(58.4) < 0.001

 HHCY 2088(47.9) 939(47.4) 1149(48.3) 0.420

 HHsCRP 699(16.0) 261(13.2) 438(18.4) < 0.001

 HUA 636(14.6) 232(11.7) 404(17.0) < 0.001

 ASCVD 561(12.9) 168(8.5) 393(16.5) < 0.001

 Liver dysfunction 215(4.9) 69(3.5) 146(6.1) < 0.001

 Kidney dysfunction 213(4.9) 79(4.0) 134(5.6) 0.012

 Thyroid dysfunction 1030(23.6) 435(21.9) 595(25.0) 0.008

Physical Examination
 BMI (kg/m2) 24.7 (3.5) 23.5 (3.4) 25.7 (3.3) < 0.001

 WC (cm) 88(12) 84(12) 91(12) < 0.001

 SBP (mmHg) 142 (21) 138 (21) 145 (20) < 0.001

 DBP (mmHg) 80 (11) 79(11) 81 (11) < 0.001

 TC (mg/dL) 192 (49) 193 (35) 192 (58) 0.641

 TG (mg/dL) 126(92–174) 101(79–127) 162(117–213) < 0.001

 HDL-C (mg/dL) 53(44–64) 60(52–71) 47(40–56) < 0.001

 LDL-C (mg/dL) 127(37) 126 (32) 127 (41) 0.221

 FPG (mmol/L) 5.4(4.9–6.3) 5.1(4.8–5.4) 5.9(5.2–7.0) < 0.001

Table 1 Baseline characteristics of participants
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Joint associations of non-traditional CVRF and BMI with 
MetS
A total of 1634 (37.5%), 1802 (41.3%), and 656 (15.0%) 
participants were normal weight, overweight, and obese, 
respectively. Abnormal non-traditional CVRF combined 
with overweight/obesity greatly increased MetS risk. 
Compared to non-HUA combined with normal weight, 
the adjusted ORs for MetS in HUA combined with over-
weight obesity were 5.860 (95%CI: 4.059–8.461) and 
6.148 (95%CI: 3.707–10.194), respectively. Compared to 
non-HHCY combined with normal weight, the adjusted 
ORs for MetS in HHCY combined with overweight obe-
sity were 3.989 (95%CI: 3.107–5.121) and 5.746 (95%CI: 
4.064–8.123), respectively. Compared to non-HHsCRP 
combined with normal weight, the adjusted ORs for 
MetS in HHsCRP combined with overweight obesity 
were 4.026 (95%CI: 2.906–5.580) and 7.717 (95%CI: 
4.508–13.210), respectively. Notably, normal weight 
might dilute significant effects of HUA, HHCY and 
HsCRP on MetS risk (adjusted OR(95%CI): HUA + nor-
mal weight: 1.392(0.956–2.026), HHCY + normal 
weight: 1.258(0.977–1.620), HHsCRP + normal weight: 
1.271(0.901–1.793)) (Table 4).

Interactions of abnormal status of non-traditional 
CVRF and BMI were also evaluated to help further vali-
date joint associations. HUA (RERI(95%CI): 2.521(0.793–
4.250)) and HHsCRP (RERI(95%CI): 1.255(0.028–2.483)) 
showed significant additive interactions with abnor-
mal BMI, indicating that MetS risk might be synergisti-
cally increased. HUA (OR(95%CI): 1.408(0.881–2.250)), 
HHCY (OR(95%CI): 1.002(0.734–1.368)), and HHsCRP 
(OR(95%CI): 1.187(0.767–1.837)) did not have any signif-
icant multiplicative interaction with abnormal BMI.

Subgroup analyses
Associations of UA with MetS were significantly stron-
ger in participants aged < 75 years than in those aged ≥ 75 
years, in females than in males, and in operators and 
farmers than in office staff at the continuous scale 

