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Abstract
Background  This study aimed to develop cardiovascular disease (CVD) risk equations for Chinese patients with 
newly diagnosed type 2 diabetes (T2D) to predict 10-, 20-, and 30-year of risk.

Methods  Risk equations for forecasting the occurrence of CVD were developed using data from 601 patients with 
newly diagnosed T2D from the Da Qing IGT and Diabetes Study with a 30-year follow-up. The data were randomly 
assigned to a training and test data set. In the training data set, Cox proportional hazard regression was used to 
develop risk equations to predict CVD. Calibration was assessed by the slope and intercept of the line between 
predicted and observed probabilities of outcomes by quintile of risk, and discrimination was examined using Harrell’s 
C statistic in the test data set. Using the Sankey flow diagram to describe the change of CVD risk over time.

Results  Over the 30-year follow-up, corresponding to a 10,395 person-year follow-up time, 355 of 601 (59%) patients 
developed incident CVD; the incidence of CVD in the participants was 34.2 per 1,000 person-years. Age, sex, smoking 
status, 2-h plasma glucose level of oral glucose tolerance test, and systolic blood pressure were independent 
predictors. The C statistics of discrimination for the risk equations were 0.748 (95%CI, 0.710–0.782), 0.696 (95%CI, 
0.655–0.704), and 0.687 (95%CI, 0.651–0.694) for 10-, 20-, and 30- year CVDs, respectively. The calibration statistics for 
the CVD risk equations of slope were 0.88 (P = 0.002), 0.89 (P = 0.027), and 0.94 (P = 0.039) for 10-, 20-, and 30-year CVDs, 
respectively.

Conclusions  The risk equations forecast the long-term risk of CVD in patients with newly diagnosed T2D using 
variables readily available in routine clinical practice. By identifying patients at high risk for long-term CVD, clinicians 
were able to take the required primary prevention measures.
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Background
Reducing the cardiovascular disease (CVD) burden 
in diabetes mellitus is a major clinical imperative that 
should be prioritized in order to reduce premature death, 
improve quality of life, reduce individual economic bur-
dens of associated morbidities, and reduce the high cost 
of medical care [1]. CVD is a major cause of mortality 
and disability in diabetes, especially in those with type 2 
diabetes (T2D) who have a 2–4 fold increase in the risk 
for CVD when compared with the general population 
without diabetes [2]. Therefore, risk prediction models 
are needed for identifying patients with T2D at high risk 
for CVD, which is an important strategy in the primary 
prevention of CVD.

Several CVD risk prediction models for patients with 
T2D have been developed to assist clinicians in estimat-
ing patient CVD risk and tailoring management to the 
needs of patients. Most of these models, however, were 
developed using data from predominantly Caucasian 
participants and do not perform well when applied to 
Chinese patients with T2D due to the ethnic differences 
in the prevalence of CVD events [3, 4]. For example, the 
Chinese population has a lower risk of coronary heart 
disease and heart failure than Caucasians, but a higher 
risk of stroke [5]. Such differences in prevalence may 
be explained by the differences in lifestyle behaviours, 
genetic factors, and environmental influences [6]. More-
over, a study highlighted that the risk prediction models 
developed from studies in one country or ethnic popula-
tion might not be suitable for another country or ethnic 
population; therefore, localised risk prediction models 
should be developed [7]. Although some CVD risk pre-
diction models have been published for Chinese with 
T2D, these models are inadequate because they focused 
on 5-year or 10-year follow-ups with a modest discrim-
inative ability [8, 9]. Therefore, a robust model to accu-
rately predict long-term CVD risk in Chinese T2D is 
still lacking and urgently needed to enable accurate risk 
stratification and management to prevent CVD compli-
cations in the world’s largest T2D population. Therefore, 
this study aimed to develop models to predict the 10-, 
20-, and 30-year risk of CVD using datasets from the Da 
Qing IGT and Diabetes Study.

Methods
Study design and participants
The design and methods used in the Da Qing IGT and 
Diabetes Study have been reported elsewhere [10–12]. 
Briefly, 110,660 residents aged 25–74 years were selected 
as eligible for resident screening for diabetes in 1986. 
Finally, 3,956 participants received a 75-g oral glucose 
tolerance test (OGTT) which included the measure-
ments of plasma glucose concentrations at fasting, after 
1-h, and after 2-h. Based on the WHO criteria of 1985 

[13], 630 participants were identified as newly diagnosed 
type 2 diabetes (T2D). The participants were required to 
undergo a baseline examination that included systolic 
(SBP) and diastolic (DBP) blood pressure, body mass 
index (BMI), a 12-lead electrocardiogram, plasma lipids, 
and OGTT. Details of the baseline examination were pre-
viously described [14, 15]. All the newly diagnosed T2D 
were informed of their diagnosis and received a guideline 
of available clinical treatment in the local clinic. Written 
informed consent was obtained from all study partici-
pants and proxy informants for the deceased. The study 
was approved by the WHO and China-Japan Friendship 
Hospital’s Institutional Review Board.

