
Afsaneh et al. 
Diabetology & Metabolic Syndrome          (2022) 14:196  
https://doi.org/10.1186/s13098-022-00969-9

REVIEW

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Diabetology &
Metabolic Syndrome

Recent applications of machine learning and 
deep learning models in the prediction, 
diagnosis, and management of diabetes: 
a comprehensive review
Elaheh Afsaneh1, Amin Sharifdini2, Hadi Ghazzaghi2 and Mohadeseh Zarei Ghobadi1* 

Abstract 

Diabetes as a metabolic illness can be characterized by increased amounts of blood glucose. This abnormal increase 
can lead to critical detriment to the other organs such as the kidneys, eyes, heart, nerves, and blood vessels. Therefore, 
its prediction, prognosis, and management are essential to prevent harmful effects and also recommend more useful 
treatments. For these goals, machine learning algorithms have found considerable attention and have been devel-
oped successfully. This review surveys the recently proposed machine learning (ML) and deep learning (DL) models 
for the objectives mentioned earlier. The reported results disclose that the ML and DL algorithms are promising 
approaches for controlling blood glucose and diabetes. However, they should be improved and employed in large 
datasets to affirm their applicability.
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Introduction
Diabetes is a chronic metabolic disease that happens 
when the blood glucose is higher than usual. It has been 
predicted that the number of diabetic patients would 
reach about 642 million in 2040 [1]. Diabetes is catego-
rized into three common types, namely, Type 1 Diabe-
tes Mellitus (T1DM), Type 2 Diabetes Mellitus (T2DM), 
and Gestational Diabetes Mellitus (GDM). The men-
tioned categories are specified by dysregulation of pro-
tein metabolism, lipid, and carbohydrate [2]. In addition, 
there are some other particular kinds of diabetes such as 
maturity-onset diabetes of the young, neonatal diabetes, 
and also diabetes due to some diseases like the exocrine 
pancreas, and chemical- or drug-induced diabetes [3].

T1DM is classified as a chronic autoimmune disease 
that is a result of elevated blood glucose levels (hyper-
glycemia; glucose levels > 180 mg/dL) [4]. It causes insu-
lin deficiency that arises from the loss of the pancreatic 
islet β-cells [5]. Previously, T1DM has been noticed as 
a disorder for children and adolescents, however, age at 
the symptomatic beginning has not been considered a 
limiting factor over the past decade [6]. T1DM is con-
nected with the attendance of autoantibodies several 
years before the start of symptoms since they can be 
regarded as a biomarker of autoimmunity. The autoan-
tibodies representing T1DM target insulin, zinc trans-
porter 8 (ZNT8)6–8, or insulinoma-associated protein 
2 (IA2). T1DM as a polygenic illness is impressed by 
environmental agents. In addition, genetic risk fac-
tors are essential but not adequate. People with HLA 
genotypes of HLADQ and HLADR have an elevated 
risk of progressing T1DM [4, 7, 8]. Classic signs of 
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hyperglycemia are generally comprising weight loss, 
polydipsia, abdominal symptoms, polyuria, ketoacido-
sis, and headaches. The American Diabetes Association 
(ADA) introduced the diagnostic criteria for diabetes 
mellitus in 2016 [9]. They rely on symptoms of abnor-
mal glucose metabolism such as insulinogenic and evi-
dence of βcell-targeted autoimmunity, irrespective of 
age and diabetes type. If patients show clinical signs 
of T1DM without the presence of autoantibodies, the 
ADA diagnoses it as a group of idiopathic T1DM [4]. 
Furthermore, multiple environmental factors including 
the timing of the first introduction of food [10], viral 
infections [11], and gestational infections [12] can con-
tribute to the development of T1DM.

T2DM is the most common type of diabetes so that it 
develops in more than 90% of all cases. The main reason 
for developing T2DM is the impaired secretion of insulin 
by pancreatic β‑cells, generally because of insulin resist-
ance in adipose tissue 1 (BOX 1), liver, skeletal muscle, 
and liver [13].

Prediabetes occurs before hyperglycemia, which is 
a high-risk situation that predisposes subjects to the 
development of T2DM. Prediabetes can be determined 
by one of the following conditions: elevated glycated 
Hemoglobin A1c (HbA1c) levels, Impaired Fasting Glu-
cose (IFG) levels, and Impaired Glucose Tolerance (IGT). 
Cases with IFG levels are specified by Fasting Plasma 
Glucose (FPG) measures greater than normal. IGT is 
characterized by impaired late insulin secretion after a 
meal and insulin resistance in muscles [14]. People with 
prediabetes have HbA1c amounts between 5.7 and 6.4%. 
The rates of annual conversion of prediabetes to T2DM 
are from 3 to 11% per year [2, 15].

T2DM is heritable and the probable risk of getting 
T2DM is higher among siblings of a T2DM patient than 
in families without any T2DM patient [16]. The risk of 
getting T2DM is higher when the mother has this dis-
ease in comparison with when the father has it. Also, 
the risk of T2DM is noticeably elevated with a non‑nor-
mal fasting glucose concentration of > 5.5 mmol.l–1 or a 
body mass index (BMI) of ≥ 30 [17]. The genetic stud-
ies revealed a Single‑Nucleotide Polymorphism (SNP) 
in TCF7L2, CDKAL1, SLC30A8, CDKN2A, FTO, 
HHEX, CDKN2B, GCKR, IGF2BP2, and many others 
in T2DM cases. However, these genetic variants only 
elevate the risk by 10–20% [2]. T2DM detection can be 
assessed based on FPG levels, increased plasma glucose 
test, 2‑hour post‑glucose‑load glucose level, or HbA1c. 
Moreover, there is a linear correlation between cardio-
vascular disease and glycemia with no obvious thresh-
old. The risk of developing distal symmetric peripheral 
polyneuropathy and diabetic nephropathy is raised with 

hyperglycemia lower than those accompanied by diabetic 
retinopathy [18].

The US Preventive Services Task Force (USPSTF) rec-
ommended that adults higher than 45 years, people who 
have a first‑degree relative with diabetes, and ones who 
are obese or overweight should be screened in early care 
settings [19]. T2DM control is complex due to many 
pathophysiological disorders and the ‘ABCDE’ conditions 
(Age, Body weight, Complications, Duration, Education 
and Expense, and Etiology) [2, 20].

Gestational diabetes mellitus is defined as any occur-
rence of hyperglycemia identified in pregnancy rang-
ing from mild IGT or IFG diagnosed in pregnancy to 
detecting higher glucose levels [21]. Several risk factors 
have been recognized for GDM including a history of 
gestational diabetes, a family history of T2DM, ethnic-
ity, advanced maternal age, lifestyle factors, and diet [22]. 
Moreover, psychosocial and environmental factors such 
as endocrine disruptors, organic pollutants, and depres-
sion in the first and second trimesters have been pro-
posed as possible risk factors for developing GDM [21]. 
Genetic factors can also be involved in progressing GDM, 
however, the data is limited and contradictory [21].

The metabolic irregularities underlying GDM com-
prise β-cell defects and elevated insulin resistance. These 
deficiencies probably exist before conception in many 
patients and are often quite asymptomatic. There is no 
unique diagnostic protocol or criteria that have been uni-
versally accepted for GDM. The International Associa-
tion of Diabetes and Pregnancy Study Groups (IADPSG) 
published several recommendations in 2010 for the 
diagnosis and classification of hyperglycemia in preg-
nancy as follows: women with equal levels of glycemia-
associated risk of detrimental pregnancy results should 
be grouped by the same procedure and the values of 
threshold blood glucose should be internationally stand-
ardized [23]. The IADPSG also recommended a ‘one-
step’ approach containing an Oral Glucose Tolerance 
Test (OGTT) at 24–28 weeks of gestation and suggested 
GDM diagnostic thresholds. It relies on an adjusted odds 
ratio amount of 1.75 for delivering an infant impressed 
by critical fetal complications of maternal hyperglycemia, 
namely, increased cord blood C-peptide levels, elevated 
size at birth, and increased adiposity. The IADPSG also 
stated that undetected T2DM in pregnant women is 
dramatically prevalent in specified populations and rec-
ommended that these individuals should be diagnosed 
preliminarily in pregnancy and categorized as ‘overt dia-
betes’ [21].

Machine learning (ML) is the application of different 
computer algorithms that can be ameliorated spontane-
ously through testing and by the utilization of data. The 
algorithms create a model that relies on sample data, 
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called training data, in order to predict or make decisions 
[24, 25]. Deep Learning (DL) is a special subcategory of 
ML which is a neural network with three or more lay-
ers [26]. Moreover, DL algorithms try to learn high-level 
secessions in data by employing hierarchical architec-
tures. The major properties of deep learning consist of 
adaptability to the features and learning from the data 
on their own. DL causes some developments including 
the fast elevating chip processing capabilities, a remark-
able decreasing the cost of computing hardware, and 
significant improvements in the ML algorithms. Particu-
larly, ML and DL algorithms have advantageous and are 
applicable in diagnosing and forecasting diseases [27, 28]. 
They typically include performing several steps. At first, 
the high-throughput data containing many features are 
introduced to the learning process. Afterward, data is 
pre-processed to remove outliers and diminish the space 
dimensionality by excluding the disjointed data or find-
ing the desired data. In the next step, the algorithms are 
developed proportional to the aim of the study. Then, 
the model is tested in external data to compute the per-
formance of the developed method using some metrics 
such as the Receiver Operating Characteristic Curve 
(ROC), the Area Under the Curve (AUC), Mean Abso-
lute Relative Difference (MARD), Root-Mean-Square 
Error (RMSE), Mean Squared Error (MSE), accuracy, 
precision, recall, F-measure, log loss, etc. Multiple ML 
and DL methods have been applied to various aspects 
of diabetes. Among them, ML approaches including 
Logistic Regression (LR), Extremely Gradient Boosting 
(XGBoost), Gradient Boosting Machine (GBM), Random 
Forest (RF), AdaBoost, Support Vector Machine (SVM), 
Least Absolute Shrinkage And Selection Operator 
(LASSO) regression, Bayesian Network (BN), K-Nearest 
Neighbor (K-NN), Artificial Neural Networks (ANNs), 
and ensemble algorithms as well as DL methods com-
prising Recurrent Neural Networks (RNNs), Long Short-
Term Memory Networks (LSTMs), Gated Recurrent 
Unit (GRU), Convolutional Neural Networks (CNNs), 
and reinforcement learning (LR) have been utilized more 
than others. Computational algorithms have been widely 
employed for handling diabetes data. However, the anal-
ysis of diabetes data is complicated because most of the 
relevant data are nonlinear, non-normal, and correlation-
structured [29]. Therefore, ML algorithms have been 
employed for controlling, classification, predicting, and 
management of diabetes.

There are several reviews that overview various 
machine learning and deep learning models for the clas-
sification of data-driven blood glucose patterns as well 
as the prediction of diabetes and hypoglycemia [30–32]. 
In this review, we survey the most recently developed 
machine learning  and deep learning algorithms for 

various aspects of prediction, diagnosis, and manage-
ment of all diabetes types in more detail. To our best 
knowledge, there is no such comprehensive review to 
overview different aspects regarding all diabetes types. 
We tried to cover the most recent published papers that 
developed and applied ML and DL methods for the fol-
lowing purposes: early diagnosis and prediction of dia-
betes; prediction of blood glucose; detection of blood 
glucose; Insulin resistance predicting models; determina-
tion of the start and effect of treatment; risk assessment 
of Diabetes; dietary and insulin dose modifications; and 
diabetes management. Table 1 summarizes some applied 
ML and DL models to construct each model. Moreover, 
the publicly available datasets are specified in bold.

Common machine learning and deep learning 
algorithms
Logistic Regression
Logistic Regression (LR) is commonly used to allocate 
observations to a distinct set of classes. It transforms 
its output by employing the logistic sigmoid function to 
evoke a probability amount. Binary (e.g. sickly or healthy) 
and multi-linear functions failsClass (e.g. healthy, pre-
disease, or sickly) are two common types of LR [19]. The 
LR can be called a linear regression model, however, it 
employs a more complicated cost function as the ‘sig-
moid or logistic function’. In ML, the sigmoid is utilized 
to map predictions to probabilities. The hypothesis of LR 
is relied on the limitation of the cost function between 
zero and one, while the linear function may have an 
amount less than zero and higher than one. Moreover, 
LR can overestimate the prediction accuracy owing to 
sampling bias. It also may lead to unfavorable accuracy 
in presence of intricate relationships between input vari-
ables [33].

Decision Tree
Decision Tree (DT) algorithm is a non-parametric algo-
rithm that can be employed for both aims of regression 
and classification problems. The tree can be defined by 
two concepts, namely decision nodes and leaves [34]. The 
leaves are the decisions or the eventual results. The deci-
sion nodes are the places where the data is split. The root 
of the tree is considered the starting point for forecast-
ing a class label for a record. Then, the amounts of the 
root attribute are compared with the record’s attribute, 
and the branch corresponding to that amount will be fol-
lowed and jump to the next node. One of the limitations 
of DTs is that they are widely labile in comparison with 
other decision predictors. A small alteration in the data 
may lead to a great alteration to the structure of the deci-
sion tree and a different outcome.
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Gradient Boosting Machine
Gradient Boosting Machine (GBM) is an ensemble deci-
sion tree based on either regression or classification tree 
models. A GBM can combine the predictions from vari-
ous DTs to give the ultimate prediction model. GBM is 
one of the strong approaches for constructing predictive 
models. Boosting assists in improving the tree’s accuracy. 
The gradient boosting approach generalizes tree boosting 
to increase speed and also interpretability. In this algo-
rithm, the models are sequentially constructed. Moreo-
ver, it is tried to decrease the faults of the prior model 
by creating a new model on the residuals or the errors of 
the former model. Gradient Boosting Regressor (GBR) 
is used for the continuous targets while Gradient Boost-
ing Classifier (GBC) is implemented for the classification 
problems. The purpose is to reduce the loss function by 
appending the feeble learners utilizing gradient descent. 
The only discrepancy between the above-mentioned 
algorithms is the loss function. GBM is highly flexible 
and customizable to any special data-driven role. More-
over, the GBMs are successful in different data-mining 
and machine-learning problems [35]. However, generally, 
boosting algorithms can lead to overfitting the outliers. 
Gradient boosting algorithm is also time-consuming and 
computationally costly.

Extremely Gradient Boosting (XGBoost)
Extremely Gradient Boosting (XGBoost) is an opti-
mized GBM learning library that employs DT as the base 
appraiser. The trees are constructed utilizing residuals, 
not the real class labels. The base appraisers are regarded 
as regression trees instead of classification trees because 
the residuals are continuous. The maximum size of the 
trees can be determined to downgrade the risk of over-
fitting. The learning rate is applied to scale the quantity 
of each tree. The probability in each step is the one of an 
event computed at a prior stage. The probability of 0.5 is 
considered the primary probability, which is employed to 
construct the initial tree. For the further trees, the for-
mer probability is measured based on primary prediction 
and predictions from all previous trees. The similarity 
score is calculated for each leaf and then the Gain is com-
puted. The node with the highest Gain is then selected as 
the best cleavage for the tree [36]. The disadvantages of 
XGBoost are its weak performance on unstructured and 
sparse data and its sensitivity to outliers because each 
classifier should resolve the errors in the predecessor 
learners.

Adaptive Boosting
Adaptive Boosting (AdaBoost) is an ensemble method. 
A decision tree with only one split is the most popu-
lar algorithm employed with AdaBoost. These trees are Ta
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sometimes called by another name, decision stumps. 
This algorithm begins by constructing a decision stump 
and then ascribing identical weights to the whole of the 
data points. Afterward, it enhances the weights for the 
misclassified points and lowers the weights for the cor-
rected classified points. The points with higher weights 
are given more significance in the further model. It can 
lead to improving the predictions that are constructed 
by the initial stump. Until achieving a lower fault, train-
ing models will be held. In AdaBoost, alteration of the 
base estimator is possible for developing the require-
ments [37]. When AdaBoost is considered a gener-
alized additive model, the logistic regression can be 
applied for the cost function which is called the Logit-
Boost algorithm. AdaBoost needs high-quality data and 
is also very susceptible to noise and outliers in data. 
The speed of AdaBoost is also lower than the XGBoost 
algorithm.

Support Vector Machine
Support Vector Machine (SVM) is a powerful algorithm 
in which a hyperplane with an N-dimensional space 
exists corresponding to the number of features for clas-
sifying the data points. Hyperplanes denote the deci-
sion boundaries used to classify the data points. The 
dimension of each hyperplane is defined regarding the 
number of variables in the dataset. Support vectors are 
data points that are near the hyperplane and impress 
the location and orientation of the hyperplane. In gen-
eral, the output of the linear function is taken in SVM. 
The output > 1 is placed in one class and the output of 
-1 is categorized in another class. This means that the 
reinforcement range of amounts (1, -1) acts as a margin. 
In the SVM approach, the margin of the classifier and 
the hyperplane should be maximized. The loss function 
that assists in the maximization of the margin is hinge 
loss. A regularization parameter is also used to balance 
the loss and margin maximization. Then, the partial 
derivatives concerning the weights are calculated to 
identify the gradients and also to update the weights. 
In the absence of misclassification, the model predicts 
the corrected class of data, and the gradient is updated 
by the regularization parameter. In the presence of 
misclassification, the model predicts wrongly the class 
of data, so the loss accompanied by the regularization 
parameter should be considered to accomplish gra-
dient update [38]. SVM employs kernel functions to 
accomplish classification on non-linear data [39]. The 
utilization of SVM in regression is known as Support 
Vector Regression (SVR). The limitations of SVM are 
computationally costly for complex and large datasets, 
low performance in noisy data and when the number 

of variables is more than the number of training data 
samples, and classifying only two classes by the generic 
algorithms [33].