(P-interaction < 0.05) (Supplementary Fig. 2A). No statis-
tical interaction was found for associations of HCY with 
MetS in demographic subgroups (P-interaction > 0.05), 
but stronger associations of HHCY with MetS were 
found in participants aged < 75 years (OR = 1.331, 
P = 0.003) than in those aged ≥ 75 years (OR = 1.265, 
P = 0.125), in males (OR = 1.490, P = 0.001) than in females 
(OR = 1.197, P = 0.101), and in operators (OR = 1.502, 
P = 0.007) and farmers (OR = 1.425, P = 0.028) than in 
office staff (OR = 1.179, P = 0.425) (Fig. 2B). Association of 
HsCRP with MetS was significantly stronger in females 
than in males at any scale (P-interaction < 0.05) (Fig. 2C 
and Supplementary Fig. 2C). Proportions of associations 
of non-traditional CVRF with MetS mediated by BMI 
in most demographic subgroups covered 95%CI of the 
main results (Fig. 3 and Supplementary Fig. 3). Joint asso-
ciations of non-traditional CVRF and BMI with MetS 
in most demographic subgroups was also not obviously 
altered (Supplementary Fig. 4).

Discussion
In this large, community-based study of the elderly pop-
ulation in China, the results indicated significant inde-
pendent associations of HUA, HHCY and HHsCRP with 
MetS, in which BMI played moderate mediating roles. 
The higher risk of MetS was found in participants with 
abnormal non-traditional CRVF and overweight/obesity. 
The above findings were relatively consistent in demo-
graphic subgroups.

Comparison of previous studies
The findings of associations between MetS and non-tra-
ditional CVRF represented by UA, HCY and HsCRP have 
previously been more controversial.

In terms of UA and MetS, the PREDIMED (Prevencion 
con Dieta Mediterranea) trial indicated that elevated UA 
was significantly associated with increased incidence 
of MetS in the European elderly population [53]. Nie 
et al. also found that UA was a predictor of MetS in the 

Characteristic Total
(n = 4360)

Non-MetS
(n = 1982)

MetS
(n = 2378)

P-value

 HCY (µmol/L) 15(13–18) 15(13–18) 15(13–18) 0.814

 ALT (U/L) 16(12–21) 14(11–19) 17(13–24) < 0.001

 AST (U/L) 20(18–24) 21(18–24) 20(17–24) 0.090

 GFR (mL/min/1.73 m2) 102(23) 102(22) 102(23) 0.700

 HsCRP (mg/L) 1.0(0.5–2.1) 0.8(0.4–1.7) 1.1(0.6–2.3) < 0.001

 UA (µmol/L) 331(86) 321(83) 340(87) < 0.001

 TSH (µIU/mL) 2.73(1.91–3.89) 2.62(1.83–3.76) 2.81(1.99–3.99) < 0.001
Note: Data are mean (standard deviation), median (interquartile range), or frequency (%)

Abbreviations: MetS, metabolic syndrome; HHCY, hyperhomocysteinemia; HHsCRP, high hypersensitive C-reactive protein; HUA, hyperuricemia; ASCVD, 
arteriosclerotic cardiovascular disease; BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total 
cholesterol; TG, triglyceride; HDL-C, high-density lipid cholesterol; LDL-C, low-density lipid cholesterol; FPG; fasting plasma glucose; HCY, homocysteine; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; GFR, glomerular filtration rate; UA, uric acid; TSH, thyroid stimulating hormone

Table 1 (continued) 



Page 7 of  15You et al. Diabetology & Metabolic Syndrome          (2023) 15:129 

Chinese elderly population, independent of obesity [54]. 
The results of a meta-analysis by Yuan et al. indicated a 
positive dose-response relationship between UA and 
MetS risk [55]. However, several studies presented nega-
tive results, and clear differences between demograph-
ics. The PAMELA (Pressioni Arteriose Monitorate E 
Loro Associazioni) study indicated that UA was signifi-
cantly associated with MetS after adjusting for age and 
gender, but this association disappeared after full adjust-
ment [56]. It is speculated that (1) this may be due to 

overadjustment bias, where intermediate variable on the 
causal pathway from UA to MetS, i.e. MetS components, 
was adjusted for in the fully adjusted model, which may 
have weakened this association; and (2) this may be due 
to differences in study design and methodology, as the 
PAMELA study used a prospective design and modified 
Poisson regression to estimate relative risk (RR). The OR 
approximats the RR when the incidence is not common 
[57]. Studies from Taiwan, China found that the power of 
UA to predict MetS diminished with age, without clear 
relevance in females older than 75 years and in males 
older than 85 years [58, 59]. Ferrara et al. found that UA 
failed to predict MetS in an obese population [60], which 
might be due to the obscure effect of per unit change in 
UA on MetS and might therefore lead to the neglect of 
interventions for HUA to reduce MetS risk in an obese 
population. This study found a significant association 
between elevated UA and MetS risk, with BMI mediating 
about 40% of this association, and HUA combined with 
overweight/obesity had synergistic effects on MetS risk.