Of the 630 newly diagnosed T2D participants who 
underwent baseline examination in 1986, we excluded 
19 who had missing information at baseline examination, 
and 10 with a known history of cardiovascular disease at 
enrolment. Finally, 601 participants were included in the 
study.

Follow-up and cardiovascular events
All participants were tracked from their enrolment to the 
onset of CVD. Data were collected by personal interview, 
clinical examination, by trained staff for living partici-
pants, while a living spouse, sibling, or child were inter-
viewed for the deceased with standardised questionnaires 
for the proxy informants. Those unable to attend the hos-
pital because of ill health or living outside of Da Qing city 
were examined at home, interviewed by telephone, and 
examined in local hospitals. Data were then verified by 
review of the medical records and death certificate. CVD 
events were defined as the first occurrence of non-fatal 
or fatal myocardial infarctions, sudden death, and non-
fatal or fatal stroke. The earliest date of recognition of the 
CVD event from medical records, interviews, or the 20- 
and 30-year follow-up examinations was used to define 
the onset of CVD. First occurrence of CVD of 355 par-
ticipants were reported by December 31, 2016. Moreover, 
we could infer the CVD status at the 10-year follow-up 
based on the onset date of CVD.

Statistical analysis
Participants’ characteristics are shown as the mean 
(± standard deviation) for quantitative parameters and as 
a percentage for categorical variables. Descriptive statis-
tics were compared between participants who developed 
CVD or never developed CVD within a 30-year follow-
up. ANOVA tests and χ2 tests were used for normally 
distributed continuous variables and categorical vari-
ables, separately. CVD incidence rates were calculated 
by dividing the sum of the events by the sum of person-
years. The participants’ follow-up person-years were cal-
culated from date of enrolment to the first onset of CVD.
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The data were randomly assigned to two subsamples of 
roughly equal sizes: the training dataset (n = 300) and the 
test dataset (n = 301). Cox proportional hazard regres-
sion with the step forward algorithm was used to select 
predictors at baseline for incident CVD as long as the 
Akaike information criterion fell by at least the num-
ber of extra parameters. Finally, the prediction model 
included the baseline variables of age, sex, smoking sta-
tus, plasma glucose levels 2 h after the oral glucose toler-
ance test (2 h-PG), and SBP. All the continuous variables 
were naturally logarithmically transformed to improve 
the discrimination and calibration of the models and to 
minimise the influence of extreme observations.

Based on Cox proportional hazard regression, the 
risk score was =X1 × β1 + X2 × β2 · · · + Xn × βn . The 
probability of CVD over j years was: CVD risk prob-
ability = 1 − S (j)exp(riskscore−meanoftheriskscore), where 
X1, X2, · · ·Xn  were baseline predictors and β1, β2, · · ·βn  
were the estimated coefficients of baseline predictors, 
and S (j) was the survival probability over j years when 
the risk equation took the value of its mean.

We evaluated the ability of the risk prediction model to 
discriminate participants who experience a CVD event 
from those who do not, using an overall C statistic [16] 
in the test set, expanding on a suggestion by Harrell et 
al. [17]. The C statistic is analogous to the area under the 
receiver-operating characteristic curve. Bootstrapping 
was performed 200 times for the estimation of the 95% 
confidence intervals for the C statistic. We evaluated the 
calibration through the slope and intercept of the line 
between predicted and observed probabilities of each 
outcome by the quintile of risk [18].

Sankey flow diagrams [19] is a data visualisation tech-
nique that emphasises flow/movement/change from one 
state to another or one time to another, which is popular 
in economics, business, and science to examine complex 
multi-step processes. We used the Sankey flow diagrams 
to visualise the CVD risk of patients over time to identify 
patients at high risk who needed primary prevention.

R software version 4.1.0 were used for all statistical 
analyses. A 2-tailed with P < 0.05 was set for the statistical 
significance level.