Random Forest
Random Forest (RF) is an ensemble of DTs that are gen-
erally trained with the “bagging” procedure. Each tree 
in the random forest represents a class of forecasting. 
Among them, the one with the utmost vote is considered 
the model’s prediction. The hyperparameters in RF are 
employed to make a rapid model and enhance the predic-
tive power of the model. RF could be employed for both 
regression and classification problems. The major restric-
tion of RF is due to the large quantities of trees that slow 
the algorithm and it can be ineffectual for real-time pre-
dictions [40]. It is also computationally expensive and is 
sensitive to trivial alterations in the data.

Least Absolute Shrinkage and Selection Operator 
Regression
Least Absolute Shrinkage and Selection Operator 
(LASSO) is a regression approach that carries out both 
regularization and feature selection to boost the accu-
racy of prediction and interpretability of the resulting 
model. It is a common kind of regularized linear regres-
sion comprising a penalty. It results in a decrease in the 
coefficients for those input features that do not assist 
the prediction task. This penalty also causes the assign-
ing of zero values for some coefficient values and exclud-
ing some input features from the model. In addition, this 
algorithm reduces the absolute amount of the regression 
coefficients and ameliorates the accuracy of the designed 
linear regression models [41]. The main drawback of the 
LASSO method is that the regression coefficients can 
be unreliably interpretable in terms of independent risk 
factors. This is due to that it relies on the best-combined 
forecasting, not on the accuracy of the approximations.

Bayesian Networks
Bayesian Networks (BNs) are graphical models com-
prising information about the probability of relevance 
between features and assisting decision-making. The 
probability relationships can be proposed by the users 
or can be updated employing the Bayes theorem. The 
dependency of the inter-variable is shown by nodes and 
directed arcs (conditional relationships) in the shape 
of a Directed Acyclic Graph (DAG). Generally, two fac-
tors are implicated in learning a BN including structure 
learning, which contains detecting the DAG, and also 
parameter learning which includes learning regards to 
conditional probability distributions. The DAG search 
and K2 algorithms are the two most common approaches 
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for specifying the structure of the DAG. These algorithms 
ascribe equivalent previous probabilities to the DAG 
structures and seek the structure to enhance the prob-
ability of the data. This probability is called the Bayesian 
score. It is important to combine previous information 
about causal structures in the process of parameter learn-
ing [42]. The automatic learning of the graph structure 
of a BN is a problem that is followed by machine learn-
ing. One of the main limitations of BN is that there is no 
generally accepted approach for building a network from 
data. It leads to the exploitation of only casual impres-
sions by BN that are detected by its programmer.

K‑Nearest Neighbor
The K-Nearest Neighbor (K-NN) algorithm is an easy-
to-accomplishment machine learning algorithm that can 
be employed to resolve both regression and classification 
problems. K-NN attempts to forecast the true class for 
test data by computing the distance between them and all 
the training points. Next, the K number of points that are 
nearest to the test data would be chosen. The K-NN algo-
rithm computes the probability of the test data apper-
tained to the classes of ‘K’ training data and selects the 
class with the highest probability. In the case of regres-
sion, the amount is the average of the ‘K’ selected train-
ing points [43]. One of the limitations of K-NN is that it 
doesn’t make good forecasting for infrequent classes such 
as new diseases. It is also costly in terms of memory and 
time. In addition, Euclidean distance is very susceptible 
to magnitudes, so features with high magnitudes will 
weigh more than others with low magnitudes.

Artificial Neural Networks
Artificial Neural Networks (ANNs) are a series of algo-
rithms that are developed to identify patterns and clas-
sifications. ANN is identified as a feed-forward neural 
network since inputs are considered just in the forward 
orientation. ANN comprises the input, hidden, and output 
layers. The input layer embraces the inputs, the hidden one 
surveys the inputs, and also the output one generates the 
outcome. While each layer endeavors to learn the specified 
weights, ANN can learn every nonlinear function. ANNs 
are commonly recognized as general function estimators. 
One of the major causes of generic estimation is the acti-
vation function, which presents nonlinear attributes to the 
network. It aids the network to learn any complex connec-
tion between output and input. ANNs are implemented 
for classification and clustering. Particularly, they are used 
to categorize the unlabeled data based on resemblances 
among the inputs. In addition, they can help for classify-
ing the labeled data [44, 45]. Some of the limitations and 
disadvantages of ANNs are as follows: high computa-
tionally cost to construct and train a complex network, 

non-approachability of the decision-making process for 
the user, non-generalizability from limited training data, 
requiring the pre-processing of the independent variables 
or predictors, and proneness to overfitting [33, 46].

Recurrent Neural Networks
Recurrent Neural Network (RNN) models are a popu-
lar kind of deep learning neural network. RNN passes 
the backpropagation process through time for learning. 
It can be developed for handling the data when it loops 
back the previous information. The output originating 
from the past state provides the input to the current one. 
It means that the current state is updated in each time 
step to obtain the renewed information for arranging the 
time-dependent sequence data. The impressive success 
of RNN comes back to generating the sequence data that 
are supplied from many applications in dynamic systems 
such as time series, natural language processing, and 
speech recognition [47]. The limitations of RNN methods 
are as follows: the speed of calculations is low, training 
of RNN models may be tough, the model cannot pro-
cess very long sequences if using relu and tanh as activa-
tion functions, and there are gradient disappearing and 
exploding problems.

Long Short‑Term Memory Networks
Long Short-Term Memory (LSTM) networks are a 
category of RNNs that is able to learn order depend-
ence. They comprise four neural networks and multiple 
memory blocks called cells in a chain structure. An ordi-
nary LSTM unit includes a cell, an input gate, an output 
gate, and a forget gate. Three gates control the amount 
of information in and out of the cell since it remembers 
amounts over arbitrary time intervals. The LSTMs can 
hold information for a long time by default. The LSTM 
algorithm is well adapted to classify, analyze, and forecast 
time series of indistinct duration. However, LSTMs need 
a long time, resources, and high memory to train. The 
easy overfit is another limitation of LSTMs.

Gated Recurrent Unit
Gated Recurrent Unit (GRU) is a progressed format of 
the standard RNN. GRUs are the same as LSTM since use 
gates to control the flow of information. GRU has a sim-
pler architecture than LSTM [48]. The update gate deter-
mines the value of prior information that needs to pass 
along the further state. The Reset Gate is responsible for 
the short-term memory of the network. It is employed 
from the model to determine how much of the prior 
information is needed to neglect. First, the reset gate 
stores related information from the past time stage into 
new memory content. Next, it multiplies the input vector 
and hidden state with their weights. Then, it computes 
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element-wise multiplication between the previously hid-
den state and the reset gate. After summing up the above 
stages, the non-linear activation function is used and a 
further sequence is produced [49]. GRU models confront 
some problems including low learning efficiency and 
slow convergence rate, leading to too long training time 
and even under-fitting.

Convolutional Neural Network
Convolutional Neural Networks (CNNs) are one of the 
most popular DL models that work with backpropagation 
neural networks. The main success of CNNs is in the field 
of image processing and image recognition which are 
adapted to analyze visual imagery specifically with image 
or video data. The architecture of CNN is comprised of 
a convolutional, pooling, and fully connected layers. In 
the convolutional layer, the feature extraction occurs by 
the kernels. The pooling layer carries out a dimensional-
ity diminution to minimize the network computational 
effort. The fully connected layer plays the classifier role 
with non-linear classification. By repeating the convo-
lution-pooling sequences multiple times, the system is 
deepened and the desired accuracy can be obtained. The 
traditional NNs generally utilize the full connections 
between the layers leading to over-fit of train data and 
intensive time computations. Unlike NNs, CNNs avoid 
overfitting and general multiplications by using particu-
lar layers and consequently provide faster computations 
[50, 51]. However, CNN does not encode the orientation 
and position of objects. It is unable to be spatially invari-
ant to the input data. Finally, it needs a large amount of 
training data.

Deep Reinforcement Learning
Deep reinforcement learning integrates artificial neu-
ral networks (deep learning) with a framework of rein-
forcement learning (RL) to learn software agents how 
to achieve their objectives. Reinforcement learning 
algorithms can start from a blank slate, and under the 
correct directions, reach superhuman performance. Dif-
ferent penalizes and rewards are considered for these 
algorithms when they make mistakes and the right deci-
sions, respectively– this means reinforcement. The com-
mon steps of RL are as follows: (i) observation of the 
environment; (ii) selecting a strategy; (iii) acting based 
on the chosen strategy; (iv) receiving a reward or pen-
alty; (v) learning from the experiences and improving the 
strategy; (vi) iterating to reach an optimal strategy. Three 
approaches for reinforcement learning are Policy-based. 
Value-based, and Model-based learning. Model-based 
RL utilizes experience to build an internal model of the 
transitions and instant results in the environment. Proper 
actions are then selected by exploring or planning in this 

world model. On the other hand, model-free RL uses 
experience to learn straightly one or both of two simpler 
quantities which can reach the same optimal behavior 
but without approximation or use of a world model. One 
of the most used learning models is Q learning which is 
a values-based and off-policy learner algorithm. Value-
based algorithms update the value function according to 
an equation, especially the Bellman equation. Off-policy 
algorithms learn the value of the optimal policy apart 
from the agent’s actions. The ‘Q’ in Q-learning refers to 
quality. Quality indicates how beneficial a given function 
is in obtaining some future reward. There are some chal-
lenging drawbacks and limitations with RL: (i) too much 
reinforcement can lead to an overload and attenuate the 
outcomes; (ii) it is not a preferred model for simple prob-
lems; (iii) it needs a large number of data and contains 
plenty of computation; (iv) its preservation cost is high.

The application of ML and DL models 
for the management, prediction, and detection 
of diabetes
Early diagnosis and prediction of diabetes
Early diagnosis and forecasting of diabetes occurrence 
through the measurement of several baseline factors 
could diminish the complications in the future. However, 
the slight incidence rate of diabetes causes a major chal-
lenge in the accurate prediction of diabetes class against 
non-diabetic one. To overcome this difficulty, various ML 
and DL algorithms have been developed which are over-
viewed in the following sections for each diabetes type.

T2DM
One of the interesting methods for diabetes detection in 
Traditional Chinese Medicine (TCM) is characterized 
based on tongue features. It is performed by analyzing 
the extracted parameters from the panoramic tongue 
images such as tooth markings, shape, texture, color, and 
fur [52]. An experienced person as a specialist is required 
to do these visualized diagnosis processes. The yellow 
tongue is defined as a sign of diabetes [53]. For predicting 
the T2DM risk, an ML model was arranged in a combi-
nation with TCM. To this aim, TDA-1 Tongue Diagnosis 
Instrument was extended by a research group at Shang-
hai University of TCM to gather the tongue images. This 
information in association with the common knowledge 
and laboratory outcomes of the physical checkup was 
prepared to propose a model. Through the developed 
model, the texture and color characteristics of the tongue 
were computed by the Tongue Diagnosis Analysis System 
(TDAS) which was also improved by the same research 
group. TDAS performed the tongue diagnosis and the 
tongue division through the human-computer interplay. 
Afterward, it could automatically measure the texture 
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and color features. In addition, deep learning techniques 
were also employed. To train DL models, Mask Region-
Based Convolutional Neural Network (Mask R-CNN) 
was implemented because of its characteristics for the 
fast object detection of an image with the high-quality. 
Specifically, it carried out the instant semantic segmen-
tation that led to being worked as a diagnostic support 
tool. Through image detection, Mask R-CNN could 
eliminate the background of the raw tongue images and 
had superior pre-trained models, swift training speed, 
and remarkable accuracy. Then, eight classical ML mod-
els, including LR, RF, Naive Bayes (NB), SVM, XGBoost, 
ANN, K-nearest neighbor (K-NN), and DT were applied 
to fully detection of the inherent regularities. To find the 
best classification impact, the model fusion was carried 
out by the stacking technique. The stacking process com-
prised two steps. In the first part, the operation of eight 
independent models was evaluated by using ten-fold 
cross-validation. The prediction outcomes constructed 
the further training data. Simultaneously, the test data-
set was predicted and the next data test was built. In the 
subsequent step, a second test dataset was employed to 
fit the training data matrix that was integrated into step 
one using the LR algorithm. Finally, it could test the data 
matrix for the ultimate outcomes. To create a convenient 
and noninvasive diabetes risk forecasting model, tongue 
features and generic details were accomplished to assess 
the non-invasive stacking model. Moreover, DL meth-
ods including XceptionResNet50, DenseNet121, Vgg16, 
Vgg19, and InceptionV3 were used to train the model. 
The stochastic gradient descent was performed for opti-
mization, while the loss function was cross-entropy. The 
best accuracy was obtained for the non-invasive stack-
ing model and ResNet50 at 71% and 69%, respectively. 
In the critical BG group, the AUC was acquired at 0.84 
for the stacking model and 0.88 for ResNet50. In the high 
BG group, the AUC was achieved as 0.87 and 0.80 for the 
non-invasive stacking model and ResNet50, respectively.

In another study [52], a deep autoencoder learning 
algorithm with CNN was developed to exploit deep vari-
ables from panoramic tongue images. Then, these param-
eters were trained with a deep Radial Basis Function 
Neural Network (RBFNN) classifier algorithm. The sug-
gested model showed a better classification performance 
rather than the other models. The training accuracy of 
the ResNet50-RBFNN model was obtained at 92.3%.

The possibility of predicting diabetes could be found 
from the special patterns of body fat distribution using 
Magnetic Resonance Imaging (MRI) [54]. For construct-
ing a powerful model, a novel ML method on more than 
2000 whole-body MRI image data sets was developed. 
For this research, a network was constructed correspond-
ing to the DenseNet architecture. The 3-dimensional 

volumes were used as the input. The first layer included 
a completely connected convolutional layer with a kernel 
size of 5 and 8 convolutional filters. The pooling layer was 
then applied to reduce the dimensions of the mediator 
feature maps in order to improve the computational per-
formance. The output was entered into the initial dense 
block. Transition layers and dense blocks were consecu-
tively appended to process the input. After the eventual 
transition layer, the activation maps were widened to a 
1D array and transferred to 3 consecutive densely con-
nected layers with dropout. The dimension of the result-
ing dense layers was 1 × 128 units, and it was considered 
the embedding layer for embodying the low-dimensional 
delegations of MRI voxels as “learned” by the neural net-
work. The embedding layer was employed to forecast 
the favorable target labels and the unsupervised cluster-
ing analysis. Further dense layers were appended to the 
embedding layer to predict output nodes. Models were 
trained for age, sex, HbA1c, insulin sensitivity, BMI, pre-
diabetes, and the occurrence of diabetes. The AUC was 
found at 87% for T2DM discernment and 68% for predia-
betes, which were higher than the conventional models. 
Moreover, the lower visceral abdominal was found a crit-
ical region in the classification of diabetes.

To determine the undiagnosed T2DM in adults, 
the nutritional markers were found by ANN, LR, and 
RF models [55]. To overcome the impact of the class 
imbalance, resampling algorithms containing Ran-
dom Oversampling Examples (ROSE), minority class 
over-sampling, and Synthetic Minority Oversampling 
Technique (SMOTE) were applied. In this process, four 
models were constructed with (1) original data, (2) 
oversampling, (3) SMOTE, and (4) ROSE per each algo-
rithm. Undiagnosed T2DM was identified by a negative 
reply to the query “Have you ever been told by a doctor 
that you have diabetes?” and a positive glycaemic reply 
to one or more of the 3 detection tests FPG > 125 mg/
dl, HbA1c > 6.4% or 2-hr post- oral glucose tolerance 
test (OGTT) > 200 mg/ dl. As a result, the prevalence of 
undiagnosed T2DM was determined as 5.26%. The best 
models classified 39 markers including 11 unique mark-
ers by the logistic technique and 28 via one or more of 
the three best-performing ensemble/non-linear models. 
They comprised 4 diet-associated, 9 socio-behavioral, 2 
anthropometry-based, and 14 nutrient-based markers. 
The best-performing approach was a LR method on orig-
inal, unbalanced training data without any resampling 
with an AUC of 0.74, a sensitivity of 0.77, a specificity of 
0.61, and an accuracy of 0.62. This study suggested per-
sonalized clinical nutrition like the risk-stratified nutri-
tional recommendations and the early preventive plans 
that were aimed at high-risk people as well as the nutri-
tional handling of individuals with T2DM.
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The results of a systematic review revealed that the 
optimal performance for the prediction of T2DM is 
obtained using tree-type models [56]. However, they 
need complementary approaches to decrease the dimen-
sionality and balance data by choosing the optimal fea-
tures. Therefore, SVM and KNN have been commonly 
preferred for prediction. Moreover, it was concluded 
that a minimum of three parameters from the confusion 
matrix (accuracy, precision, specificity, sensitivity, and 
F1-score) and the AUC should be calculated to reduce 
the heterogeneity in the validation parameters.

To predict T2DM incidence in obese women, ANN-
based on anthropometric and adipocytokines variables 
were applied [57]. The Separability-Correlation Measure 
(SCM) was first utilized to select the substantial features. 
The FBS and HbA1c were found as the best discrimi-
nators; homeostatic models assessment as the moder-
ate discriminator; adiponectin, visfatin, and insulin as 
the weak discriminators of diabetic women. The more 
chosen variables were apelin, visfatin, HbA1c, FBS, adi-
ponectin, and total cholesterol. Moreover, the subsets of 
these parameters containing apelin, FBS, HbA1c, and vis-
fatin were found to be the remarkable features that could 
perform the best discrimination between diabetic and 
non-diabetic groups.