In terms of HCY and MetS. Hajer et al. found that HCY 
was significantly higher in MetS patients and increased 
with the presence of MetS components, but did not 
assess effect sizes [61]. Catena et al. found that elevated 
HCY was associated with MetS in hypertensive patients, 
but hypertension could be both a cause of MetS and a 
consequence of HHCY (H-type hypertension), thus lim-
iting the interpretation of this finding [62]. Conversely, 
the PGHH (Persian Gulf Healthy Heart) study sug-
gested no association between HCY and MetS in males 
(OR(95%CI): 1.00(0.98–1.02)) and females (OR(95%CI): 
1.00(0.97–1.02)) [63], possibly because (1) less informa-
tion on confounders was available, including only smok-
ing, physical inactivity, insufficient fruit and vegetable 
intake, and BMI; and (2) a broader definition of MetS 
was used, excluding medication for hyperglycaemia and 
dyslipidaemia, which might have underestimated the 
prevalence of MetS. Considering the shortcomings of 
observational studies, Lee et al. conducted a Mendelian 
randomised study and found a causal link between HCY 
and increased risk of MetS in the Korean population [64]. 
In this study, HHCY, although not statistically different 
between MetS and non-MetS, significantly increased 
MetS risk after adjusting for confounders, especially in 
participants younger than 75 years and in males.

In terms of HsCRP and MetS, relatively few relevant 
studies have been conducted, especially involving BMI. 
Abu-Farha et al. found that in the Arab population, 
elevated HsCRP not only significantly increased MetS 
risk, but was also significantly associated with metabolic 
markers including BMI and insulin resistance [65]. This 
was consistent with the findings of Kawamoto et al. in 
the Japanese population [66]. Nevertheless, the results 
of Engelsen et al. suggested that the ability of HsCRP to 

Table 2 Association of non-traditional CVRF with MetS
Unadjusted model Adjusted model
OR(95%CI) P-value OR(95%CI) P-value

HUA (vs. 
Non-HUA)

1.555(1.307–
1.850)

< 0.001 1.884(1.513–
2.345)

< 0.001

Per SD in UA 1.254(1.179–
1.333)

< 0.001 1.433(1.321–
1.554)

< 0.001

UA (µmol/L, 
median)

Tertile 1 (222) 1.000 [ref.] 1.000 [ref.]

Tertile 2 (306) 1.363(1.177–
1.578)

< 0.001 1.588(1.325–
1.902)

< 0.001

Tertile 3 (382) 1.751(1.511–
2.029)

< 0.001 2.332(1.926–
2.824)

< 0.001

Trend < 0.001 < 0.001

HHCY (vs. 
Non-HHCY)

1.050(0.932–
1.184)

0.420 1.321(1.127–
1.549)

< 0.001

Per SD in Ln HCY 0.987(0.930–
1.048)

0.668 1.074(0.990–
1.165)

0.086

HCY (µmol/L, 
median)

Tertile 1 (12) 1.000 [ref.] 1.000 [ref.]

Tertile 2 (15) 0.984(0.850–
1.140)

0.833 1.184(0.988–
1.420)

0.067

Tertile 3 (20) 1.009(0.871–
1.168)

0.908 1.302(1.068–
1.586)

0.009

Trend 0.870 0.012

HHsCRP (vs. 
Non-HHsCRP)

1.448(1.225–
1.712)

< 0.001 1.482(1.212–
1.812)

< 0.001

Per SD in Ln 
HsCRP

1.339(1.256–
1.426)

< 0.001 1.321(1.224–
1.426)

< 0.001

HsCRP (mg/L, 
median)

Tertile 1 (0.4) 1.000 [ref.] 1.000 [ref.]