Results
Baseline characteristics
During the 30-year follow-up, corresponding to 10,395 
person-years of follow-up time, 59% (355/601) of partici-
pants had a first CVD incident, conferring an incidence 
of 34.2 per 1,000 person-years. The mean age was 48.3 
years (SD = 8.7), and 52.1% (313/601) participants were 
females. First CVDs were occurred in 107 (18%), 271 
(45%), and 355 (59%) participants of 10-, 20-, and 30-year 
follow-ups, respectively. The baseline characteristics of 
people who progressed to CVD or never developed CVD 

within the 30-year follow-up were shown in Table 1. The 
participants who developed CVD were more likely to 
be male, older, with elevated CVD risk profiles such as 
smoking, elevated plasma glucose levels 1 h after the oral 
glucose tolerance test, and elevated SBP and DBP.

Developing CVD risk equations in participants with newly 
diagnosed T2D
The multivariable-adjusted regression coefficients and 
hazard ratios for incident CVD events were presented in 
Table 2. The CVD risk equations included standard car-
diovascular risk factors such as age, sex, smoking status, 
2  h-PG, and SBP. We observed statistically significant 

Table 1  Baseline characteristics of participants who progressed 
to CVD or never developed CVD within the 30-year follow-up

No CVD Incident 
CVD

P

N (%) 246 
(40.9%)

355 (59.1%)

Sex (male, %) 104 
(42.3%)

184 (51.8%) 0.026

Age (years) 46.9 (9.78) 49.2 (7.79) 0.001

BMI (kg/m2) 25.2 (3.70) 25.8 (3.55) 0.051

Current smoker (%) 71 
(28.9%)

138 (38.9%) 0.014

Fasting plasma glucose (mmol/L) 8.3 (2.9) 8.8 (3.1) 0.055

1 h-PG (mmol/L) 15.7 (3.4) 16.3 (3.5) 0.029

2 h-PG (mmol/L) 15.0 (3.5) 15.5 (3.7) 0.153

Systolic Blood Pressure (mm Hg) 131.9 
(22.0)

138.0 (24.8) 0.002

Diastolic Blood Pressure (mm Hg) 85.7 (13.8) 89.8 (14.6) 0.001
Data presented as mean (SD) for continuous variables or n (%) for categorical 
variables. CVD, cardiovascular disease; BMI, body mass index; 1 h-PG /2 h-PG, 
venous plasma glucose concentration 1 and 2  h after 75  g oral glucose load, 
respectively

Table 2  Regression coefficients and hazard ratios for the CVD 
risk prediction model
Variables Beta P Haz-

ard 
Ratio

95% 
CI

S0(10) = 0.812

S0(20) = 0.487

S0(30) = 0.279

Sex (male) 0.26 0.028 1.3 (1.02–
1.64)

Log of age 2.36 < 0.001 10.58 (5.31–
21.07)

Current smoker 0.22 0.076 1.24 (0.98–
1.58)

Log of 2 h-PG 0.94 < 0.001 2.56 (1.63–
4.02)

Log of systolic blood pressure 1.37 < 0.001 3.95 (2.01–
7.78)

S0(10), the average survival probability of the participants in 10-year; S0(20), the 
average survival probability of the participants in 20-year; S0(30), the average 
survival probability of the participants in 30-year
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relations of most risk factors in Table  2. The developed 
CVD risk score was 0.26 × sex (1 for male) + 2.36 × loge 
(age) + 0.22 × current smoker (1 for yes) + 0.94 × loge 
(OGTT 2h plasma glucose ) + 1.37 × loge (systolic blood 
pressure). The average survival s0  at 10-, 20-, and 30- year 
follow-up times were 0.812, 0.487, and 0.279, respec-
tively. The risk probability of CVD = 1 − s

exp(riskscore−8.21)
0

. The discrimination and calibration of CVD risk equa-
tions were moderate. The C statistics of discrimination 
for the risk equations were 0.748 (95%CI, 0.710–0.782), 
0.696 (95%CI, 0.655–0.704), and 0.687 (95%CI, 0.651–
0.694) for 10-, 20-, and 30-year CVDs, respectively. The 
calibration statistics for the CVD prediction equations 
of slope were 0.88 (P = 0.002), 0.89 (P = 0.027), and 0.94 
(P = 0.039) for 10-, 20-, and 30-year CVDs, respectively, 
indicating relative goodness of fit.

The progression of CVD risk over time
Through the CVD risk equations developed in this study, 
the CVD risk score could be calculated for every par-
ticipant in 10-, 20-, and 30-year follow-ups, respectively. 
Based on the risk population proportion [20] and the 
prevalence of CVD with 18% (107/601) in 10-year follow-
ups in this study, participants with a 10-year CVD risk 
score ≥ 20% were assigned to the high-risk group; those 
with a 10-year CVD risk score of < 10% were assigned 
to the low-risk group based on the published study [21]; 
and those with a risk score between 10% and 20% were 
assigned to the intermediate-risk group (Fig. 1).