Electronic Health Record (EHR) is a digital copy of 
a patient’s paper chart that makes information acces-
sible securely and instantly for users. A novel prognos-
tic method for the prediction of T2DM based on EHR 
was developed without employing the current invasive 
approaches [58]. The methodology was based on RF 
frameworks with data enrichment utilizing the tempo-
ral variables. The AUC of 84.2% was obtained with an RF 
classifier, 83.1% when temporal features were used, and 
83.7% after using both the feature selection and the tem-
poral features. It was concluded that pathology predic-
tion was feasible and effective employing the information 
of a patient’s progression over the years and without uti-
lizing invasive approaches.

The OGTT was also employed to create a predictive 
model for T2DM utilizing SVM [59]. The insulin con-
centrations were also considered before glucose intake at 
30, 60, and 120 min, plasma glucose, personal informa-
tion like ethnicity and age, as well as the BMI. All acces-
sible combinations of the 10 best-ranked variables were 
employed to produce SVM-based models. The outcomes 
revealed that the glucose levels in plasma and the infor-
mation obtained therefrom could provide the uppermost 
predictive performance for the future progress of T2DM. 
Moreover, demographic features and insulin ones did not 
present the additional performance advancement for dia-
betes forecasting. The average accuracy and sensitivity 
were acquired as 96.80% and 80.09%, respectively.

A novel adherence diagnosis method that employed 
deep learning approaches was developed for T2DM 
cases, based on simulated Continuous Glucose Moni-
toring (CGM) signals [60]. Various classification models 
including LR, CNN, Multi-Layer Perceptrons (MLPs), 
and ensembling methods were evaluated. The foremost 
performing models were acquired for CNN with  accu-
racy of 77.5 ± 1.4% and MLP with the accuracy of 
72.5 ± 3.5%.

The Artificial Immune Recognition System (AIRS) was 
another approach that was used for medical classifica-
tion problems [61]. AIRS utilizes resources contest, clone 
choice, maturation, mutation, and generation of memory 
cells for the advancement of forecasting modeling. In 
addition, AIRS2 is a more effective version of the AIRS 
method. The modified AIRS2 called MAIRS2 was con-
sidered a developed K-NN algorithm. Using the AIRS2 
learning algorithm, the size of the dataset named Mem-
ory Cells Pool was decreased. Then, the fuzzy K-NN was 
applied to dominate the constraints of the K-NN classi-
fier by ascribing a class membership to each case. The 
highest classification accuracy was acquired as 89.10% 
and 82.69% for MAIRS2 and AIRS2, respectively.

Diabetic Sensorimotor Polyneuropathy (DSPN) is a 
remarkable consequence of diabetes mellitus, so early 
diagnosis or prediction of DSPN is essential for pre-
venting foot ulcers and neuropathic pain [62]. Three 
machine learning methods including SVM, XGBoost, 
RF, and their combinations were considered to predict 
four classes containing normal, possible, probable, and 
confirmed based on the electrophysiological and clinical 
characteristics of the doubtful DSPN. RF showed the best 
AUC (0.82); and the average values of the International 
Federation of Clinical Chemistry (IFCC), serum glucose, 
albumin levels, and HbA1c were found as the major pre-
dictors. Therefore, it was concluded that ML techniques 
could help in predicting the DSPN and electrophysiologi-
cal analysis in T2DM.

Three potent machine learning algorithms includ-
ing XGBoost, DNN, and RF were applied to forecast the 
forthcoming occurrence of T2DM based on the biochem-
ical, demographic, and anthropometric measures [63]. 
Furthermore, three strategies containing cost-sensitive 
learning, changing threshold, and sampling were used to 
overcome the imbalance challenge in the diabetes classes. 
Weighing and changing thresholds caused a reduction 
in the training time, enhancement of performance, and 
increased prediction accuracy in the minority diabetes 
classes. Although sampling led to better performance, it 
was not found as the best solution to resolve the imbal-
ance distribution between healthy and diabetic classes.

XGBoost, SVM, LR, RF, and ensemble algorithms 
were also utilized to construct models to predict T2DM 
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incidents in the following year (Y + 1) by employing the 
variable values in the ruling year (Y) [64]. Before con-
structing the prediction model, the major features were 
initially chosen utilizing a data-driven feature selection 
approach. It contained an analysis of a chi-squared test, 
variance (ANOVA) test, and the recursive feature elimi-
nation methods. The elements including Triglycerides 
(TG), HbA1c, FPG, gamma-GTP, BMI, uric acid, age, 
smoking, sex, Physical Activity (PA), drinking, and fam-
ily history were selected as the variables. The prediction 
models accurately anticipated the normal (non-diabetic), 
prediabetes, or diabetes in the Korean population. The 
accuracy was identified as between 71% and 73%. Moreo-
ver, the ensemble models had better proficiency than the 
single models. The performance of the prediction mod-
els was improved by incorporating more medical his-
tory from the dataset. In another work, the DT and LR 
models were also used to predict T2DM [65]. As a result, 
five main predictors including pregnancy, glucose, age, 
BMI, and diabetes pedigree function were found as the 
best classifiers. The prediction accuracy was obtained as 
78.26%.

T2DM in youth is more challenging to therapy because 
of a more quick reduction in the beta-cell function, and 
also the appearance of onset of complications. The NB, 
LR, LogitBoost, and DT methods were tested based on 
HbA1c, FPG, and 2hrPG to improve preDM/T2DM 
screening performance [66]. The results showed that 
they were statistically equivalent to or better than the 
screening guideline. The F-measure and specificity were 
obtained as 0.005 and 0.225, respectively.

To early predict T2DM by employing lifestyle indica-
tors, various ML algorithms using ensemble methods 
including Boosting, Bagging, and Voting were employed 
[67]. Boosting converts weak learners into strong learn-
ers, in which weak classifiers are combined to constitute 
a strong model to ameliorate the predictive abilities of 
the eventual model. The base learning classifier is used 
multiple times to produce a novel forecasting rule. The 
steps will be performed n times iteratively and then the 
boosting method will incorporate the outcomes from 
weak learners and transform them into a single strong 
prediction model. The bagging method follows the boot-
strap aggregation approach and creates several training 
sets for model-building purposes. After the construction 
of disparate training sets, different models are applied 
to the resampling process with an ensemble structure. 
Eventually, the outcomes of learners are aggregated to 
make the ultimate divination. In the voting method, the 
forecasting of base learners is aggregated to construct 
new meta-variables for final prediction.The output of 
base classifiers is combined based on the most votes and 
weighted approaches. Among all the models, the Bagged 

Decision Tree (BDT) algorithm achieved the highest test-
ing accuracy rate of 99.14% followed by Stochastic Gradi-
ent Boosting (98.45%,), RF (93.63%), Extra Tree (91.41%), 
Adaboost (89.69%), and Voting classifiers (89.51%). How-
ever, according to the number of misclassifications on the 
test dataset, BDT obtained the lowest rate of 0.86% and 
Voting obtained the highest rate of 10.49%.

A patient network-based model containing the exist-
ing relationships among health situations for a category 
of subjects diagnosed with a similar disease using the 
graph theory was developed to predict T2DM [68]. For 
this purpose, a bipartite network graph whose verti-
ces can be separated into two independent subsets was 
utilized to provide the diseases that a patient faces over 
time. Eight ML models including Naive Bayes, SVM, LR, 
KNN, RF, XGBoost, DT, and ANN were used to predict 
the T2DM risk. The RF model led to better results. In 
addition, closeness and eigenvector centralities as well as 
patient age were determined as the significant variables 
for the model.

In order to predict the future incidence of T2DM fol-
lowing pregnancy in women, an XGBoost model based 
on parity, age, gestational age at delivery, gravidity, glu-
cose challenge test (GCT), oral glucose tolerance test 
results, OGTT, and birthweight was constructed [69]. 
The prediction model led to an AUC of 0.85 and an accu-
racy rate of 91%. The most predictive parameters were 
neonatal birthweight and the age at the index pregnancy.

A gradient boosting decision tree model was developed 
to predict the occurrence of T2DM 5 years ahead [70]. 
The model achieved a test AUC of 80.26 and was robust 
to immigration status, sex, area-level marginalization 
with regard to race/ethnicity and material deprivation, 
and low contact with the health care system.

A method called average-based weighted objective 
distance (AWOD) was developed for the prediction of 
T2DM [71]. This approach uses information based on 
average amounts of the expected amounts and acceptable 
levels to prioritize factors naming as weighing factors. 
AWOD has three main stages: i) determining important 
levels for weight calculation including the expected level 
and an acceptable level. Afterward, the weights for both 
significant and negligible factors are computed. Finally, 
AWOD is specified for the prediction. The AWOD-based 
approach provided 98.95% accuracy which was more 
accurate than RF, SVM, K-NN, and DL.

The Q-learning algorithm was used for the early detec-
tion of T2DM based on several variables such as glucose 
level, BMI, and age [72]. In the Q-learning algorithm, a 
set of q-values are approximated by employing an agent 
and a set of states. The agent will receive positive/nega-
tive rewards for each state pair. The agent maximizes 
the negative/positive reward in the long-term process 



Page 15 of 39Afsaneh et al. Diabetology & Metabolic Syndrome          (2022) 14:196 	

by learning optimal policy elections for various unique 
states. The proposed model produced an off-policy-
based RL and made the learning agent to identify an opti-
mal policy for the variables. It achieved a better accuracy 
rate (84%) than the K-NN and DT algorithms.

T1DM
An XGBoost model was developed to recognize T1DM 
subjects misdiagnosed as T2DM using Ambulatory Elec-
tronic Medical Records (AEMR) data [73]. The model 
identified BMI/weight, age, HbA1c/blood glucose values, 
and therapy history as top predictors of misdiagnosis. 
The precision of the model at low levels of recall (10%) 
was 17%, in comparison with the < 1% occurrence rate of 
the misdiagnosis at the time of the first T2DM. This algo-
rithm could diminish misdiagnosis of adult-onset T1DM.

GDM
The earlier diagnosis of GDM is important for barricad-
ing or remarkably decreasing the risk of detrimental 
pregnancy outcomes [74]. A gradient-boosting machine 
learning model constructed by decision-tree base-
learners was applied based on the electronic health 
records. The models anticipated GDM with high accu-
racy even at the pregnancy beginning (AUC = 0.85) 
more than a baseline risk score (AUC = 0.68). The 
results were confirmed in both a geographical vali-
dation set and a future validation set. Eventually, a 
model was introduced based on the nine queries that a 
patient could reply to them for determining the early-
stage intervention in high-risk women (AUC = 0.80). 
In another study, eight ML approaches including RF, 
logistic, XGB, GDBT, LGB, AdaBoost, and Vote as well 
as LR with RCS and stepwise logistic regression were 
examined to predict the incidence of GDM [75]. The 
maternal demographic specifications, the medical his-
tory, and also the laboratory amounts at early preg-
nancy were selected as the predictors. Variables were 
trained by discrete ML models and traditional LR mod-
els. In the validation dataset, the LR and ML models 
were carried out moderately (AUC: 0.59–0.74). Overall, 
the GBDT model had the best performance (AUC: 0.74) 
among the other ML models. BMI, HbA1c, FBS, and 
TG were found to have a strong contribution to GDM. 
A cut-off of 0.7 had a positive predictive amount of 
93.2% and a specificity of 99%. Moreover, it was realized 
that machine learning approaches did not have supe-
riority over LR in forecasting GDM. In another study, 
Light Gradient Boosting Machine (lightGBM) and SVM 
were utilized to develop the first 19 weeks risk pre-
diction model for GDM [76]. The predictors included 
blood routine, coagulation function, and hepatic and 
renal functions were used. It was found that a cutoff of 

Activated Partial Thromboplastin Time and Prothrom-
bin Time can accurately forecast GDM with a specific-
ity of 99.47% and sensitivity of 88.3% (AUC = 94.2%). If 
only renal and hepatic functions were used, a cutoff of 
FBG and direct bilirubin with a specificity of 90.0% and 
sensitivity of 82.6% (AUC: 91.0%) were specified. And 
a negative correlation between prothrombin time and 
patients with the activated partial thromboplastin time 
was identified. A negative correlation with direct biliru-
bin and a positive correlation with FPG could neglect 
the coagulation function test. As a result, the outcomes 
could disclose the feasible functions of prothrom-
bin time and activated partial thromboplastin time as 
biomarkers for the forecasting and early detection of 
GDM.

GDM is commonly affirmed with an OGTT during 
24 to 28 weeks of gestation [77]. A cost-sensitive hybrid 
model (CSHM) and five machine learning approaches 
including BN, LR, chi-squared automatic interaction 
detector (CHAID) tree, SVM, and NN were utilized to 
construct the predictive models based on EHR. The accu-
racy of positive samples was (62.16%), however, the out-
comes proposed that the wide majority (98.4%) of those 
forecasted positive cases were real positives.

A novel analytical platform (Reverse Engineering and 
Forward Simulation [REFS]) was developed to construct 
a prediction model for the development of prediabetes or 
T2DM using the EHR information [78]. REFS was based 
on a Bayesian scoring algorithm to follow a vast model 
space and produced a dispensation of risk approximates 
from an ensemble of prediction models. The model pre-
dicted the progression to T2DM (AUC = 0.76). Models 
of development to T2DM included primarily appointed 
risk factors including lipid disorders, triglycerides, soci-
oeconomic factors, blood pressure, blood glucose, and 
hypertension. While, models of the development of pre-
diabetes contained novel factors including C-reactive 
protein, alanine aminotransferase, high-density lipopro-
tein, and body temperature (AUC = 0.70).

Obesity and body fat dispensation are substantial risk 
factors for type 2 diabetes [79]. To forecast the FPG situa-
tion, a composition of different measures was considered. 
Based on thirty-seven anthropometric values, the pre-
dictions of the FPG using the NB classifier and LR were 
compared. The AUC was obtained as 0.739 and 0.741 for 
females as well as 0.686 and 0.687 for males using LR and 
NB classifiers, respectively. The outcome revealed the 
superiority of a combination of anthropometric measures 
over case measures alone in both males and females.

AIRS was also used to predict T2DM following GDM 
[80]. Despite the dataset having imbalanced data, the 
classification recall reached 62.8%. To develop a simple 
model to forecast GDM in early pregnancy, biochemical 
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biomarkers and multivariate Bayesian logistic regression 
using the Markov Chain Monte Carlo simulation algo-
rithm were applied [81]. At first, the predictive maternal 
factors were chosen through Bayesian adaptive sampling. 
From the 8th to 20th week of gestation, FPG levels dimin-
ished slightly and TG levels elevated slightly. The risk of 
GDM was predicted with prepregnancy BMI, maternal 
age, TG, and FPG with an accuracy of 0.64 and an AUC 
of 0.766.

In order to construct a preconception-based GDM pre-
dictor, game theory concepts were merged with genetic 
programming (GP)-based automated machine learn-
ing (AutoML) [82]. For this purpose, the Shapley addi-
tive explanations (SHAP) framework was combined with 
the GP-based Tree-Based Pipeline Optimization Tool 
(TPOT) to find significant features and choose optimal 
supervised machine learning models. GP trains the ML 
problems based on random mutation, crossover, fitness 
functions, and production to reach optimal solutions. 
The Shapley amount is the average expected marginal 
contribution of one player across all accessible permuta-
tions of players in game theory. In ML, game players are 
the variables, and the collective payout is the model fore-
casting. The SHAP framework supplies local explanations 
based on the Shapley amounts to find the global model 
structure. A stacked ensemble model with a linear SVM 
classifier and GB classifier was achieved utilizing GP. The 
resulting AUC was 0.93 based on four features (fasting 
insulin, glycated hemoglobin A1c (HbA1c), triglycerides/
HDL ratio, and mean arterial blood pressure). The multi-
variate logistic regression model also revealed that each 
1 mmol/mol rise in preconception HbA1c was positively 
associated with the appended risks of GDM and preterm 
birth. Therefore, the control of preconception HbA1c 
may help avoid GDM and decrease the occurrence of 
preterm birth.

All diabetes types
Some ML models have been presented for the predic-
tion and diagnosis of diabetes regardless of its type. A 
filter approach based on the DT algorithm (Iterative 
Dichotomiser 3) was developed to select important fea-
tures [83]. Two ensemble learning algorithms, RF and 
AdaBoost were employed for feature selection. Also, 
it was compared with wrapper-based feature selec-
tion algorithms. The superior performance of the sug-
gested approach was due to the various combinations 
of the chosen feature set. Diabetes pedigree function, 
plasma glucose concentrations, and Blood mass index 
were the most substantial major features for the predic-
tion of diabetes. The suggested method achieved 98.2%, 
99.2%, and 99.6% with the cross-validation methods of 
hold out, k-folds, and LOSO, respectively. Furthermore, 

the proposed approach would impressively diagnose dia-
betes and could be utilized in an e-healthcare environ-
ment. In another study, an ensemble-based framework 
called eDiaPredict was suggested to predict diabetes 
[84]. This algorithm employs an ensemble of various ML 
algorithms including RF, XGBoost, SVM, NN, and DT. 
Recursive Feature Elimination (RFE) [85] was used to 
decrease the feature space in the dataset. The ensemble 
RF as a bagging method with the XGBoost as a boosting 
approach generated the best outcome by forecasting the 
diabetic patient with 95% accuracy. It is due to diminish-
ing the bias recursively and identifying the best solution.

To predict the occurrence of diabetes by employing 
EHR, LightGBM approach was applied [86]. The predic-
tive ability of this approach was compared with the LR 
model and led to 0.865–0.925 vs. 0.778–0.876 for vari-
ous datasets. A novel computing scheme was proposed to 
categorize several types of diabetes, as they need different 
treatments [87]. It contained two steps: (1) the major fea-
tures were found from the glucose concentration curve 
obtained by the CGM system; (2) a model of diabetes 
parameter regression called double-Class AdaBoost was 
constructed. The experiments revealed the coincidence 
rate of the proposed scheme and the clinical selection at 
90.3%. In another work, the Gaussian Process (GP)-based 
classification approach was used employing three kernels 
including linear, polynomial, and radial basis [88]. The 
best performance was obtained for the GP-radial basis 
kernel with an AUC of 81.97%, a sensitivity of 91.79%, 
and a specificity of 63.3%.