Tertile 2 (1.0) 1.778(1.530–
2.067)

< 0.001 1.551(1.294–
1.860)

< 0.001

Tertile 3 (3.0) 2.117(1.819–
2.465)

< 0.001 1.993(1.659–
2.394)

< 0.001

Trend < 0.001 < 0.001
Note: Adjusted for age group, gender, occupation, education, monthly income, 
current smoking, current drinking, physical activity, ASCVD, liver, kidney, and 
thyroid dysfunction

Abbreviations: CVRF, cardiovascular risk factors; MetS, metabolic syndrome; 
UA, uric acid; HUA, hyperuricemia; Ln HCY, natural logarithm of homocysteine; 
HHCY, hyperhomocysteinemia; Ln HsCRP, natural logarithm of hypersensitive 
C-reactive protein; HHsCRP, high hypersensitive C-reactive protein; ASCVD, 
arteriosclerotic cardiovascular disease; SD, standard deviation; OR, odds ratio; 
CI, confidence interval
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predict MetS in the abdominally obese population was 
extremely limited (area under curve (95%CI): 0.57(0.53–
0.60)) [67], but the results of Guven et al. suggested that 
abdominal obesity (OR(95%CI): 4.21(1.12–6.12)) was 
a key factor for elevated HsCRP in MetS patients [68]. 
Several studies have highlighted significant gender dif-
ferences between HsCRP and MetS [69–71]. Garcia et 
al. found that HsCRP was significantly higher in females 
among MetS patients [70]. Both Han et al. and Hong 
et al. found a significant positive association between 
HsCRP and MetS only in females [69, 71]. The results of 
this study similarly displayed a significant gender interac-
tion for this association, with females being higher than 
males. Considering that all females in this study were 60 
years of age and older, after excluding the role of estrogen 
in the inflammatory process [72], possible reasons for 
this are (1) noting that this study included more females 
and more females had MetS, so more statistical power to 
identify meaningful results in females; and (2) females 

might have more systemic adipose tissue compared to 
males, which could be a source of pro-inflammatory 
cytokines [73]. Interestingly, BMI was found to play a 
moderate mediating role between HHsCRP and MetS in 
this study, and this mediating effect was significant only 
in females, which might help to corroborate the above 
reasons.

The current focus on associations of non-traditional 
CVRF, BMI with MetS has not been reported, mostly 
focusing on those between the two in a specific popu-
lation. This study provides an opportunity to quantify 
how BMI affects traditional and non-traditional CVRF, 
with BMI acting as the stronger mediator and syner-
gist between traditional and non-traditional CVRF. This 
might be a potential signal to further explore the mecha-
nisms of BMI in cardiometabolic disease and strengthen 
the position of weight management in fighting cardio-
metabolic disease.

Fig. 1 Nonlinear associations of non-traditional CVRF with MetS. A: UA; B: Ln HCY; C: Ln HsCRP. Knots were at the 10th, 50th, and 90th percentiles of 
the UA, Ln HCY and Ln HsCRP distribution. Default reference points were the medians of UA, Ln HCY and Ln HsCRP, respectively. Adjusted for age group, 
gender, occupation, education, monthly income, current smoking, current drinking, physical activity, ASCVD, liver, kidney, and thyroid dysfunction. Ab-
breviations: CVRF, cardiovascular risk factors; MetS, metabolic syndrome; UA, uric acid; Ln HCY, natural logarithm of homocysteine; Ln HsCRP, natural 
logarithm of hypersensitive C-reactive protein; ASCVD, arteriosclerotic cardiovascular disease; OR, odds ratio; CI, confidence interval
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Potential mechanisms
Although mechanisms linking UA, HCY and HsCRP to 
MetS have not been fully understood, it is hypothesized 
that these might be related to oxidative stress and inflam-
mation [74–76]. BMI, a measure of general obesity, was 
considered a marker of systemic inflammation due to 
its close association with pro-inflammatory cytokines, 
which further reinforced possible mechanisms between 
non-traditional CVRF and MetS [77]. Also, non-tradi-
tional CVRF and BMI formed a mutually reinforcing 
vicious circle [78–80].

Elevated UA, a marker of oxidative stress, could lead to 
increased production of reactive oxygen species, which 
could damage cells and tissues in the body and induce 
inflammation [74]. This inflammation could promote 

insulin resistance to increase MetS risk. Elevated UA 
might also lead to changes in BP and lipid metabolism 
through endothelial dysfunction [81], which could fur-
ther promote MetS.