We repeated a similar method while processing CVD 
risk scores of 20- and 30-year follow-ups. The preva-
lence of CVD with 45% in 20-year follow-ups in this 
study, therefore, participants with a 20-year CVD risk 
score ≥ 45% were assigned to high-risk group. The CVD 
risk score of 20 years with thresholds < 35%, and 35–45% 
were assigned to the low-risk, intermediate-risk based on 
the risk population proportion [20], respectively. In the 
same way, the CVD risk score of 30 years with the thresh-
olds < 50%, 50–60%, and > 60% were assigned to the low-
risk, intermediate-risk, and high-risk groups, respectively 
(Fig. 1).

Based on the definitions of high-, intermediate-, and 
low- risk of 10-year CVD risk score, 233 participants, 
238 participants, and 130 participants were assigned 
to 10-high-risk group, 10-intermediate-risk group, and 
10-low-risk group, separately. Meanwhile, there were 380 
participants in the 20-high-risk group, 88 participants in 
the 20-intermediate-risk group, and 133 participants in 
the 20-low-risk group. Moreover, 459 participants were 
assigned to 30-high-risk group, 64 participants were 
assigned to 30-intermediate-risk group, and 78 partici-
pants were assigned to 30-low-risk group. Through the 
number of high-risk participants, the CVD risk equations 
may overestimate the risk of CVD in newly diagnosed 

T2D population. Through the Sankey flow diagrams in 
Fig. 1, the high-risk group (n = 233) in 10-year follow-up 
remained high risk over 20- and 30-year follow-ups and 
needed to take primary prevention when diagnosed, fol-
lowed by 235 of 238 participants in the intermediate-risk 
group who developed high risk in 30-year follow-ups and 
were overlooked in published CVD risk models because 
of not high-risk participants in risk models.

Discussion
We developed risk equations to predict 10-, 20-, and 
30-year CVD risk in participants with newly diagnosed 
T2D aged 25–74 years using data commonly available in 
clinical practice, such as age, sex, smoking status, 2 h-PG, 
and SBP. To our knowledge, these are the first long-term 
CVD risk equations developed in China. They are based 
on longer follow-up data and more comprehensively 
capture the progression of CVD. Our risk equations are 
based on newly diagnosed T2D patients without previous 
CVD events, and the models predict the risk of CVD as a 
primary event.

In terms of model discrimination and calibration, the C 
statistics were 0.748 (95%CI, 0.710–0.782), 0.696 (95%CI, 
0.655–0.704), and 0.687 (95%CI, 0.651–0.694) and the 
calibration statistics for CVD prediction equations of 
slope were 0.88 (P = 0.002), 0.89 (P = 0.027), and 0.94 
(P = 0.039) for 10-year CVD, 20-year CVD, and 30-year 
CVD, respectively. Through the Sankey flow diagram, 
we observed the risk scores of CVD over time and iden-
tified patients at high risk of CVD in 30 years for early 
prevention.

Although the Chinese Multi-provincial Cohort Study 
and the China-PAR project had developed 10-year CVD 
risk prediction models for Chinese individuals to guide 
the prevention of CVD [22, 23], the study populations 
were the general population and not for individuals with 
T2D. Therefore, our focus was on T2D to develop the 
CVD risk prediction equations. Some published CVD-
related models focused on the 5-year or 8-year follow-
up in Chinese with T2D [3, 24, 25] and cannot predict 
the long-term CVD risk. However, we developed 10-, 
20-, and 30-year CVD risk prediction equations that 
can predict the long-term CVD risk of patients with 
T2D. Through the long-term CVD risk prediction equa-
tions, we can implement the stratified management and 
advanced prevention of CVD in patients with newly 
diagnosed T2D. Treatment target recommendations 
regarding the risk factor control may need to be more 
aggressive in participants who have been identified as 
high-risk for CVD in either 10-, 20-, or 30-year follow-
ups. This group of patients was focused on by clinicians 
and entailed much spending of medical resources. More-
over, patients who have been assigned to intermediate-
risk for 10-year CVD risk and developed high risk in 20-, 
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and 30-year periods were advised to maintain a healthy 
glycaemic level, lose weight, and increase physical activ-
ity to lower the risk of CVD with an appropriate expen-
diture of medical resources. Moreover, participants who 
were assigned to intermediate risk at 10 and 20 years and 
developed high-risk at 30 years also needed to step up 
exercise and to keep glycaemia, blood pressure and lip-
ids on target, and reduce body weight if obese. To some 
extent, with the help of the CVD risk equations, patients 
with newly diagnosed and long-standing diabetes can 
reduce their CVD risk by maximizing the utilization of 
clinical resources [26, 27]. From a national perspective, 
China has the highest number of people with diabetes 
worldwide, and patients with diabetes who were assigned 
to low- and intermediate-risk at 30 years were advised to 
maintain their existing drug treatments and lifestyle, and 
other patients took precision treatments. In this way, the 
CVD risk equation can reduce national health insurance 
costs.