In a study, RF was employed to detect the occurrence 
of diabetes in a large set of observational data and fig-
ure out the potential predictors of diabetes [89]. The full 
RF model assessed 93 features including demographic, 
blood biomarker, anthropometric, echocardiogram data, 
and medical history. In addition, RF metrics of feature 
significance were utilized to rank features according to 
their portion of the diabetes forecast. The performance 
of the RF full model was analogous (AUC = 0.82) to 
those of  more stingy models. The top-ranked features 
according to RF included FPG, TG, hemoglobin A1C, 
adiponectin, waist circumference, c-reactive protein, left 
ventricular mass, aldosterone, leptin, and high-density 
lipoprotein cholesterol.

A fuzzy c-means-neuro-fuzzy rule-based classifier 
was developed for the classification of diabetes [90]. The 
accuracy of the classifier was calculated by the number 
of correctly identified diabetes records while its com-
plications were computed by the number of extracted 
fuzzy rules. Experimental outcomes revealed that the 
suggested fuzzy classifier could reach a good trade-
off between accuracy and interpretability. The contri-
bution of the Fuzzy C-Means (FCM) algorithm with 
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the Adaptive Network-Based Fuzzy Inference System 
(ANFIS) decreased the learning time and size of mod-
els. ANFIS is a particular method in neuro-fuzzy mod-
eling that used neural networks to adapt rule-based fuzzy 
systems. The best accuracy of the proposed method was 
acquired as 81.54%.

A non-invasive diabetes diagnosis system was also sug-
gested dependent on the wristband basic Physiological 
Parameters (PhyP) and Photoplethysmography (PPG) 
signal [91]. The PhyP and Mel-Frequency Cepstral Coef-
ficients (MFCC) were extracted from 5 s PPG signal parts 
and then applied as the input for the RF, SVM, K-NN, 
and XGBoost. This data was used to classify the patients 
into prediabetes, diabetes, and normal classes. Moreo-
ver, a Hybrid Feature Selection (Hybrid FS) approach 
was suggested to decrease the size of the entrance data. 
The Hybrid FS-based XGBoost system resulted in a sig-
nificant accuracy (99.93%) for non-invasive diabetes 
diagnosis with numerable variables and less computa-
tional endeavor. The analysis showed that the PPG signal 
was a suitable substitute for ordinary non-invasive BG 
evaluation.

Laboratory information such as sex, age, body mass 
index, TG, FBS, high-density lipoprotein, low-density 
lipoprotein, and blood pressure was used to predict 
diabetes mellitus using GBM and LR techniques [92]. 
Moreover, the adjusted threshold and the class weight 
approaches were employed for ameliorating sensitivity. 
The AUC and sensitivity were 84.7% and 71.6% for the 
suggested GBM model as well as 84.0% and 73.4% for the 
LR method, respectively. The performance of the GBM 
and LR models was better than the DT and RF models. 
These approaches could be implemented in an online 
computer program to assist physicians in forecasting 
cases of the future incidence of diabetes and supplying 
essential preventive interventions.

The correct diagnosis of the diabetes type is sometimes 
challenging. To recognition of the prediabetic, T1DM, 
and T2DM types, RF, SVM, DT, KNN, Bagging, and 
Stacking algorithms were used. The outcomes showed 
that integration of Bagging K-NN, Bagging DT, and 
K-NN, with a K-NN meta-classifier, led to an accuracy 
of 94.48%. Moreover, 5 variables including sex, nutrition, 
insulin, antiDiab, and education were found that remark-
ably impressed the model accuracy [93]. In another 
work, a Decision Support System (DSS) was developed 
for the prediction of diabetes based on SVM and RF and 
fully CNN. The obtained accuracies using RF, SVM, and 
DL were 83.67%, 65.38%, and 76.81%, respectively. The 
experimental outcomes revealed that RF was more effi-
cient for diabetes forecasting in comparison with other 
methods [94].

A Reinforcement Learning-based Evolutionary Fuzzy 
Rule-Based System (RLEFRBS) was developed for dia-
betes diagnosis. The proposed model comprised a Rule 
Base (RB) constructed by numerical data without ini-
tial rules and rule optimization. Following learning the 
rules, the surplus rules were excluded. Afterward, the 
superfluous conditions in the prior parts were pruned to 
yield modest rules with higher interpretability. Eventu-
ally, a proper subset of the rules was chosen to employ 
a Genetic Algorithm (GA), and the RB was built. To 
improve the performance of RLEFRBS, evolutionary tun-
ing of the membership functions and weight adjusting 
using RL were employed. The accuracy of the suggested 
model revealed that it could be a proper alternative for 
the diagnosis of diabetes [95].

A pipeline based on deep learning methods was pro-
posed to forecast diabetic people. It comprised data 
augmentation utilizing a variational autoencoder (VAE), 
feature augmentation utilizing a sparse autoencoder 
(SAE), and a CNN for classification. The input features 
were glucose or insulin level, the number of pregnancies, 
blood pressure, and age. After training the CNN classifier 
in association with the SAE for featuring augmentation, 
an accuracy of 92.31% was obtained. It was concluded 
that this pipeline was proper in diabetes diagnosis [96].

A model using hidden layers of a deep neural network 
model (DLPD) was proposed to forecast the incidence 
of diabetes in the future and also to specify the type of 
disease. The dropout regularization was applied to avoid 
overfitting and the binary cross-entropy loss function 
was used to reach high accuracy. The best training accu-
racy of the diabetes-type data set was determined as 
94.02% [97].

Prediction of blood glucose
The level of blood glucose (BG) should be main-
tained within the normal range (70–120 mg/dL or 
3.6–6.9 mmol/L) [98]. Keeping the BG amounts at the 
desired level in diabetic subjects is challenging because 
the precise glycemic control employing bolus insulin 
injections may lead to an elevated risk of having hypo-
glycemic incidents [99]. Therefore, closed-loop systems 
and computational methods have been developed to help 
in controlling BG levels. On the other hand, modeling 
and controlling are two major challenges to complet-
ing diabetes management. Modeling refers to learning a 
precise BG forecasting model based on several variables 
and controlling refers to applying a developed model to 
forecast the BG amount and propose some recommen-
dations. The utilized algorithms for the prediction of BG 
are critical in the progress of closed-loop insulin delivery 
and decision support systems for the control of blood 
glucose in diabetes. Multitask learning is a simplified 
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method for leveraging data from numerous cases while it 
could still do learning accurately the personalized mod-
els [100]. This approach showed stable performance in 
predictive metrics at both long-term and short-term 
prediction horizons. The predictive accuracy RMSE of 
18.8, 25.3, 31.8, 41.2, and 47.2 mg/dL were obtained at 
30, 45, 60, 90, and 120 min prediction horizons, respec-
tively, with around 93% clinically admissible predictions 
employing the Clarke Error Grid Analysis (EGA). The 
outcomes showed the success of multitask learning com-
pared with sequential transfer learning. In another study, 
a multisource adversarial transfer learning method was 
applied to provide the learning of a feature exhibition 
that was analogous to the sources [101]. For this pur-
pose, a CNN model was employed. The evaluation was 
performed by tracking multiple transfer methods. This 
approach was applicable when data originated from the 
various datasets, or when there was too small data in the 
intra-dataset condition. Although the adversarial trans-
fer did not differentiate the patients and datasets, it led 
to learning a general feature representation contrary to 
a standard transfer. Only insulin, glucose, and carbohy-
drates data were used for the forecasting of the future 
glucose amount. The RMSE was obtained between 18.94 
and 19.27 for various datasets.

The Kernel Extreme Learning Machine (KELM) neural 
network, the Variational Mode Decomposition (VMD) 
method, and the AdaBoost algorithm were integrated to 
build a multi-scale blood glucose prediction model so-
called VMD-KELM-AdaBoost [102]. The VMD approach 
was first applied to decompose a series of BG concentra-
tions into a series of intrinsic modal functions (IMFs) 
with various scales. Afterward, in order to increase the 
prediction capability of the model, the AdaBoost and 
KELM neural networks were combined to model and 
also forecast the decomposed IMFs by VMD. The experi-
mental results revealed that this model could perform 
the BG prediction (the mean values of RMSE was about 
10.14); in Clarke error mesh analysis, the ratio of being 
in A zone was about 95.7% and the sensitivity was 94.8%.

A Monte Carlo (MC) photon simulation-based model 
was developed for assessing the concentration of blood 
glucose through PPG on the fingertip [103]. The MC 
method was selected for the simulation of a photon in the 
finger model due to its flexibility in calculating the optical 
interplays with the biological tissues. The intensities of 
the discovered photons after simulation with the model 
were employed to assess the BG concentrations using 
XGBoost. A heterogeneous finger model with the mus-
cle, fat, skin, and bone layers was developed to propagate 
photons. Bio-optical characteristics such as scattering 
coefficient, absorption coefficient, refractive index, and 
anisotropy were determined at wavelengths of 660 and 

940 nm to develop the finger model for photon simula-
tions. The model achieved RMSE 16.1.

To predict BG levels utilizing time-series data of 
patients with T1DM, autoregression with exogenous 
inputs (ARX) model, ML-based regression models, and 
DL models including a temporal convolution network 
(TCN) and a vanilla LSTM Network were examined 
[104]. The ARX model obtained the lowest average RMSE 
for both direct and recursive approaches. No remarkable 
advantage was found from the ML models in comparison 
with the classic ARX one, except TCN’s performance. 
TCN was more robust than BG trajectories with false 
oscillations, for which ARX over-predicted peak BG and 
under-predicted valley BG amounts.

DL approaches have been also used for an accurate 
prediction of CGM. A DL algorithm was developed for 
glucose forecasting that employed a multi-layer Convo-
lutional Recurrent Neural Network (CRNN) architecture 
[105]. The model was initially trained on data contain-
ing carbohydrates, CGM, and insulin data. The CRNN 
method contained three sections: a multi-layer convolu-
tional neural network to extract the data variables using 
convolution and pooling, an RNN layer with LSTM cells, 
and fully-connected layers. The convolutional layer com-
prised a 1D Gaussian kernel filter to carry out the tem-
poral convolution. The pooling layers were applied to 
decrease the features. The eventual output was a regres-
sion yield by fully connected layers. The model was able 
to predict glucose levels with superior accuracy for real 
patient subjects (RMSE = 21.07 mg/dL for 30-min and 
RMSE = 33.27 for 60-min). The proposed algorithm was 
implemented on an Android mobile phone, with a per-
formance time of 6 ms on a phone in comparison with an 
execution time of 780 ms on a laptop. In another work, 
the CRNN model was used for the precise prediction of 
glucose levels in T1DM patients for a 30-minute horizon 
(MAE = 11.22 [mg/dL] and RMSE = 17.45 [mg/dL]), and 
for the 60- minute horizon (MAE = 23.25 [mg/dL] and 
RMSE = 33.67 [mg/dL]) [106].

The CGM measurements are sensitive to sensor faults 
and it would influence the BG prediction. A novel LSTM-
based deep RNN model considering the sensor error was 
proposed for predicting the BG level [107]. A Kalman 
smoothing method for the modification of the inaccurate 
CGM readings was used because of the sensor fault. To 
this end, the various physiological information includ-
ing bolus insulin, carbohydrates from the meal, Kalman 
smoothed CGM data, and cumulative step counts in a 
constant time interval were considered. The goal was to 
lessen the diversity between the fingerstick blood glucose 
measurements and the predicted CGM amounts.

Bluetooth Low Energy (BLE)-based sensors could be 
applied as a device to trace personal vital signs data [108]. 
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A personalized healthcare monitoring system employs 
real-time data processing, a BLE-based sensor device, 
and ML-based approaches to improve the self-managing 
of chronic diabetes situations. BLEs were used for collect-
ing the vital signs data like blood glucose, weight, heart 
rate, and blood pressure from the sensor nodes to the 
smartphones. Moreover, real-time data processing was 
used to handle a large value of continuously produced 
sensor data. The outcomes revealed that the suggested 
real-time data processing and commercial versions of the 
BLE-based sensors were adequately effective to follow 
the vital signs data of diabetic cases. Furthermore, ML-
based classification approaches were examined and dem-
onstrated that a multilayer perceptron could supply early 
forecasting of diabetes employing the gainer’s sensor 
data as input with the accuracy of 77.08% in comparison 
with 76.69%, 73.04%, 76.04%, and 76.56% for NB, RF, LR, 
and SVM, respectively. The outcomes also disclosed that 
LSTM can precisely foresee the future BG level.

A novel framework was suggested to incorporate sev-
eral algorithms for BG prediction in patients with diabe-
tes mellitus [109]. This framework had an adaptive weight 
which was specified for each approach where one algo-
rithm’s weight was conversely proportional to the sum of 
the squared prediction errors. The suggested framework 
was employed to combine SVR, an Extreme Learning 
Machine (ELM), and an Autoregressive (AR) model. The 
new adaptive-weighted algorithm reached the best pre-
diction performance of 92.5%.

Several linear black-box approaches (autoregressive, 
autoregressive moving average, and autoregressive inte-
grated moving average (ARIMA)) and nonlinear ML 
procedures (SVR, feed-forward neural network (fNN), 
regression random forest, and LSTM-NN) were exam-
ined to forecast the glucose levels and hypoglycemia. The 
outcomes revealed that the individualized linear models 
were more efficient than the population ones. The best 
linear algorithm (individualized autoregressive integrated 
moving-average) obtained an accuracy analogous to 
that of the foremost nonlinear algorithm (individualized 
feed-forward neural network), with RMSE of 22.1 and 
21.5 mg/dL, respectively. For the prediction of hypoglyce-
mia, the individualized ARIMA provided precision = 64% 
and one incorrect alarm/day in comparison with the 
foremost nonlinear approach (population SVR) with pre-
cision = 63% and 0.5 incorrect alarms/day. Moreover, no 
remarkable benefits were found when nonlinear tech-
niques were used for a 30 min prediction horizon [110].

Predicting glucose amounts based on food and insu-
lin intake is a hard task that should be done daily for 
cases with diabetes [111]. In a study, the enhanced 
variants of grammatical evolution, random forest 
regression, K-NN regression, and tree-based Genetic 

Programming (tree-based GP) were utilized to build 
models. They were then examined to predict the glu-
cose concentrations accompany by the approxima-
tion of both future insulin injections and carbohydrate 
intakes. Two new enhanced modeling approaches for 
glucose forecasting included (i) diverse grammatical 
progress using an optimized grammar, and (ii) various 
tree-based GP utilizing a three-compartment model for 
insulin and carbohydrate dynamics. The experimental 
outcomes applying the Clarke error grid metric showed 
that 90% of the predictions were correct (i.e., Clarke 
error categories A and B). However, it still produced 5 
to 10% of drastic errors (category D) and nearly 0.5% 
of very critical errors (category E). Several ML-based 
prediction models such as XGBoost, RF, Glmnet, and 
LightGBM were applied for the prediction of undiag-
nosed T2DM that were comparable with the regres-
sion models [112]. The accuracy in the forecasting of 
the FPG level was calculated employing 100 bootstrap 
iterations in various subsets of data. For the six months 
of accessible data, a simple regression model was car-
ried out with the undermost average RMSE of 0.838, 
followed by RF (0.842), LightGBM (0.846), Glmnet 
(0.859), and XGBoost (0.881). The highest level of vari-
able election stability over time was determined with 
LightGBM models. The outcomes demonstrated no 
clinically relevant progress when more advanced pre-
diction models were utilized.

Hypoglycemia is defined as a self-monitored blood 
glucose value < 70 mg/dL [113]. SVM, RF, NB, and K-NN 
were examined to construct models. The optimal num-
ber of self-monitored blood glucose (SMBG) amounts 
required by the model was almost ten per week. The 
specificity of the model for the forecasted hypoglycemia 
incidence in the next 24 h for patients with T2DM was 
70% and the sensitivity was 92%. In the model that com-
bined medication information, the forecasting window 
was for an hour of hypoglycemia, and the specificity ame-
liorated to 90%. Hypoglycemia occurs asymptomatic in 
some patients [114]. The precise clinical decision protec-
tion tools are required to recognize susceptible patients 
for iatrogenic hypoglycemia throughout hospitaliza-
tion. To this end, RF classification, multivariable logistic 
regression, Stochastic Gradient Boosting (SGB), and NB 
were utilized. The SGB predicted the potentially seri-
ous results of iatrogenic hypoglycemia within 24 h after 
each BG measurement. In another study, the XGBoost 
model was utilized to forecast hypoglycemia employ-
ing the dataset of multicenter intensive care unit (ICU) 
electronic health records [115]. The results revealed the 
power of the model to predict the incidence of hypogly-
cemia (blood glucose < 72 mg/dL) during the settlement 
of patients in the ICU.
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Predicting the incidence of postprandial hypoglycemia 
is a challenge because of the glucose fluctuations occur-
ring around mealtimes [116]. To predict this event with a 
30-min prediction horizon, four machine learning mod-
els including SVM using radial basis or linear functions, 
RF, LR, and K-NN were applied. The RF model demon-
strated the best performance with an AUC of 0.966, spec-
ificity of 91.3%, and sensitivity of 89.6%.