Elevated HCY, a sulfur-containing amino acid, could 
increase MetS risk through MetS components. First, 
elevated HCY could lead to a decrease in nitric oxide, 
a molecule that helps regulate BP, so elevated HCY was 
associated with an increased risk of hypertension [82]. 
Second, elevated HCY could either impair insulin secre-
tion through alterations in beta-cell glucose metabolism 
and generation of key stimulus-secretion coupling fac-
tors [83], or induce insulin resistance and cause diabetic 
phenotypes by protein cysteine-homocysteinylation of 
the pro-insulin receptor [25]. Finally, elevated HCY could 

Table 3 Proportion of association of non-traditional CVRF with MetS mediated by BMI
Unadjusted model Adjusted model
Estimate(95%CI) P-value Estimate(95%CI) P-value

Binary scale, HUA (vs. Non-HUA)

 Total Effect (OR) 1.609(1.295–1.923) < 0.001 2.030(1.530–2.530) < 0.001

 Natural Direct Effect (OR) 1.324(1.079–1.569) 0.010 1.578(1.209–1.948) 0.002

 Natural Indirect Effect (OR) 1.215(1.137–1.294) < 0.001 1.287(1.183–1.391) < 0.001

 Percentage Mediated (%) 46.80(29.80–63.79) < 0.001 43.89(30.38–57.40) < 0.001

Continuous scale, Per SD in UA

 Total Effect (OR) 1.274(1.187–1.361) < 0.001 1.485(1.352–1.618) < 0.001

 Natural Direct Effect (OR) 1.127(1.053–1.200) < 0.001 1.268(1.159–1.377) < 0.001

 Natural Indirect Effect (OR) 1.131(1.103–1.159) < 0.001 1.171(1.133–1.210) < 0.001

 Percentage Mediated (%) 53.76(39.56–67.96) < 0.001 44.77(34.71–54.84) < 0.001

Binary scale, HHCY (vs. Non-HHCY)

 Total Effect (OR) 1.023(0.885–1.160) 0.747 1.339(1.101–1.577) 0.005

 Natural Direct Effect (OR) 0.975(0.851–1.099) 0.688 1.212(1.008–1.416) 0.042

 Natural Indirect Effect (OR) 1.049(1.003–1.096) 0.038 1.104(1.041–1.168) 0.001

 Percentage Mediated (%) 211.93(-997.27–
1421.13)

0.731 37.34(13.86–60.83) 0.002

Continuous scale, Per SD in Ln HCY

 Total Effect (OR) 0.976(0.911–1.042) 0.479 1.082(0.984–1.179) 0.100

 Natural Direct Effect (OR) 0.959(0.898–1.020) 0.191 1.042(0.953–1.131) 0.354

 Natural Indirect Effect (OR) 1.018(0.995–1.040) 0.125 1.038(1.008–1.069) 0.015

 Percentage Mediated (%) -71.78(-319.92–
176.36)

0.571 48.58(-6.03–103.20) 0.081

Binary scale, HHsCRP (vs. Non-HHsCRP)

 Total Effect (OR) 1.497(1.218–1.776) 0.0005 1.560(1.210–1.909) 0.002

 Natural Direct Effect (OR) 1.318(1.085–1.552) 0.0076 1.386(1.090–1.682) 0.011

 Natural Indirect Effect (OR) 1.136(1.069–1.203) < 0.001 1.125(1.047–1.203) 0.002

 Percentage Mediated (%) 36.02(18.78–53.25) < 0.001 30.99(13.16–48.83) 0.001

Continuous scale, Per SD in Ln HsCRP

 Total Effect (OR) 1.360(1.266–1.455) < 0.001 1.349(1.237–1.461) < 0.001

 Natural Direct Effect (OR) 1.213(1.132–1.293) < 0.001 1.205(1.109–1.301) < 0.001

 Natural Indirect Effect (OR) 1.122(1.095–1.149) < 0.001 1.120(1.088–1.152) < 0.001

 Percentage Mediated (%) 40.93(31.40–50.46) < 0.001 41.34(29.58–53.09) < 0.001
Note: Adjusted for age group, gender, occupation, education, monthly income, current smoking, current drinking, physical activity, ASCVD, liver, kidney, and thyroid 
dysfunction

Abbreviations: CVRF, cardiovascular risk factors; MetS, metabolic syndrome; BMI, body mass index; UA, uric acid; HUA, hyperuricemia; Ln HCY, natural logarithm of 
homocysteine; HHCY, hyperhomocysteinemia; Ln HsCRP, natural logarithm of hypersensitive C-reactive protein; HHsCRP, high hypersensitive C-reactive protein; 
ASCVD, arteriosclerotic cardiovascular disease; SD, standard deviation; OR, odds ratio; CI, confidence interval
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impair the body’s ability to produce and use HDL-C, 
thereby increase the risk of dyslipidemia [84].