We observed differences of 1 h-PG in baseline between 
participants who developed CVD and did not develop 
CVD. Moreover, the performance of the predictive mod-
els using 2  h-PG or 1  h-PG as a predictor was similar 
(Additional file 1: Table S1 ) which demonstrated that 
1 h-PG also needed strict control. In addition, some stud-
ies showed that 1 h-PG predictive performance was simi-
lar to 2 h-PG in the prediction of T2D, complications and 
mortality [28, 29]. Based on the evidence from this study 

and the results of published studies [28, 29], we showed 
the 1  h-PG as a predictor in additional file 1 Table S1 . 
This study emphasized the significance of 1 h-PG, which 
was frequently ignored and undervalued by clinicians. To 
facilitate the promotion of the model, we also showed the 
CVD risk equations which included 1 h-PG in additional 
file 1 Table S2 . It has been established that lipid informa-
tion, especially low-density lipoproteins, are important 
predictors for CVD [30, 31]. However, this study lacked 
the measurement of related indicators which was a major 
limitation. Without using blood lipid information, our 
CVD risk prediction models achieved moderate discrimi-
nation, which indicated a potentially wider use based on 
the five easy-access predictors.

Through the performance of CVD risk models, the 
performance of CVD risk equations of 20-, and 30-years 
has declined. The possible reason being that the predic-
tive ability of the baseline for long-term CVD was weak, 
and intermediate variables or drugs need to be added to 
improve the predictive ability. Although the performance 
to predict CVD risk at 20- and 30-years was moderate, 
the study provided a tool for long-term CVD prediction 
and showed the CVD risk change over time.

This study has some limitations. First, we did not vali-
date the CVD risk prediction models in an external 
dataset of T2D to evaluate the performance. The exter-
nal dataset of T2D with a 30-year follow-up was lack-
ing, which limited the validation of CVD risk prediction. 

Fig. 1  Changes in the participants with low, intermediate, and high risks of CVD over time. 10-low-risk, 130 participants with the lower risk of CVD events 
in a 10-year follow-up in which the risk score is < 10%; 10-intermediate-risk, 238 participants with the intermediate risk of CVD events in a 10-year follow-
up in which the risk score is between 10% and 20%; 10-high-risk, 233 participants with the higher risk of CVD events in a 10-year follow-up in which the 
risk score is > 20%. The definitions of 20-low-risk, 20-intermediate-risk, 20-high-risk are similar with the 10-year with the thresholds of < 35%, 35-45%, > 
45%, separately. There are 380 participants in 20-high-risk groups, 88 participants in 20-intermediate-risk group, 133 participants in 20-low-ris group. In 
the same way, 459 participants with the risk score > 60% were assigned to the 30-high-risk group, 64 participants with the risk score between 50% and 
60% were assigned to the 30-intermediate-risk group, and 78 participants with the risk score < 50% were assigned to the 30-low-risk group
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Second, the CVD risk equation did not include lipid 
information because of lacking the measures of low-den-
sity lipoproteins and the 25% missing rate of triglyceride; 
however, the performance of the risk equation was good 
and may have a wider application in clinical manage-
ment. Third, although the smoking status was not signifi-
cant in the model, the smoking status was included in the 
CVD risk equation model which was very important for 
CVD events. Smoking status was a risk factor for CVD 
events in the univariate model, however, after adjusting 
for age and sex, smoking status was not significant risk 
factor for CVD events. The reason for the smoking status 
not being significant was that sex, age and smoking status 
have some degree of correlation. Future research will ver-
ify the performance of this model in an external valida-
tion set, and further promote this model for clinical use.

Conclusions
This study developed long-term CVD risk equations 
for Chinese patients with newly diagnosed T2D with 
a 30-year follow-up. It offers a useful tool for the clini-
cian faced with the increasing prevalence of CVD in T2D. 
It will aid decision-making to provide early appropriate 
action to decrease the risk of adverse outcomes as well as 
aid health service planning.
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