Nocturnal Hypoglycemia (NH) (glucose levels < 50 mg/
dL) is a challenging concern for individuals with T1DM, 
because it may not be diagnosed while sleeping [117]. 
However, predicting NH before sleep could aid to dimin-
ish nighttime hypoglycemia. An SVR model was applied 
to forecast the glucose before bedtime, the overnight 
minimum glucose, and overnight NH for individuals with 
T1DM. The least glucose threshold for declaring NH risk 
was taken by employing a decision-theoretic criterion to 
increase the expected net gain. The algorithm anticipated 
94.1% of NH events (< 3.9 mmol/L) with an AUC curve of 
0.86. In addition, the proposed algorithm could decrease 
NH by 77.0%.

In another study, thirty-two features based on CGM, 
insulin, meal, and demographics data from the T1DM 
cases were measured for three sequential days before the 
night [118]. The linear discriminant analysis was used to 
find the optimal feature subset, which led to only one fea-
ture subset from four features. The assessment resulted 
in an AUC of 0.79 leading to a specificity and sensitivity 
of 70% and 75%, respectively. In another work, SVM and 
MLP were utilized to predict NH based on CGM data 
and a PA tracker [119]. The predictions carried out by 
SVM achieved the best population results, with a speci-
ficity and sensitivity of 82.15% and 78.75%, respectively.

A model for foreseeing NH with a 6-hour horizon 
(midnight-6 am) was built using an RF model [120]. This 
model showed AUC = 0.75 for late-night (prediction at 
midnight, looking at 3–6 am window) and AUC = 0.90 
for an early night (midnight-3 am). While the fluctua-
tion and the lack of late night blood glucose patterns pre-
sent predictability challenges, this 6-hour horizon model 
showed an acceptable performance in forecasting NH.

A novel data-driven method to predict the quality 
of overnight glycaemic control for T1DM patients was 
introduced by analyzing commonly collected data includ-
ing insulin boluses, meal intake, and CGM data dur-
ing the day-time period [121]. Several machine learning 
approaches for binary classification were assessed. The 
best AUC for the prediction of glucose at the attendance 
of NH was obtained with a window of 18 h employing the 
extended tree classifier (ETC) and SVM classifiers. How-
ever, the sensitivity and specificity were moderate (0.5–
0.65) for forecasting glucose at night. Although there was 
no preferred method, SVM and ETC led to better results 

in forecasting hypoglycemia and normoglycemia. While 
random forest classifier (RFC) accomplished better out-
comes in predicting nocturnal hyperglycemia.

In another study, six techniques were tested for predict-
ing the glucose values from CGM and also modeling the 
penalty for errors in various glycemic ranges between 10 
and 60 min [122]. These models included linear extrapo-
lation, NNs, last observation carried forward, ensemble 
methods using LSBoost and bagging with error-weights 
and without error-weights. The advanced machine learn-
ing algorithms showed better performance (MARD: 
10.26 − 10.79; the 30-min lead time) compared with 
the simple modeling (MARD: 10.75–12.97; 30-min lead 
time). The results disclosed that the use of error weights 
provided better clinical proficiency for these models.

For short-term NH forecasting in hospitalized patients 
with T1DM, Logistic Linear Regression with Lasso regu-
larization, RF, and Artificial Neuron Networks algorithms 
were used. Among them, RF led to the best accuracy. 
The addition of clinical parameters to CGM data some-
what ameliorated the prediction accuracy and resulted in 
AUC of 0.97 and 0.942 for 15 min and 30 min prediction 
horizons, respectively. Proteinuria, basal insulin dose, 
HbA1c, and diabetes duration were the remarkable clini-
cal predictors of NH [123].

It was studied that reverse engineering and forward 
simulation (REFS) could be applied to constructing 
ensembles of generalized linear models to determine 
some significant predictors [124]. These predictors con-
sisted of hypoglycemia, glycated hemoglobin (HbA1c) 
target attainment, antidiabetic class persistence, T2DM-
related inpatient admissions, HbA1c alteration, and 
T2DM-related medical costs among patients who were 
treated for T2DM. The results showed that patients with 
comorbid situations had an elevated risk of hypoglyce-
mia, with previous anemia (OR = 1.29) and hypoglycemia 
(OR = 25.61). Other identified risk factors contained sul-
fonylurea use (OR = 1.80) and insulin (OR = 2.84). High 
blood glucose ([125 mg/dL vs. 100 mg/dL, OR = 0.47; 
100–125 mg/dL vs. 100 mg/dL, OR = 0.53), Biguanide use 
(OR = 0.75), and missing blood glucose test (OR = 0.40) 
were accompanied by the declined risk of hypoglycemia.

Although insulin therapy decreased the danger of late-
diabetic complications by reducing the average blood 
glucose, the treatment could result in an elevated occur-
rence of hypoglycemia in T1DM [125]. A novel pattern 
classification method was developed to identify hypogly-
cemic occurrence through retrospective analysis of pro-
fessional CGM data. The proposed algorithm discovered 
a full prediction of hypoglycemic events with only one 
false positive.

The possible incidence of hypoglycemia is the main 
reason that type 1 diabetes patients did not do exercise 
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[126]. To forecast hypoglycemia at the beginning of phys-
ical training, DT and RF models were evaluated. The DT 
model found two major predictive features for hypogly-
cemia during the workout including glucose at the onset 
of exercise and heart rate. The accuracy of the model was 
determined as 79.55% when the heart rate was higher 
than 121 bpm within 5 min of working and glucose was 
less than 182 mg/dL at the beginning of the exercise. The 
RF model reached a greater accuracy of 86.7% by employ-
ing extra variables and higher complexity.

Non-invasive hypoglycemia prediction employing the 
physiological parameters of electrocardiography sig-
nal (corrected QT interval and heart rate) was also pro-
posed for T1DM patients [127]. To boost the diagnosis 
accuracy, an extreme learning machine (ELM)-based 
neural network was developed to identify the attendance 
of hypoglycemia. This method reached a faster training 
performance in comparison with the conventional neural 
network learning algorithms and dominated the obstacle 
of over-fitting. The algorithm relied on the empiric risk 
minimization theory. The learning process requires one 
iteration and is capable of eschewing multiple iterations. 
The specificity and sensitivity of the suggested algorithm 
for diagnosis of hypoglycemic episodes were determined 
as 60.0% and 78.0%, respectively. In another study, ELM 
trained feed-forward neural network (ELM-FFNN) was 
applied to identify the attendance of hypoglycemic events 
for T1DM patients [128]. The natural incidence of noc-
turnal hypoglycemic episodes was related to elevated 
heart rates and corrected QT intervals. By employing the 
ELM-FFNN, the specificity and sensitivity for the diagno-
sis of hypoglycemia were 60% and 78%, respectively.

Anticipating insulin-induced postprandial hypogly-
cemic events is exigent because the primary cautioning 
of hypoglycemia simplifies the rectification of the insu-
lin bolus before its execution [129]. The postprandial 
hypoglycemic event could be decreased by diminish-
ing the bolus size but in favor of elevating the mean of 
blood glucose. The modified SVM was developed for 
predicting postprandial hypoglycemia employing two 
risk-based approaches for 240 min after the bolus/meal. 
The median sensitivity and specificity were found as 71% 
and 79% for level 1 hypoglycemia (glucose ≤ 70 mg/dL 
(3.9 mmol/L) and glucose ≥ 54 (3.0 mmol/L)), as well as 
77% and 81% for level 2 hypoglycemia (glucose < 54 mg/
dL (3.0 mmol/L)), respectively.

Environmental chemical exposure was also utilized to 
predict 2-h plasma glucose after OGTT (2-h PG after 
OGTT), blood insulin, diabetes mellitus, and FPG by 
LASSO regression and RF [130]. The LASSO regression 
predicted diabetes with an AUC of 0.80, while the linear 
model forecasted the glucose level.

A smartphone app (Diabits) was developed to assist 
patients with diabetes in managing and monitoring 
blood glucose levels [131]. To construct an applicable 
model, a combination of gradient-boosted decision trees 
(GBT) and SVM was used. A 30-min Diabits smart-
phone app forecasting assessed using Parkes Error Grid 
was computed to be 86.89% clinically accurate (zone A) 
and 99.56% clinically admissible (zones A and B), while 
60-min predictions were 70.56% clinically accurate and 
97.49% clinically admissible. It was determined that 
under free-living situations, several popular blood glu-
cose control metrics ameliorated with the elevated fre-
quency of app use. The 30-min predictions of the base 
Diabits model had a root mean square error of 18.68 mg/
dL. These results hopefully showed that Diabits could 
accurately predict future glycemic fluctuations and help 
patients with diabetes to hold their blood glucose in the 
reference span.

A gradient-boosted tree algorithm was developed to 
forecast the response of the ICU patients concerning gly-
cemic control as a significant parameter of critical care 
[132]. To provide convenient data for machine learning 
analysis, irregular multivariate time series data regard-
ing the in-patient medical history and glycemic control 
comprising nutrition, previous blood glucose, and insulin 
dosing as electronic medical records (EMRs) were con-
sidered. Clarke error grid analysis showed that 97% of 
forecasting would be clinically admissible. The proposed 
model revealed a high degree of accuracy in predicting 
blood glucose in the range of 70–200 mg/dL. The mean 
absolute percentage error for the overall and surgical 
patients was determined as 16.5% and 15.1% for 2-hour 
predictions of serum blood glucose, respectively.

Several factors cause difficulty in glycemic control. The 
feed-forward artificial neural network’s predictive models 
were designed employing two hidden layers with 15 and 
10 processing elements in each layer, respectively [133]. 
A collection of CGM data and other accompanying val-
ues from those who had been admitted to the ICU were 
used as input features information. The model was devel-
oped to forecast a complete path of glucose amounts up 
to 135 beforehand time. The mean absolute difference 
percent error was found as 15.9% respecting the serum 
blood glucose values and 10.6% regarding the interstitial 
glucose level. The Clarck EGA of model predictions than 
the reference CGM and blood glucose determinations 
disclosed that more than 99% of model predictions could 
be clinically accepted and would not be resulted in wrong 
insulin treatment or therapy recommendations.

Patients with T1DM should receive insulin to avoid the 
long-term consequence of hyperglycemia and they also 
should be cautious to take the proper amount of insulin 
and prevent hypoglycemia [134]. Therefore, the patients 
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should obey a “regimen” to specify the injected value of 
insulin at each time. It becomes possible when the future 
of blood glucose amounts would be predicted from the 
current features. Twelve various supervised machine 
learners, based on seven learning algorithms including 
SVR, Wavelet Neural Networks (WNN), K-NN, Ran-
dom Forest Regression (RFR), Gaussian Process Regres-
sion (GPR), ANN, and Ridge Regression (RR) were 
constructed. In addition, five more complex learners, by 
employing model stacking and also considering weighted 
ensembles of GPRs were tested. The results showed that 
the diabetes diary data were probably insufficient for 
generating accurate BG prediction models. It means that 
more information is required to construct accurate BG 
prediction models over hours.

The IoT devices and new emerging biosensors facili-
tate the continuous gathering of glucose amounts [135]. 
Using suitable ML algorithms, glucose assessment could 
be modeled to predict this variable. Furthermore, glyce-
mia dynamics need that the model would be user-centric 
and the handles risk of lack of accessibility to the Internet 
and developing on-the-fly forecasting. To develop this 
process, some univariate algorithms have been applied in 
a Raspberry Pi and a smartphone, considering only previ-
ous glycemia data to predict glucose levels. The outcomes 
revealed a 15-min horizon with an RMSE of 11.65 mg/dL 
in only 16.15 s would be possible in a smartphone, using 
a random forest algorithm and 10-min sampling of the 
previous 6 h of data. With the Raspberry Pi, the compu-
tational effort was improved to 34.89 s employing SVM 
(RMSE of 19.90 mg/dL).

The assessment and modeling of glucose oscillations 
help forecast the time to inject insulin in T1DM subjects. 
To this end, Tesseratus hybrid model was developed to 
predict the glucose oscillation for up to 4 h during the 
daytime and for up to 8 h during the night period [136]. 
This model is based on both compartment models and 
data-driven algorithms like machine learning. It has two 
kinds of agents: reactive agents and intelligent agents. 
The reactive agents are accountable for gathering data 
and feeding intelligent agents with the accumulated 
data or for monitoring data, errors, and ODE param-
eters. Intelligent agents are responsible for utilizing data 
to forecast glucose oscillation and comprise the recom-
mender agent, the predictor agent, the ML agent, and the 
math agent. It was claimed that Tesseratus could be a ref-
erence for the classification of a glucose prediction model 
which helps decrease long-term complications in T1DM 
individuals.

Several non-ensemble benchmark models including 
LR, vanilla LSTM, and Bidirectional LSTM (BiLSTM) 
as well as their contributions as base-learners for con-
structing the ensemble models were used to predict BG 

levels in 30 and 60 min [137]. The univariate time series 
predicting, multivariate time series predicting, and two-
dimensional data analysis were used to fuse the outputs 
of the base learners. The performance order  of models 
was as follows: ensemble models, non-ensemble models, 
and naive baseline model.

A weighted ensemble of RF, XGB, DT, LGB, and NB 
was used to early predict diabetes [138]. Grid search 
hyperparameter optimization was utilized to tune 
the hyperparameters of models. ANOVA test showed 
that the performance of diabetes prediction was 
remarkably amended when the weighted ensemble of 
DT + RF + XGB + LGB was executed (AUC: 0.832). How-
ever, the RF-based feature selection approach generated 
the best outcome for early diabetes forecasting.

The accurate prediction of BG level is still a challenge 
for diabetes management. Several factors such as diet, 
activities, stress, and personal physiological characteris-
tics, affect the BG level, so the precise forecasting of BG 
is an open problem in diabetes management. A personal-
ized model based on a CNN with a fine-tuning strategy 
was developed for accurate forecasting of BG on a data-
set containing T1DM, T2DM, and GDM data [139]. Only 
CGM data points were used as input during the pre-
processing  and future BG amounts of 4 various predic-
tion horizons (PHs, 15, 30, 45, and 60 min) were used as 
output. Then, a CNN and a multi-output random forest 
regressor employing a hold-out method for each group 
was trained. This model improved the performance of the 
general CNN in most cases. In addition, it was found that 
the BG level at the time of forecasting was related to the 
future BG level trend.

One of the beneficial preventive actions to manage dia-
betes is forecasting forthcoming levels of blood glucose 
concentrations. An RNN based on the LSTM model was 
developed for predicting upcoming blood glucose lev-
els in T1DM subjects and then integrated with multiple 
insulin and carbohydrate absorption curves in order to 
optimize the prediction outcomes [140]. The accuracy 
level of around 0.510 mmol/L (9.2 mg/dl) was obtained.

Despite a large number of CGM data that provide the 
required data for developing deep learning algorithms 
for personalized BG forecasting in T1DM, uncertain 
forecasting confidence and limited training data for new 
T1DM individuals are challenging. Therefore, a Fast-
adaptive and Confident Neural Network (FCNN) model 
was developed to overcome these clinical problems 
[141]. An attention-based recurrent neural network was 
employed to learn representations from CGM data and 
forward a weighted sum of hidden states to an output 
layer, aiming to calculate personalized BG forecasting. 
The model-agnostic meta-learning was used to provide 
fast adaptation for a new T1DM patient with limited 
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training data. The FCNN was successful in predicting BG 
levels in T1DM and reached RMSE of 18.64 ± 2.60 mg/
dL and 31.07 ± 3.62 mg/dL for 30 and 60-min predic-
tion horizons, respectively. In another work, the fore-
casting glycemic levels of pediatric T1DM patients were 
investigated by CNN and LSTM-RNN models on insulin, 
glucose, and meal data [142]. The models were then exe-
cuted on two edge-computing boards to assess the pos-
sibility of an edge system for glucose prediction in terms 
of forecasting accuracy and inference time. The LSTM 
model achieved the best clinical and numeric accuracy 
when tested in one format, whereas the CNN achieved 
the best clinical accuracy in another format. The perfor-
mance and inference time were also acceptable for a real-
time application. In another study, LSTM-RNNs were 
used to dynamically predict the next-day glucose levels 
in T2DM patients based on their daily mobile health life-
style data on weight, physical activity, diet, and previous 
glucose levels [143]. A transfer learning strategy was also 
developed to cope with data scarcity and ameliorate fore-
casting accuracy for each patient. The suggested model 
showed remarkable accuracy in forecasting the next 
day’s glucose level based on the Clark Error Grid and the 
± 10% range of the real values.

The prediction models including a non-linear autore-
gressive (NAR) neural network and LSTM were also 
trained on glucose signals of a heterogeneous and large 
cohort of patients and afterward, used to derive future 
glucose-level amounts in the new patients [144]. The pre-
diction accuracy of NAR was good for prediction horizon 
within 30 min, however, the LSTM model yielded high 
performance both for short- and long-term glucose-level 
inference and was outperformed on feed-forward neural 
networks (FNNs), autoregressive (AR) models, and RNN. 
Therefore, it was concluded that LSTM is the premier 
method for systems with a very long-term predicting 
window.

In order to evaluate the effect of the step of feature 
selection (FS) in improving the accuracy of the predicted 
glycemia in T1DM subjects, six FS algorithms including 
LR, RF, Multi-Layer Perceptron (MLP), Instance-Based 
K-nearest neighbor (IBk), Relief Attribute (Rlf ), and PCA 
beside four predictive algorithms (RF, LR, SVM, and 
GP) were applied to a biomedical features dataset [145]. 
The outcomes showed that RF as both FS technique and 
predictive algorithm causes the best RMSE (18.54 mg/
dL) throughout the 12 considered predictive horizons 
(up to 60 min in stages of 5 min). In addition, applying 
SVM as a forecasting algorithm led to the best accuracy 
when the average of the six FS algorithms was applied 
(RMSE = 20.58 mg/dL).