Elevated HsCRP, a marker of inflammation, is pro-
duced in response to inflammation [44]. Elevated HsCRP 
could be involved in MetS by promoting insulin resis-
tance, increasing oxidative stress and inflammation, and 
contributing to dyslipidemia [76]. HsCRP could inhibit 
adiponectin activity, an important hormone that helps 
regulate metabolism and is associated with MetS [85]. 
HsCRP has also been associated with changes in gut 
microbiome, which could lead to metabolic dysfunction 
and thus cause MetS [86].

Strengths and limitations
Strengths of this study include the large naturally elderly 
population (4360 analysis sample), the high degree of 
participant cooperation (91.7%), the availability of self-
reported information and measurement factors for risk 
estimation, and the retrospective validation of medical 
records for disease and medication history. Additionally, 

relatively comprehensive analytical approaches, multivar-
iate adjustment strategies, and various scales of relevant 
variables were used to test the reliability of the resulting 
associations.

Limitations of this study equally could not be ignored. 
First, due to the observational design, causal inferences 
could not be made for associations of non-traditional 
CVRF and BMI with MetS, particularly the mediating 
role played by the BMI change trajectory. Second, despite 
model adjustment for most covariates, residual con-
founders were unavoidable, particularly because nutri-
tional food intake effectively altered HUA, HHCY, and 
inflammation. In randomized controlled trials of folic 
acid, vitamin B6 and vitamin B12 supplements involved 
in HCY metabolism, no clinically significant benefits 
were found, so the veracity of these associations is ques-
tionable [87]. Third, the generalisability of the findings 
to other characterised populations was limited by the 
homogeneity of the participants in this study, i.e. poorly 
educated, predominantly physically active, and mostly 

Table 4 Joint association of non-traditional CVRF and BMI with MetS
Unadjusted model Adjusted model
OR(95%CI) P-value OR(95%CI) P-value

Non-HUA Underweight 0.527(0.338–0.822) 0.005 0.472(0.274–0.811) 0.007

Normal weight 1.000 [ref.] 1.000 [ref.]

Overweight 2.768(2.385–3.212) < 0.001 2.938(2.453–3.520) < 0.001

Obese 5.130(4.098–6.422) < 0.001 4.931(3.765–6.457) < 0.001

HUA Underweight 4.243(1.324–13.595) 0.015 4.753(1.344–16.811) 0.016

Normal weight 1.281(0.940–1.745) 0.117 1.392(0.956–2.026) 0.084

Overweight 3.746(2.845–4.931) < 0.001 5.860(4.059–8.461) < 0.001

Obese 6.001(3.892–9.252) < 0.001 6.148(3.707–10.194) < 0.001

Non-HHCY Underweight 0.780(0.463–1.316) 0.352 0.690(0.362–1.314) 0.259

Normal weight 1.000 [ref.] 1.000 [ref.]

Overweight 2.993(2.470–3.628) < 0.001 3.014(2.398–3.789) < 0.001

Obese 5.366(4.024–7.155) < 0.001 5.221(3.706–7.356) < 0.001

HHCY Underweight 0.594(0.325–1.086) 0.091 0.703(0.346–1.430) 0.331

Normal weight 1.072(0.877–1.310) 0.498 1.258(0.977–1.620) 0.075

Overweight 2.817(2.323–3.416) < 0.001 3.989(3.107–5.121) < 0.001

Obese 5.235(3.929–6.975) < 0.001 5.746(4.064–8.123) < 0.001

Non-HHsCRP Underweight 0.626(0.396–0.990) 0.045 0.595(0.338–1.047) 0.072

Normal weight 1.000 [ref.] 1.000 [ref.]

Overweight 2.560(2.195–2.985) < 0.001 2.931(2.429–3.537) < 0.001

Obese 4.592(3.657–5.767) < 0.001 4.399(3.357–5.765) < 0.001

HHsCRP Underweight 1.067(0.377–3.015) 0.903 1.288(0.409–4.059) 0.665

Normal weight 1.096(0.816–1.471) 0.542 1.271(0.901–1.793) 0.172

Overweight 3.876(2.960–5.075) < 0.001 4.026(2.906–5.580) < 0.001

Obese 6.578(4.257–10.162) < 0.001 7.717(4.508–13.210) < 0.001
Note: Adjusted for age group, gender, occupation, education, monthly income, current smoking, current drinking, physical activity, ASCVD, liver, kidney, and thyroid 
dysfunction

Considering ordinal BMI, interactions of abnormal status of non-traditional CVRF and BMI were more interested. Additive interaction RERI(95%CI): HUA + abnormal 
BMI: 2.521(0.793–4.250); HHCY + abnormal BMI: 0.589(-0.182-1.360); HHsCRP + abnormal BMI: 1.255(0.028–2.483). Multiplicative interaction OR(95%CI): HUA * 
abnormal BMI: 1.408(0.881–2.250); HHCY * abnormal BMI: 1.002(0.734–1.368); HHsCRP * abnormal BMI: 1.187(0.767–1.837)

Abbreviations: CVRF, cardiovascular risk factors; MetS, metabolic syndrome; BMI, body mass index; UA, uric acid; HUA, hyperuricemia; HCY, homocysteine; HHCY, 
hyperhomocysteinemia; HHsCRP, high hypersensitive C-reactive protein; ASCVD, arteriosclerotic cardiovascular disease; RERI, relative excess risk due to interaction; 
OR, odds ratio; CI, confidence interval
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hypertensive. Finally, due to the nature of post hoc sub-
group analyses, sample sizes for individual subgroups 
were not calculated prior to data collection, which might 
lead to undercounting of participants and events, and 
therefore results should be interpreted cautiously.

Conclusions
High prevalence of MetS and HHCY, and relatively low 
prevalence of HUA and HHsCRP were observed in the 
Chinese elderly population. HUA, HHCY, and HHsCRP 
were all  significantly and independently associated with 
MetS, and these associations remained stable in most 
demographic subgroups. This supports the potential 
of focusing on non-traditional CVRF interventions for 
preventing and controlling MetS. BMI played moderate 
mediating roles in associations between non-traditional 

CVRF and MetS, hinting at the clinical benefit of weight 
loss for reducing MetS risk in non-traditional CVRF 
interventions. The higher risk of MetS was found in par-
ticipants with abnormal non-traditional CVRF and over-
weight/obesity, but MetS risk was not significant when 
weight was normal, even with abnormal non-traditional 
CVRF. This highlights the protection of maintaining nor-
mal weight to regulate CVRF. The above findings warrant 
further exploration in prospective studies.

Fig. 2 Association of non-traditional CVRF with MetS in demographic subgroups. A: HUA; B: HHCY; C: HHsCRP. After excluding specific demographic 
confounders included at the time of specific subgroup analysis, adjusted for age group, gender, occupation, education, monthly income, current smok-
ing, current drinking, physical activity, ASCVD, liver, kidney, and thyroid dysfunction. Abbreviations: CVRF, cardiovascular risk factors; MetS, metabolic 
syndrome; HUA, hyperuricemia; HHCY, hyperhomocysteinemia; HHsCRP, high hypersensitive C-reactive protein; ASCVD, arteriosclerotic cardiovascular 
disease; CI, confidence interval
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Abbreviations
ALT  alanine aminotransferase;
AST  aspartate aminotransferase;
ASCVD  arteriosclerotic cardiovascular disease;
BMI  body mass index;
CI  confidence interval;
CVRF  cardiovascular risk factors;
DBP  diastolic blood pressure;
FPG  fasting plasma glucose;
GFR  glomerular filtration rate;
HCY  homocysteine;
HDL-C  high-density lipid cholesterol;
HHCY  hyperhomocysteinemia;
HHsCRP  high hypersensitive C-reactive protein;
HUA  hyperuricemia;
IQR  interquartile range;
LDL-C  low-density lipid cholesterol;
Ln  natural logarithm;
MetS  metabolic syndrome;
OR  odds ratio;

RERI  relative excess risk due to interaction;
SBP  systolic blood pressure;
SD  standard deviation;
SHECH  Shanghai Elderly Cardiovascular Health;
TC  total cholesterol;
TG  triglyceride;
TSH  thyroid stimulating hormone;
UA  uric acid;
WC  waist circumference
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