The time delay in the CGM systems may lead to a con-
siderable change between the actual BG and the CGM 

levels. To dominate this obstacle, an artificial neural 
network regression method was applied to forecast 
CGM amounts in T1DM patients with a lead-time of 
15 min [146]. The external validation yielded an RMSE 
of 99.9–100%. In another work, a multilayer deep neural 
framework with a combination of LSTM with the gated 
recurrent unit (LS-GRUNet) was constructed to forecast 
the future glucose level in T1DM patients based on meal 
information and glucose levels for a prediction horizon 
of various times [147]. The RSMEs were 5.27 mg/dL and 
14.85 mg/dL for 15 and 30 min prediction horizons which 
were comparable to existing methods in the literature.

The IoMT is described as the junction of multiple med-
ical devices in healthcare systems. It supplies remarkable 
advantages in clinical applications when combined with 
AI technologies. A deep learning algorithm of attention-
based lightweight RNN was proposed to be executed in 
an IoMT-enabled wearable device employing a system on 
a chip (SoC) for Bluetooth low energy (BLE) connectiv-
ity and edge computing [148]. An evidential regression 
was used to calculate model uncertainty and ameliorate 
the detection of impending hypoglycemia. After receiv-
ing the measurements from CGM, the wearable device 
carry out real-time model inference to acquire the BG 
forecasting and hypoglycemia warning for decision sup-
port. The embedded model was evaluated on the data 
from the T1DM subjects. The proposed model reached 
the premier performance of RMSE and acquired the best 
accuracy for hypoglycemia detection when compared 
with ARIMA, TCN, CRNN, LSTM, Bi-LSTM, and SVR 
approaches.

An LSTM network with one LSTM layer, one bi-direc-
tional LSTM layer along with several fully connected lay-
ers was applied to forecast BG concentration [149]. The 
LSTM network was first trained with both real T1DM 
patient and in silico data to develop a “global model”. 
Then, the model was trained and tested with multiple 
real datasets comprising more than 5-day CGM data. The 
model was fast and outperformed the baseline algorithms 
SVR and ARIMA with reduced RMSE and time lag, while 
the correlation coefficient and Fit were increased.

A deep learning method was developed based on func-
tion approximation on data-defined manifolds, employ-
ing diffusion polynomials [150]. The BG levels of various 
patients were taken at 5-min intervals with the CGM 
device to generate time series data. To quantify the 
clinical accuracy of the desired predictors, the Predic-
tion Error-Grid Analysis (PRED-EGA) was applied. This 
assessment methodology records reference BG esti-
mates along with the BG approximates forecasted for 
similar moments. The PRED-EGA reports the percent-
age of accurate, benign, and erroneous predictions in the 
hypoglycemic, euglycemic, and hyperglycemic ranges, 
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individually. This stratification is important because the 
prediction errors in the different ranges lead to vari-
ous consequences. In the first layer, the training patient 
was set by randomly selecting the patients. Then, a 
short-term prediction of the BG level after 5 min was 
performed by applying the linear predictor approach. 
According to these 5-min predictions, the measurements 
were clustered in three clusters. This step was carried 
out to collect more information concerning the train-
ing set. Afterward, the best one of the three predictions 
was determined. In the last training layer, the final output 
was generated based on which predictions give the best 
placement in the PRED-EGA grid. Eventually, to assess 
the performance of the final output, the actual reference 
values were used to place it in the PRED-EGA grid.

Detection of blood glucose
To measure blood glucose concentration, a mathemati-
cal model based on energy metabolism conservation was 
proposed [151]. To this end, a multisensor integrated 
diagnosis probe put on the wrist was developed. Moreo-
ver, back-propagation neural network (BPNN) and multi-
variate polynomial regression were utilized to construct 
a regression model to measure BG concentrations. The 
Levenberg–Marquardt back-propagation algorithm was 
applied for training the model and tansig sigmoid func-
tions were employed for the hidden layer. Further experi-
ments showed the possibility of the proposed method 
in the detection of noninvasive BG concentration based 
on the conservation of energy metabolism. In addition, 
about 98.4% of the predicted BG amounts were inside 
area A of the Clarke error grid.

The Fourier-transform infrared spectra data of saliva 
was modeled by SVM, ANN, and LR to reach the fol-
lowing purposes: characterization of diabetic patients in 
uncontrolled and controlled based on their recorded pre-
prandial HbA1C amounts, characterization of diabetic 
cases according to their pre-prandial glucose amounts 
obtained at the time of taking the saliva sample, and 
assessment of a specific glucose amount [152]. The out-
comes revealed that the abovementioned examinations 
are possible through ANN using regression models.

A Complementary Ensemble Empirical Mode 
Decomposition(CEEMD) and Least Squares Support 
Vector Machine (LSSVM) were proposed to predict 
blood glucose concentration [153]. First, CEEMD was 
applied to transform the sequence of blood glucose 
concentration into a collection of intrinsic mode func-
tions (IMFs) for decreasing the effect of nonstationary 
signals and also reducing the randomness of the predic-
tion efficacy. Then, the LSSVM model was constructed 
for each mode IMF. After that, the comprehensive learn-
ing particle swarm optimization (CLPSO) algorithm was 

employed to optimize the kernel parameters of LSSVM. 
Eventually, the prediction outcomes of all IMFs were 
superimposed to obtain the blood glucose concentration 
prediction amount. The experimental results demon-
strated the model has superior prediction accuracy in the 
short-term blood glucose concentration amounts.

Restricting the levels of blood glucose to be under the 
euglycaemic range could decrease the occurrence of dia-
betes-related consequences and amend people’s quality 
of life suffering from T1DM [154]. To forecast the sud-
den alterations in blood glucose amounts that are gen-
erated during physical activity, a Jump Neural Network 
model was developed. For this aim, three learning con-
figurations including online training, offline training, 
and online training with reinforcement were evolved. All 
configurations were examined on six T1DM individuals 
who held regular PAs (three anaerobic and three aerobic) 
with controlled CGM. The online learning configurations 
carried out much better than the offline one on all days 
but not on the only CGM accompanied by the PA. The 
outcomes did not legitimize the elevated computational 
burden because the betterment was not remarkable. The 
RMSE for those who performed aerobic and anaerobic 
exercises were found as 26.3 and 20.8, respectively. The 
prognosis of T2DM could be accomplished through the 
control of blood glucose [155].

To predict glycemic, an Elastic Network (EN) for 
addressing the variable collinearity was combined with 
RF, SVM, and Back-Propagation Artificial Neural Net-
work (BP-ANN) algorithms. In addition, a stepwise LR 
was carried out for comparing ML models. Basic infor-
mation, diabetes-related data, and biochemical indi-
ces were used as variables. The multivariable analysis 
revealed that exercising, atherosclerotic cardiovascular 
disease history, hypertension history, and total choles-
terol were protective factors in the control of glycosylated 
hemoglobin (HbA1c), while the family history, insulin 
dose, central adiposity, complications, T2DM duration, 
hypertension, and blood pressure were the risk factors for 
the increased HbA1c. After the dimensional reduction 
by EN, the AUC of SVM, RF, and BP were determined as 
0.72, 0.75, and 0.72, respectively. Moreover, the EN and 
machine learning models had superior accuracy and sen-
sitivity than the logistic regression models. The EN and 
ML algorithms could be considered the alternative to 
the traditional logistic model, to construct the predictive 
methods of blood glucose control in T2DM patients.

A personalized glucose monitoring system (PGMS) 
comprises both non-invasive and invasive sensors on 
a solitary device [156]. In one study, blood glucose data 
was used for training the ML models. Then, the paired 
data and corresponding errors were divided into 6 vari-
ous clusters based on blood glucose ranges. Each cluster 
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was trained to construct the inimitable error prediction 
model employing an AdaBoost approach. These error 
prediction models undergo personalized calibration 
according to the patient’s features. When the errors in 
forecasted amounts were within the admissible error 
range, the device got personalized for a patient to deter-
mine the blood glucose non-invasively. The performance 
analysis showed that the MARD was decreased to around 
7.3% for the predicted amounts in comparison with 
25.4% for the evaluated non-invasive glucose amounts.

To assess several variables extracted from lifestyle 
and medical self-monitoring data, RReliefF and RF 
approaches were initially used to rank the candidate vari-
able set [157]. Then, a forward selection method was pur-
sued to construct a glucose predictive model. In which, 
the related variables were consecutively surcharged to it 
in a subtractive order of significance. Predictions were 
carried out utilizing Gaussian or support vector regres-
sion processes. The glucose profile in addition to the 
time of the day and concentration of plasma insulin were 
highly ranked, while the efficacy of physical activity and 
food intake remarkably differed among cases. The pre-
diction horizon (min)/RMSE (mg/dl) were obtained as 
30/5.7 ± 1.5, 30/5.9 ± 1.4, 30/5.6 ± 1.7, and 30/5.9 ± 1.6 
for SVR-RF, SVR-RRF, GP-RF, and GP-RRF, respectively.

An SVM binary classifier was developed with the pur-
pose of determining if a CGM data stream pertains to 
an individual contributor [158]. To produce the variable 
vector employed for classification, the standard glyce-
mic metrics were chosen and assessed at different time 
periods of the day (24 h, day, night, breakfast, lunch, and 
dinner). A recursive feature selection approach was used 
to choose the minimum subset of variables. A window 
length of 15 days was identified as the optimum interval 
for accuracy (86.8% ± 12.8%). The method was suggested 
as a digital CGM “fingerprint” or for detecting glycemic 
alterations within a subject.

Insulin resistance predicting models
Insulin resistance (IR) is a situation in which cells in the 
liver, fat, and muscles have weak responses to insulin and 
are unable to utilize glucose from the blood for consum-
ing energy. Insulin resistance can be used for the early 
detection of T2DM [159]. To predict insulin resistance 
using the ML approach, the potential impact of glucose, 
obesity, lipid metabolism, kidney operation, liver func-
tion, environmental factors, and genetics were consid-
ered to construct the model. LR, XGBoost, RF, and ANN 
algorithms produced the optimal prediction model for 
insulin resistance. XGBoost and LR created the greatest 
AUC (0.86) of the prediction models by employing 99 
variables, while the RF produced a model with an AUC of 
0.82. The models revealed that liver function, pulse, and 

seasonal variation, as well as metabolic syndrome com-
ponents, should be noticed to predict insulin resistance 
in Koreans aged over 40.

An unsupervised machine learning method was uti-
lized to assess the homeostatic model assessment-insu-
lin resistance (HOMA-IR) cut-off to find individuals at 
risk of IR based on clinical data [160]. First, HOMA-IR-
correlated features were determined by using a cluster-
ing algorithm, and two clusters with the lowest overlap 
in their HOMA-IR amounts were retrieved. These clus-
ters were the samples of insulin-sensitive individuals and 
subjects who were at risk of IR. A total of 14 variables 
were finally selected: plasma leptin, two-hour postpran-
dial glucose concentration, waist circumference, body 
mass index, total cholesterol, very-low-density lipopro-
tein, percentage of fat, alanine transaminase, TG, HbA1c, 
24-hour systolic and diastolic blood pressure, free thy-
roxine, and human growth hormone. The cut-off amount 
of 1.62 ± 0.06 was found from the intersections of the 
Gaussian functions and then modeling the HOMA-IR 
distributions of these populations. Such an approach may 
determine high-risk subjects at an early stage, which then 
hamper or delay the initiation of T2DM.

Triglyceride-glucose (TyG) index has been presented 
as a beneficial element for determining insulin resistance 
and for the preliminary identification of cases at T2DM 
risk [161]. Based on this concept, a multiple instance 
learning boosting algorithm (MIL-Boost) was proposed 
to construct a predictive model for the early forecasting 
of worsening IR considering the TyG index. It was devel-
oped regarding the information of the past EHRs and 
also it was capable of extracting hidden patterns, even 
not the direct measurements of glucose and triglycerides. 
The suggested model was efficient to predict IR (Recall: 
0.70–0.83).

For determining insulin resistance, specific blood tests 
are required. While the TyG index could provide a sub-
stitution evaluation from routine EHR data [162]. The 
ensemble regression forest combined with the data impu-
tation strategies, namely, TyG-er was developed. The 
results diagnosed the non-conventional clinical factors 
like protein profile, leukocytes, uricemia, and gamma-
glutamyltransferase. In addition, they could provide a 
novel intuition to the foremost combination of the clini-
cal factors for discovering early glucose tolerance dete-
rioration. The robustness of the elicited clinical factors 
was affirmed by the high settlement (0.664–0.911 of Lin’s 
correlation coefficient) of the TyG-er method among var-
ious experimental techniques. The combination of SVM-
Gauss with the K-NN data imputation demonstrated 
the best predictive power. However, the TyG-er method 
was identified to be the foremost contender and it was 



Page 26 of 39Afsaneh et al. Diabetology & Metabolic Syndrome          (2022) 14:196 

suggested a higher level of interpretability in comparison 
with the SVM-Gauss approach.

To develop the ML-based methods for estimating insu-
lin resistance in children with T1DM, both Multivariate 
Adaptive Regression Splines (MARSplines) and Artifi-
cial Neural Networks (ANN) were employed [163]. A 
hyperinsulinemic hyperglycemic clamp study was carried 
out to assess the Glucose Disposal Rate (GDR). The out-
comes were compared with the predictive models based 
on HbA1c, TG, and waist circumference levels. The refer-
ence model demonstrated a moderate performance with 
a median absolute percentage error of 49.1%. Predictions 
of the MARSplines model were remarkably more accu-
rate versus the reference model (median error 3.6%). On 
the other hand, the ANN predictions were displayed sig-
nificantly in the lower error versus the MARSplines and 
also the reference model.

Determination of the start and effect of treatment
Canagliflozin is an insulin-independent glucose-lower-
ing compound that is used for diabetes patients due to 
its convenient influence on the renal and cardiovascu-
lar [164]. But, the clinical trials disclosed that there was 
an elevated risk of lower extremity amputations (LEA) 
accompanied by canagliflozin. To predict LEA, several 
ML algorithms were used. The LASSO method could 
produce the best prediction (C-statistic of 0.81) among 
others. For this reason, it was proposed that the identi-
fied risk score could help to obtain the best treatment 
decisions.

An empirical standard formula (SF) was frequently 
applied for checking the daily insulin injections and 
mealtime insulin boluses (MIB) to offset the deficiency 
of endogenous insulin generation because of β-cells 
destruction in T1DM [165]. However, SF may result in 
over/underestimations and cause serious hyper/hypo-
glycemic episodes during or after the meal. Therefore, 
GBT and RF nonlinear algorithms were utilized to over-
come this challenge. The preprandial BG, glucose rate-
of-change, and meal amounts were considered variables. 
The evaluations were carried out regarding accuracy in 
the assessment of the optimal glycemic and bolus con-
trol. The models with the remarkable improvements 
in glycemic management versus the linear approach 
showed decreasing in the time spent in hypoglycemia 
from 32.49 to 25.20%- 27.57 for GBT and RF, respectively. 
The result disclosed that the nonlinear machine learning 
approaches could ameliorate the approximation of insu-
lin bolus in T1DM treatment.

Also, several models based on LASSO and multiple 
linear regression (MLR) were evaluated to develop the 
computation of MIB using the CGM data [166]. LASSO 

regression with an extended feature set including Quad-
ratic terms (LASSO-Q) produced better results than the 
existing techniques. Moreover, LASSO-Q diminished 
the fault in assessing the optimal bolus and hypoglyce-
mia occurrence. MIB dosage with the suggested LASSO-
Q model could decrease the risk of harmful events in 
T1DM therapy. In another work, a novel method was 
developed based on neural networks, to personalize and 
optimize the bolus computation utilizing the information 
of continuous glucose monitoring and available param-
eters of patients. The neural network method led to a 
decrease in blood glucose risk index value equal to 0.37 
versus SF [167].

It has been reported that T1DM patients need long-
term exogenous insulin treatments to adjust their blood 
glucose levels [168]. Therefore, the automatic recom-
mendation of personalized insulin dosage levels could 
be beneficial. To this end, a model-free data-driven RL 
approach, Q-learning, was developed to recommend 
insulin doses. The variables included engagement in 
physical activity, body mass index, alcohol usage, and gly-
cated hemoglobin levels were considered. In this method, 
the RL agent found various patient states by tracking the 
patient’s replies when the case was subjected to vary-
ing insulin doses. Based on the outcome of treatment at 
a special time stage, the RL agent gave a numeric nega-
tive or positive reward. The reward was computed as a 
function of the discrepancy between the real blood glu-
cose level obtained in response to the targeted HbA1c 
level and insulin dose. The interval of RL agent–recom-
mended insulin dosage comprised the true dose that was 
endorsed by the doctors in 88% of the test patients. The 
method showed that an RL algorithm could be employed 
for recommending personalized insulin doses to achieve 
sufficient glycemic control in T1DM patients.

To evaluate the treatment results of T2DM and to rec-
ognize the characteristics of patients associated with 
the achievement of a target HbA1c of ≤ 7%, several ML 
methods were applied [169]. The data was the effect of 
a clinical trial assessing the single-pill combination of 
the sodium-glucose cotransporter-2/dipeptidyl pepti-
dase-4 (SGLT2/DPP-4) inhibitor empagliflozin/linaglip-
tin with linagliptin or empagliflozin monotherapies to 
identify novel predictors of remedy success, defined as 
HbA1c decrease. For the first time, descriptive analysis 
was applied to evaluate univariate associations between 
each baseline characteristic and HbA1c target categories. 
Then, RF and the classification tree algorithms were used 
in order to appraise and also to forecast the target groups 
based on the patient features from the baseline. This pro-
cedure could be done without any previous selection. In 
the descriptive analysis, FPG and lower mean baseline 
HbA1c were both correlated with the obtained HbA1c 
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target. The ML analysis found FPG and HbA1c as power-
ful predictors for glycemic control. The covariates which 
included waist circumference, body weight, blood pres-
sure, or other features did not contribute to the results. 
In the validation set, trivial progress in the prediction 
accuracy was acquired for the random forest model ver-
sus the classification tree model: 82% versus 80% for the 
empagliflozin, 81% versus 79% for the empagliflozin/lina-
gliptin single-pill combination, and 78% versus 77% for 
the linagliptin.

Metformin is the common first-line drug for the treat-
ment of prediabetes and T2DM [170]. However, it fails 
in the treatment of a third of cases. A machine learning 
model was developed to predict the blood glucose  con-
trol in patients who have consumed metformin after one 
year of therapy. Predictors were derived from four main 
features: baseline HbA1c level, comorbidities, demo-
graphic variables, and baseline metformin dosage. A total 
of 20 base models containing a broad diversity of under-
lying methods including RL both with and without regu-
larization and/or stepwise feature selection, tree-based 
models, SVM, multivariate adaptive regression splines, 
and flexible discriminants were constructed. The ensem-
ble models comprised a non-linear stack of all base mod-
els, a linear stack of all base models, and a linear stack of 
a subset of maximally diverse models. The basic approach 
underlying stacking was used to train a pool of base clas-
sifiers on a training set. Then, it was utilized for training 
another classifier named a combiner on the predictions 
of the base classifiers. Various ML models were trained 
by employing variables existent at the time of metformin 
initiation for predicting the attainment and also for keep-
ing HbA1c < 7.0% after one year of treatment. AUC per-
formances were determined from 0.58 to 0.75. The most 
important features were the baseline HbA1c, the attend-
ance of diabetes with complications, and the starting 
metformin dosage.

One of the main duties of precision medicine is devel-
oping Individualized Treatment Rules (ITRs) for patients 
with heterogeneous responses to the various treatments 
[171]. It led to finding and employing potential biomark-
ers beneficial to rectify an ITR. For this aim, the Net 
Benefit Index (NBI) was developed to quantify a contrast 
between the resulting loss and gain of therapy when a 
biomarker entered ITR to reassign patients to therapies. 
Moreover, a weighted SVM was used to find the optimal 
treatment group labels. Through the proposed index, the 
baseline fasting insulin was found as a significant bio-
marker. Applying this protocol resulted in progress over 
an existing ITR and decreasing in FPG over 52 weeks.

GDM is a major challenge that can create morbidity in 
women and newborns [172]. However, monitoring the 

woman’s blood glucose and considering the risk factors 
could help in making decisions for the commencement 
of treatment by metformin or insulin. Mobile Health 
(mHealth) solutions provided real-time follow-up and 
authorized timely therapy and management. By apply-
ing a logistic machine learning algorithm, the timing of 
the pharmacological treatment beginning was accurately 
predicted with Insulin therapy ( AUC = 0.8). It was com-
monly recommended for patients with T2DM once per 
day.

Calculating the missing dose is crucial as the daily insu-
lin dose can be forgotten by the patients [173]. There-
fore, determining a missing injection based on CGM 
data from the same day could be beneficial because the 
dose must be taken within 8 h of the next injection. To 
detect daily adherence, deep learning methods based on 
convolutional neural networks were surveyed and com-
pared with ordinary feature-engineered ML classification 
models. Six different models obtained from the auto-
matically learned features and also the expert-dependent 
were examined. Three classification models based on 
the expert-engineered features acquired mean accura-
cies of around 78%. One of these classification methods 
relied merely on learned variables and got a mean accu-
racy of 79.7%. The two other classification techniques 
including fusing expert-engineered and learned variables 
achieved mean accuracies of 79.8% and 79.7%, respec-
tively. The accuracy of adherence detection was improved 
when more CGM data became accessible on the day of 
classification.

Blood glycemic control is essential to minimize the 
side effects of diabetes [174]. Two contrary treatment 
methods have been presented: formulaic and closed-
loop approaches. In formulaic approaches, insulin 
care is computed by parameter-based calculation (i.e., 
insulin-to-carb ratio, correction factor, and absorption 
duration), which are determined based on the history 
of examined blood glucose levels. Alternatively, closed-
loop approaches examine the glycemic level through 
the sensors and supply the insulin boluses according to 
the data of the sensor. The abovementioned systems are 
reactive leading to the remarkable fluctuations of glu-
cose amounts, which ultimately resulted in hyperglyce-
mia. Therefore, the reaction of patients to insulin therapy 
was modeled by Markov Decision Process (MDP) which 
allowed the system to identify an unparalleled, individu-
alized and dynamically updated insulin care policy. The 
solution to MDP was identified by reinforcement learn-
ing. This approach could hamper hypoglycemia and also 
could lead to decreasing both glycemic fluctuations and 
high glucose duration. In addition, this method could 
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allow the care team to update the patient model and bet-
ter support.

In order to predict and avoid the occurrence of NH 
in individuals with T1DM under multiple-dose insulin 
(MDI) therapy, various data sources, ML algorithms, and 
optimization metrics were assessed [175]. ML methods 
including multinomial NB, ANN, SVM, AdaBoost, linear 
discriminant analysis (LDA), and LSTM were examined. 
The outcomes revealed the foremost results for the SVM 
algorithm. Moreover, the population and personalized 
models were designed and the impact of physical activ-
ity was evaluated. The results showed that 30 g of rescue 
carbohydrates is the optimal amount for avoiding NH. 
Therefore, the positive effect of BG predictions to make 
accurate decisions regarding insulin therapy and day-to-
day lives was concluded.

A step-wise approach was proposed to choose drug 
combinations for compensating carbohydrate metabo-
lism for T2DM patients [176]. The main carbohydrate 
metabolism indicator – glycated hemoglobin, arterial 
blood pressure, and the lipid profile indicator – low-
density lipoprotein cholesterol were used as indicators 
for the prediction. The approach comprised the follow-
ing stages: (i) using machine learning regressors includ-
ing RF, CatBoost, and XGB for forecasting the future 
impact of treatment; (ii) using a Bayesian network for the 
personalized computation of pharmacological categories 
that are needed for the patient; (iii) employing a modi-
fied genetic algorithm for detecting the best combination 
of drugs for each patient. The method was assessed and 
validated using virtual implementation and by comparing 
the predicted outcomes with the real treatments.

Risk assessment of diabetes
Many individuals who have prediabetes and even T2DM 
or T1DM do not have any signs at first. It causes to 
increase in the risk of developing further diseases. More-
over, The American Diabetes Association (ADA) declares 
that the increase in risk factors can elevate the prob-
ability of appearing diabetes. Therefore, finding the risk 
factors and assessing the risk of developing diabetes can 
help to decrease further complications and also timely 
treatment.

The effect and usefulness of lipid and HbA1c variability 
for risk assessment in diabetes mellitus were evaluated by 
regularized and weighted Random Survival Forests (RSF) 
models. These techniques that were introduced as a class 
of machine learning methods were examined for survival 
analysis [177]. The outcomes revealed that the increase 
in the variability in lipid and HbA1c parameters were 
accompanied by the high risk of both diabetic difficulties 
and all-cause mortality. It was also concluded that the 

dependency between baseline Neutrophil- Lymphocyte 
Ratio (NLR), hypoglycemic frequency, and both lipid and 
HbA1c variability provided a major function for inflam-
mation in mediating harmful results in diabetes. How-
ever, it is required to be investigated in future studies.

In another study, Deep Neural Survival learning models 
(DeepSurv) and RSF were employed to construct reliable 
methods considering variables including the variability 
values of HbA1c and fasting glucose, comorbidities, drug 
prescription details, and nutritional inflammatory indices 
[178]. The results showed remarkable predictive accuracy 
in comparison with Cox regression-based techniques.

To identify susceptible individuals with the risk of 
T2DM or prediabetes who had normal glucose regula-
tion, an RF classifier was employed. This classifier could 
predict the low and high-risk features for glucose disor-
ders at follow-ups between 10 and 20 years [179]. After-
ward, SHAP TreeExplainer was utilized to interpret the 
results of the RF classifier. Age, BMI, systolic and dias-
tolic blood pressure, waist-hip ratio, and diabetes hered-
ity were identified as the important features so that their 
high values could lead to an increased risk of T2DM. 
Most features also had a role in the metabolic control of 
diabetes, so they could be employed in diabetes care to 
create personalized health care plans.

A risk assessment system was applied to predict the 
3-year risk of occurrence of diabetes through a combina-
tion of clinical and demographic features [180]. For this 
reason, the XGBoost was applied to choose the reliable 
variables. BMI, FPG, and age were identified as the top 
three substantial elements.

An interpretable ML framework was applied to find 
the T2DM-related gut microbiome variables in the cross-
sectional analyses of three Chinese cohorts [181]. To this 
end, a model based on a GBDT algorithm and LightGBM 
was developed to connect input features with T2DM. 
Moreover, SHAP was applied to untie the machine learn-
ing outcomes. The mean absolute value of the SHAP 
showed the average share of each feature to the overall 
model predictions. Therefore, features with an average 
absolute SHAP value higher than 0 were considered as 
chosen features. Afterward, a Microbiome Risk Score 
(MRS) was constructed with the determined features, 
and its association with glucose, demographic, dietary 
factors, and adiposity was evaluated. The MRS was posi-
tively correlated with future glucose increment and diver-
sity of gut microbiota-derived blood metabolites. The 
distribution of body fat was identified to be a critical fac-
tor modulating the gut microbiome–T2DM relationship.

In one study, NB and LR approaches were utilized 
to build a risk prediction model for Large-For-Gesta-
tional-Age (LGA) infants using a large multi-center 
cohort [182]. Models were developed by integrating the 
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demographic, clinical variables, and risks of hyperglyce-
mia as potential predictors. In this case, hyperglycemia 
was evaluated in three parts: GDM subtype, IADPSG 
GDM yes/no, and OGTT z-score quintiles. Both meth-
ods led to the same approximation for the LGA risk, 
however, the AUC for the LR model was significantly 
higher (0.698 vs. 0.682). The utilization of the individual 
OGTT z-score quintiles caused statistically higher AUC 
than the others.

To specify the T2D patients who were at elevated risk 
of hypoglycemia, a screening tool based on ridge logistic 
regression, logistic regression with backward selection, 
LASSO LR, elastic net logistic regression, and RF was 
proposed [183]. The medication and demographic data 
or the ensemble containing medication, demographic, 
and clinical data were utilized as predictor features for 
training models. The LR with the least absolute shrink-
age and selection operator was found as the best accurate 
model including only demographic and medication data 
(AUC of 0.71). The significant features were ‘insulin use’, 
followed by ‘sulfonylurea use’ and ‘insulin use duration’. 
The suggested model acquired the same performance 
as the model employing the additional clinical data. Six 
ML approaches, including Classification And Regression 
Tree (CART), RF, GBM, LR, SVM, and ANN were used 
to develop the risk assessment models for predicting the 
risk of T2DM in the rural Chinese population [184]. All 
these models showed a potent predictive performance, 
with AUCs ranging between 0.767 and 0.817 without lab-
oratory data as well as 0.811 and 0.872 using laboratory 
findings and experimental data. Among them, the GBM 
model was the best. The variables including urine glu-
cose, sweet flavor, pulse pressure, age, creatinine, heart 
rate, waist circumference, insulin, uric acid, and hyper-
tension were the top-ten selected features. Through this 
study, sweet flavor and urinary indicators were found as 
novel variables.

Abdominal computed tomography (CT) is an imag-
ing technique that could be used to evaluate the risk of 
T2DM for  about one future year [185]. The role of five 
various kinds of EMR was considered in prediction 
including (1) demographics (2) desired visceral/subcuta-
neous fat volumes in the L2 region (3) pancreas volume 
(4) glucose lab tests and (5) abdominal body fat distri-
bution. Next, a deep neural network was constructed to 
forecast the onset of T2DM with pancreas imaging slices. 
Finally, a merged framework was built to combine EMR 
information and CT imaging slices to refine the pre-
diction which led to a 4.25% and 6.93% AUC increase 
for estimating T2DM compared with utilizing EMR or 
images.

In another study, to forecast the risk of hypoglyce-
mia, four years of electronic health data including the 

laboratory and the point-of-care BG values were used. 
These findings were employed for determining the clini-
cal and the biochemical remarkable hypoglycemic epi-
sodes, BG </=2.9 and </=3.9 mmol/L, respectively 
[186]. The administered medications, laboratory results, 
vital signs, demographics, and procedures that were per-
formed during the hospital stay were used to inform the 
model. The predictive variables from the LR model con-
tained weight, people undergoing procedures, oxygen 
saturation level, albumin levels, type of diabetes, and use 
of medications (insulin, metformin, and sulfonylurea). 
XGBoost model had the best performance (AUC = 0.96) 
and it outperformed the LR model (AUC = 0.75) for the 
risk assessment of clinically substantial hypoglycemia. 
Therefore, advanced machine learning models were 
introduced as the prior models rather than the logistic 
regression models in forecasting the risk of hypoglycemia 
in patients with diabetes.

To assess the risk of T2DM using biochemical biomark-
ers such as C-reactive protein, bilirubin, fasting glucose, 
HbAc, and cholesterol, the LR model was applied [187]. 
The best performance was obtained when all predictors 
were used and the only cases with linearly growing glu-
cose levels were considered. The accuracy of the model 
was 73.85%, AUC was 0.81, the sensitivity was 90%, and 
specificity was 42%.

One of the first approaches for the risk assessment 
of nocturnal hypoglycemia is relying on the Low Blood 
Glucose Index (LBGI) that has been proposed for Accu-
Chek® Connect as a hypoglycemia risk index [188]. A 
general method that was proposed by combining the NH 
predictors was built from various glucose control indices 
(GCI). The suggested model was constructed based on 
four GCI associated with hypoglycemia. The aggregation 
method that led to improving the performance included 
a positive predictive value of 80.2%, a specificity of 83.4%, 
a sensitivity of 77%, and a negative predictive value of 
80.6%. The obtained amount was greater than the magni-
tude that conventionally was noticed as acceptable.

To determine the elevated risk of progressing T2DM 
among the prediabetic cases, a model of multiple labora-
tories and clinical variables was developed to forecast the 
enlargement of T2DM within two years [189]. A super-
vised ML algorithm was improved for determining at-risk 
cases among hypertensive and obese patients. Employ-
ing a time series analysis with the variables of every case, 
one linear regression line and also one slope per vari-
able were calculated. Then, features were comprised in 
a K-NN classification model. The importance of features 
was evaluated by employing the random forest algorithm. 
The K-NN model accurately classified 96% of cases, with 
a positive predictive amount of 96%, a specificity of 78%, 
a sensitivity of 99%, and a negative predictive amount of 
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94%. The RF algorithm elected the homeostatic model 
assessment–estimated insulin levels, insulin resistance, 
and body mass index as the most significant factors. The 
performance of this model corresponding with K-NN 
had an accuracy of 99% with a specificity of 97% and a 
sensitivity of 99%. As a result, this combined prognostic 
model could determine hypertensive and obese patients 
at risk for progressing T2DM within 2 years.

Several ML algorithms including BN, ANN, classifica-
tion and regression tree, CHAID, discriminate (D), quick 
unbiased efficient statistical tree (QUEST), and ensem-
ble models were assessed to predict the poor glycemic 
control and risks of complications in nonadherent T2D 
[190]. The highest AUC of the testing set for diabetic 
peripheral neuropathy, diabetic nephropathy, the diabetic 
eye, diabetic angiopathy disease, and glycosylated hemo-
globin A were 0.859 ± 0.050, 0.902 ± 0.040, 0.832 ± 0.086, 
0.889 ± 0.059, and 0.825 ± 0.092, respectively. The results 
disclosed that both ML algorithms and univariate anal-
ysis resulted in a similar conclusion. The duration of 
unadjusted hypoglycemic treatment and the duration of 
T2DM were found to be the critical risk factors for dia-
betic complications. Also, the number of hypoglycemic 
drugs was identified as the critical risk factor for glycemic 
control of nonadherent T2DM.

In another study, a feature extraction procedure was 
utilized to find the elements for predicting the future 
hypoglycemia risk [191]. To this end, short-term (less 
than one hour), medium-term (1–4 h), and long-term 
(more than four hours) patterns from the CGM signal, 
as well as contextual, demographic, interaction, and non-
linear features were employed. In addition, two methods 
including LR and RF were applied. Feature selection for 
LR was carried out through the addition of a LASSO 
penalty. LASSO elevated an additional tuning param-
eter to the LR equation which defined a penalty for each 
variable involved in the model. In other words, a variable 
could be involved in the model when the amount of the 
modified loss function declines. The coefficient for an 
inconsequential variable was decreased toward zero and 
it could minimize its influence on the model. The optimal 
amount of the tuning parameter was specified iteratively. 
This process occurred by considering various penalty 
amounts and also by choosing a value that could mini-
mize misclassification. Feature selection was carried out 
by employing the Variable Importance Plot (VIP), which 
obtained the average recovery in the class purity for splits 
involving a feature across all the ensemble trees. VIP was 
utilized to order the variables according to their misclas-
sification influence. In this category, those parameters 
with unimportant impacts were discarded. This model 
predicted hypoglycemia with sensitivity and specific-
ity of more than 91% and 90%, respectively, for 30- and 

60-minute prediction horizons. The inclusion of carbohy-
drate and insulin data led to the improvement of perfor-
mance for 60-minute, but not for 30-minute predictions. 
Moreover, the performance was superior for nocturnal 
hypoglycemia (~ 95% sensitivity).

Lifestyle affects diseases and mortality rates worldwide. 
Therefore, healthy weight, physical activity, and a healthy 
diet are important factors in prohibitive health care that 
could aid in decreasing the risk of developing T2DM 
[192]. To follow the factors impressing T2DM self-man-
agement and prohibition through lifestyle alterations, the 
E-App was developed. This app was capable of following 
the health data and dietary consumption, and also chas-
ing walking, sitting, and running. Bluetooth movement 
data could be obtained from a pair of wearable insole 
devices that were employed to pursue blood glucose, 
carbohydrate intake, physical activity, and medication 
adherence. Two ML methods including DT and SVM 
models were employed to analyze the data which resulted 
in 86% accuracy.

Mobile health and self-management solutions simplify 
remote monitoring and contact without regard to loca-
tion, time, or expense. In addition, each day’s meal can 
be registered and reviewed by the individuals. It author-
ized patients to do self-management and to follow their 
development.

The risk assessment LR and Xgboost models based on 
socio-demographics, lifestyle, and traditional risk factors 
were built to identify pre‐diabetes mellitus and diabetes 
mellitus. The SHAP approach was employed to assess the 
significance of the risk factors and to demonstrate the non-
linear relationship inside the Xgboost model. Moreover, 
the Boruta algorithm was utilized to choose substantial 
statistical risk factors by introducing shadow (randomized) 
variables. The results showed that BMI, waist‐to‐hip ratio, 
waist circumference, age, systolic blood pressure, smoking 
status, sleep duration, and vigorous recreational activity 
time were the remarkable risk factors of pre‐diabetes mel-
litus and diabetes mellitus [193].

Dietary and insulin dose modifications
Although dietary modifications are decisive for managing 
T2DM, it is not successful for a large number of patients 
as an alternative to clinical treatments [194]. As a result, 
the clinical impacts of an algorithm-based Personalized 
Postprandial-Targeting (PPT) diet were used in the con-
trol of glycemic and metabolic health in patients with 
newly diagnosed T2DM. This diet method was compared 
with the usual recommended Mediterranean (MED) diet.

The PPT diet ameliorated CGM-based measures of glu-
cose fluctuations, postprandial glucose responses, and 
daily time with glucose levels > 140 mg/dl versus a MED 
diet. The 6-month PPT intervention led to a remarkable 
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development in several metabolic parameters, including 
fasting glucose, HbA1c, HOMA-IR, blood triglycerides, 
and daily time with glucose levels > 140 mg/dl.

An adaptive Basal-Bolus Algorithm (ABBA) was devel-
oped to present the personalized offer for the prandial 
insulin doses and the daily basal rate based on the glu-
cose level of patients on the last day [195]. The data from 
both CGM and SMBG devices were accepted for use/
adaption in the algorithm. The ABBA relied on RL and 
the variables containing one daily bedtime snack, three 
main meals, various uncertainties for insulin sensitivity, 
glucose measurement time, carbohydrate amount, and 
mealtime. The results demonstrated that artificial intel-
ligence algorithms could present the optimization of 
personalized adaptive insulin. Also, these computational 
techniques could appear the glucose control regardless of 
the type of glucose monitoring devices.

The process of insulin injection to manage the blood 
glucose level is called fumigation. T1DM individuals have 
to inject insulin up to five times per day to balance their 
blood glucose levels. The calculation of convenient doses 
of insulin is often a challenge for patients. Therefore, DT, 
KNN, and ANN algorithms were used to follow the glu-
cose levels and forecast the suitable amounts of insulin 
for T1DM patients [196]. The best result was obtained 
by the ANN model with an MSE of 5.79. This model was 
adapted to Raspberry Pi to measure the blood glucose 
amount and predict the appropriate insulin value.

A model-free reinforcement algorithm called the nor-
malized advantage function (NAF) algorithm was used 
to regulate the BG level of T2DM patients through sub-
cutaneous insulin injection [197]. The model-free aids to 
avoid inaccuracies and parameter uncertainty due to the 
mathematical models of the glucoregulatory system. The 
injected levels of insulin at each time frame were sug-
gested by NAF to minimize the cost induced by hyper- 
and hypoglycemic events. NAF is capable of regulating 
and decreasing the BG fluctuations without meal decla-
rations in comparison to standard optimized open-loop 
basal-bolus treatments. Considering the elimination 
of the insulin dynamic, an accurate and more realis-
tic model was constructed than the formerly suggested 
models.

Hybrid closed-loop systems usually use simple con-
trol algorithms to choose the optimal insulin dose for 
T1DM patients. Online RL has been used as an efficient 
approach for further glucose control in these devices. In 
order to assess the performance of offline RL in these 
systems, the performance of batch-constrained deep 
Q-learning, conservative Q-learning, and twin-delayed 
deep deterministic policy gradient with behavioral clon-
ing was compared with online RL [198]. The offline RL is 
used for developing clinically impressive dosing policies 

without the requirement for patient interaction. The 
offline RL could remarkably elevate time in the healthy 
BG range when trained on less than a tenth of the data 
needed by online RL methods. It was also capable of cor-
recting false bolus and irregular meal timings.

Diabetes management
Diabetes management needs consciousness. The fac-
tors that can influence the glucose blood and also the 
ways that can control it, should be recognized day-to-
day. CGM could facilitate the prediction of the future 
glucose concentration for managing diabetes [199]. The 
glucose concentration amounts are impressed by insulin 
and meals as well as different metabolic and physiological 
variables including Acute Psychological Stress (APS) and 
physical activity. To survey the effects of APS and PA on 
the GC predictions, machine learning techniques includ-
ing LDA, ensemble learning, GPR, KNN, SVM, DTs, and 
deep neural networks with LSTM were considered. The 
results revealed that the effect of PA on GC was much 
more considerable than APS. In addition, the PA effects 
were longer in duration as glucose decreased and long-
term efficacies of alterations in insulin sensitivity led to a 
prolonged decline in CGM values. Under more stressful 
situations, the glycemic effects of APS were more sub-
stantial and the model would perform better. The MAE 
of one-hour-ahead GC forecasting with testing data 
reduced from 35.1 to 31.9 mg/dL with the admission of 
PA data, and it diminished from 16.9 to 14.2 mg/dL with 
the involvement of PA and APS data.

Three ML methods including RF, regularized regres-
sion, and GBT were employed to predict the amounts 
of the received insulin in two groups consisting of more 
than 6 units (“higher” insulin users) or 6 units (“low” 
insulin users) [200]. To combine these methods, Super-
Learner algorithm was used to obtain higher perfor-
mance. Moreover, the point-value Total Daily Dose 
(TDD) was forecasted in “higher” users, because there 
are broad variations in individuals’ responses to insulin. 
The outcomes showed that ML methods based on acces-
sible electronic medical records could discern which 
inpatients needed TDD higher than 6 units. In addition, 
it could evaluate the individual doses more precisely 
than the standard guidelines. The method received an 
AUC of 0.85 for classifying the patients who needed > 6 
units TDD and the mean absolute percent error with the 
dose prediction in the range of 136-329%. The regression 
model based on the weight ameliorated to 60%, and the 
full ensemble model progressed to 51%.

The control of T1DM relies on the suitable assess-
ment of the insulin units to maintain the BG levels in 
the desired range [201]. This value is disparate for the 
patients depending on the calories they consumed and 
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the degree of physical exercise they performed. The 
kinetics of body glucose is complex and different for 
each user. An RNN model based on LSTM cells could be 
employed to elevate the precision of blood glucose pre-
dictions according to the insulin absorption curves and 
the approximation of carbohydrate digestion for speci-
fied patients. The outcomes disclosed the capability of 
the suggested model to assess the absorption curves of 
insulin for normalized fast insulin curves that could have 
an uppermost amount of 1 unit. Moreover, the algorithm 
was capable of learning the complicated dependencies 
between the levels of blood sugar and estimated quanti-
ties for carbohydrate and blood insulin concentrations.

A predictive warning for the forthcoming hypoglycemic 
occurrence could help patients with T1DM to make a pre-
ventive decision to limit further consequences [202]. To 
construct such a prediction model with a low False Alert 
Rate (FAR) and proper generalizability to new individuals 
and time periods, RF and quantile regression forest were 
employed. Two diverse modeling methods were exam-
ined including classification-based and regression-based 
approaches. The classification-based method could straightly 
predict the occurrence of sustained hypoglycemia. How-
ever, the regression-based technique could forecast the glu-
cose at several time points and also could provide a further 
deduction for sustained hypoglycemia. The sustained hypo-
glycemic occurrence was specified glucose amounts less 
than 70 mg/dL for at least 15 min. The model predicted sus-
tained events with more than 97% specificity and sensitivity 
for both 30- and 60-minute prediction horizons. The FAR 
remained at less than 25%. The results confirmed that mak-
ing alerts based on sustained events instead of all hypoglyce-
mic occurrences could decrease the FAR and also could lead 
to the models with superior generalizability with the new 
individuals and period times.

One of the most concerning regarding T1DM man-
agement is the consumption of the correct amount of 
insulin for each meal that will correspond to the post-
prandial glycemic response (PPGR). In order to propose 
a prediction model for PPGR, the devised machine learn-
ing algorithm was applied [203]. The input data were the 
integration of glucose measurements, blood parameters, 
dietary habits, insulin dosages, exercise, gut microbiota, 
and anthropometrics. The model significantly was better 
with a correlation of R = 0.59 than a baseline model with 
R = 0.40 for observed PPGR. The model was also robust 
across various subpopulations. Feature attribution analy-
sis disclosed that glucose levels at meal initiation, meal 
carbohydrate content, meal’s carbohydrate-to-fat ratio, 
and glucose trend 30 min prior to the meal were the most 
effective variables for the model.

An Electrocardiogram (ECG) has been surveyed to 
diagnose hyperglycemia, as it could influence the ECG 

signals. To do this, a 10-layer deep learning-based was 
developed [204]. The ECG data were first filtered by 
employing the Butterworth bandpass filter order 4 and a 
frequency range of 1 to 40 Hz. To find the cardiac cycles, 
the R-peaks were determined using the Pan–Tompkins 
that allowed a segment of individual heartbeats and fur-
ther analyzing the cycle for the remaining waves. The 
remaining waves— P, Q, S, T—were then found with the 
aid of the NeuroKit library. Afterward, several experi-
ments were carried out by examining various fiducial-
based features that could provide better performance 
than employing the total cardiac cycle data as the input 
model.

A collection of 18 features composed of 9 fiducial dis-
tances were identified. QT interval was the time from the 
onset of the Q wave to the end of the T wave. The QT 
interval is influenced by both the people’s heart rate and 
glucose concentration, therefore, it is essential to reduce 
heart rate interference. In this case, the Framingham for-
mula was used as the best correction. Finally, the outli-
ers were removed and the data were normalized. The 
outcome revealed that the suggested algorithm was ben-
eficial in diagnosing hyperglycemia with an 85.04% speci-
ficity, 87.57% sensitivity, and 94.53% AUC in a relative 
improvement of 53% against the previous models.

The safety in T1D management was assessed by four 
machine learning approaches including (1) SVM to 
forecast hypoglycemic incidence during postprandial 
periods, (2) grammatical assessment for the mid-term 
continuous forecasting of blood glucose levels, (3) data 
mining to profile diabetes management scenarios, (4) 
artificial neural networks to forestall hypoglycemic epi-
sodes overnight [205]. The aforementioned methods 
were used in various datasets for patient condition evalu-
ation, continuous glucose level divination, prediction of 
nocturnal, and forecasting of postprandial hypoglycemic 
events. The combination of various models enhanced the 
feasibility of prognosticating factors.

Simultaneous personalized prediction models can 
make possible the assessment of an integrated and robust 
system for the prohibition of hypoglycemic events. This 
achievement could occur in both continuous subcutane-
ous-insulin infusion and Multiple Daily Injections (MDI) 
users. The proposed system remarkably decreased the 
number of hypoglycemia episodes. It led to providing 
more safety and higher assurance in decision-making for 
patients. Over 40% of people with T1DM should man-
age their glucose levels by MDI [206]. Wrong dosing (or 
“mistake in dosing”) could result in the incident of hyper-
glycemia (> 180 mg /dl) and hypoglycemia (< 70 mg/dl). A 
novel algorithm was developed that could weekly recom-
mend the insulin dosage to T1D patients who used MDI 
treatment. The K-Nearest Neighbors-Decision Support 
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System (KNN-DSS) algorithm obtained a settlement 
with the board-certified endocrinologists of 67.9% when 
it was confirmed on real-world human data. The analogy 
between the inter-physician-recommended regulations 
and the insulin pump treatment revealed a complete 
accord of 41.2% among endocrinologists. The ultimate 
result was in agreement with the previous values of inter-
physician agreement (41–45%). The findings showed that 
the KNN-DSS could be implemented for the primary rec-
ognition of dangerous insulin regimens. Also, it could be 
applied to ameliorate glycemic outcomes and barricade 
life-threatening consequences in people with T1DM.

The precise assessments for the near future blood glu-
cose levels have been momentous for the T1DM patients 
to respond on time and prevent hyper- or hypo-glycemic 
events [207]. Numerous models have been proposed 
based on regulating the glucose physiological-metabolic 
and machine learning. A hybrid model comprising the 
decomposing of a deep ML model to imitate the meta-
bolic manner of physiological blood glucose approaches 
was also proposed to predict horizons of 30 to 60 min. 
The current and past BG evaluations, meal intake, and 
fast and slow-acting insulin injections were used as the 
variables. The differential equations for insulin and car-
bohydrate absorption in physiological models were mod-
eled employing an RNN executed using LSTM cells. The 
results revealed RMSE of less than 5 mg/dL for the sim-
ulated patients by the AIDA diabetes software program 
and below 10 mg/dL for the real patients.

In T1DM, daily activity is considered an important fac-
tor in the calculation of insulin dose [208]. Bolus advi-
sors have been presented to propose meal-related insulin 
doses based on carbohydrate consumption, pre-set insu-
lin to insulin sensitivity factors, and carbohydrate levels. 
These parameters could be changed regarding regular 
activities. The main concepts with reporting and regula-
tions of the usual occupation are based on self-reporting 
that is susceptible to inaccuracy. Furthermore, chang-
ing daily routines could be occurred inevitably through 
passing time. So, disremembering them in the bolus cal-
culator could lead to substandard self-management. To 
overcome these limitations, time-series K-means cluster-
ing was employed to perform the significant separation 
of the patterns. It was thereupon applied to find the daily 
time periods and to recommend any required time alter-
ation. The suggested model prepared a rapid, more pre-
cise, and individualized daily time setting. Also, it could 
supply more contextual outlooks to the glycemic pattern 
determination for both clinicians and patients.

In the daily handling of T1DM, understanding the true 
injected insulin dose at meal-time is pivotal to obtaining 
optimal glycemic control [209]. The CGM data accompa-
nied by bolus insulin and carbohydrate intake classifying 

at meal-time and the post-prandial glycemic status could 
be utilized to determine the progress of the insulin treat-
ment by decreasing or growing the corresponding meal 
bolus dose. To this end, an XBM algorithm was imple-
mented to categorize the post-prandial glycemic status. 
The AUC of the suggested XGB algorithm was obtained 
as 0.84 and glycemic control in comparison with the 
baseline bolus calculator was improved.

Glycemic variability (GV) is a significant component 
of overall glycemic control for cases with diabetes mel-
litus [210]. To develop the Consensus Perceived Glycemic 
Variability (CPGV) metric that could evaluate diabetes 
mellitus control, SVR and multilayer perceptrons (MP) 
were used. The 250 24 h CGM plots were first rated in 
low, borderline, high, or extremely high GV, then their 
average was entered into the mentioned ML algorithms 
as input data. The SVR models estimated the unseen 
CGM plots better than the MP models and could obtain 
specificity, sensitivity, and accuracy of 74.1%, 97.0%, and 
90.1%, respectively.

The prohibition of hypoglycemic events was impor-
tant in the daily management of insulin-treated diabetes 
[211]. The usage of short-term prediction approaches for 
the subcutaneous glucose concentration could remark-
ably help toward this objective. An SVR method was 
used to predict hypoglycemia. This model forecasted 
the non- nocturnal (i.e., diurnal) ones over 30-min and 
60-min horizons. Nocturnal hypoglycemic events were 
predicted with a sensitivity of 94% for both horizons and 
with time lags of 4.57 and 5.43 min. For the diurnal epi-
sodes, when physical activities were not considered, the 
sensitivity was 92% and 96% for a 30-min and 60-min 
horizon, respectively and time lags were less than 5 min. 
In the presence of such information, the diurnal sensitiv-
ity declined by 8% and 3%, respectively. Both diurnal and 
nocturnal predictions indicated a high (> 90%) precision.

Sometimes, infection occurrence could lead to hypergly-
cemia and repeated insulin injections in the T1DM subjects 
[212]. To create a personalized health model with the capa-
bility of forecasting the incidence of infection in people with 
T1DM, multiple boundaries and domain-based, density-
based, reconstruction-based, and unsupervised models were 
constructed using insulin-to-carbohydrate ratio and blood 
glucose levels as input variables. The one-class classifiers 
achieved superior performance to diagnose the deviations 
from normal situations. It occurred due to the observa-
tion of infection incidences that could increase blood glu-
cose levels in association with abnormal alterations in the 
insulin-to-carbohydrate ratio. Among the one-class classi-
fiers, the domain and boundary-based approach generated 
a better description of the data. Moreover, support vector 
data description, nearest-neighbor, and self-organizing map 
needed significant training time.
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Future perspective
The overview of the published papers discloses that 
machine learning models can effectively improve the pre-
diction and management of blood glucose and diabetes. 
However, they should be improved and surveyed in large 
datasets. A significant advantage of these models is that 
they can be used as an application on mobile or any other 
diabetes management device. This can help for ensuring 
the health of diabetic patients and also for preventing 
further complications. Moreover, finding the potential 
risk factors can help to assess healthy subjects to prevent 
getting diabetes. It is predicted that the future progno-
sis of diseases and therapy lines depends on developing 
powerful machine learning methods.
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