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Abstract 

Background:  Measurement of estimated glucose disposal rate (eGDR) has been demonstrated to be an indicator of 
insulin resistance (IR) and a risk sign for long-term outcomes in those with ischemic heart disease and type 2 diabetes 
mellitus (T2DM) having coronary artery bypass grafting (CABG). After elective percutaneous coronary intervention 
(PCI), the usefulness of eGDR for prognosis in those with non-ST-segment elevation acute coronary syndrome (NSTE-
ACS) and non-diabetes is yet unknown.

Methods:  1510 NSTE-ACS patients with non-diabetes who underwent elective PCI in 2015 (Beijing Anzhen Hospi-
tal) were included in this study. Major adverse cardio-cerebral events (MACCEs), such as all-cause mortality, non-fatal 
myocardial infarction, non-fatal ischemic stroke, and also ischemia-driven revascularization, were the main outcome 
of follow-up. The average number of follow-up months was 41.84.

Results:  After multivariate Cox regression tests with confounder adjustment, the occurrence of MACCE in the lower 
eGDR cluster was considerably higher than in the higher eGDR cluster, demonstrating that eGDR is an independent 
prognostic indicator of MACCEs. In particular, as continuous variate: hazard ratio (HR) of 1.337, 95% confidence interval 
(CI) of 1.201–1.488, P < 0.001. eGDR improves the predictive power of usual cardiovascular risk factors for the primary 
endpoint. Specifically, the results for the area under the receiver operating characteristic (ROC) curve, this is AUC, 
were: baseline model + eGDR 0.699 vs. baseline model 0.588; P for contrast < 0.001; continuous net reclassification 
improvement (continuous-NRI) = 0.089, P < 0.001; and integrated discrimination improvement (IDI) = 0.017, P < 0.001.

Conclusion:  Low eGDR levels showed a strong correlation with poor NSTE-ACS prognosis for nondiabetic patients 
undergoing PCI.
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Introduction
In recent years, with the widespread application of 
optimized drug therapy and the improvement of inter-
ventional strategies such as revascularization, patients’ 
prognosis with cardiovascular disease (CVD) has been 
significantly improved. However, patients with CVD 
still have a high risk of recurrent cardiovascular events 
[1–4]. Therefore, identifying remaining risk factors in 
patients with CVD and expanding new treatment tar-
gets are of significant clinical importance. The incidence 
of CVD and its poor prognosis are strongly predicted 
by insulin resistance (IR), according to numerous 
prior investigations [5–7]. It is notable that IR has an 
equal impact on how CVD develops in those who do 
not have diabetes [8, 9]. Using the homeostasis model 
assessment of insulin resistance (HOMA-IR), a meta-
analysis of 65 trials with 516,325 individuals revealed 
that the possibility of coronary heart disease increased 
by 46% in the non-diabetic for every 1 standard devia-
tion increase in IR [10]. Although the hyperinsuline-
mic–euglycemic (HIEG) clamp is thought as the most 
accurate method for detecting IR, clinical researchers 
are more likely to search for IR assessment methods 
with broader applicability scenarios due to its complex 
and invasive characteristics. The estimated glucose dis-
posal rate (eGDR) is an alternative to the HIEG clamp 
to assess insulin responsiveness when undergoing type 
1 diabetes mellitus (T1DM) [11]. Calculation of eGDR 
is based on waist circumference (WC), hypertension, 
and glycosylated hemoglobin (HbA1c) [11, 12], which 
are widely recognized as risk elements for CVD and 
are readily available from clinical data. The IR level 
increases when eGDR decreases. Low eGDR has been 
connected to a higher long-term danger of all-cause 
death in people with type 2 diabetes mellitus (T2DM) 
following coronary artery bypass grafting (CABG), sug-
gesting that eGDR may efficaciously indicate poor pro-
jection in T2DM patients with ischemic heart disease 
after revascularization [13]. Considering the economic 
and efficient characteristics of eGDR, it is suitable to 
be popularized as a routine screening method for CVD 
high-risk groups. Thus, we aimed to investigate the 
connection between eGDR and long-term outlook for 
CVD nondiabetic patients. We explored the prognostic 
worth of eGDR in subjects that did not have diabetes 
but were undergoing non-ST-segment elevation acute 
coronary syndrome (NSTE-ACS) and had experienced 
percutaneous coronary intervention (PCI).

Materials and methods
Study subjects
This was a single-center study with an observational 
cohort. Enrolled subjects had a diagnosis of NSTE-ACS 
(Beijing Anzhen Hospital, 2015) and underwent elective 
PCI. Patients with previously or newly diagnosed dia-
betes at admission were excluded. The diagnostic prin-
ciples for NSTE-ACS [which involved unstable angina 
(UA) and non-ST-segment elevation myocardial infarc-
tion (NSTEMI)] and diabetes followed the authority’s 
guidelines [14, 15]. Figure  1 depicts further exclusion 
requirements. Finally, 1510 patients were enrolled for this 
investigation.

Data gathering and descriptions
The baseline facts attained in this study, including demo-
graphic data, patient features, laboratory examinations, 
imaging data, PCI-related data, and medication infor-
mation, were quality-controlled by the hospital informa-
tion center. After several measurements taken on various 
days, hypertension was determined to entail systolic 
blood pressure (SBP) of over 140 mmHg and/or diastolic 
blood pressure (DBP) of values below 90 mmHg [16]. Fol-
lowing current recommendations, the diagnostic stand-
ards for peripheral arterial disease (PAD), stroke, and 
dyslipidemia  were also employed [17–19]. The WC was 
the width of the line separating the iliac crest’s upper bor-
der from the nethermost part of the rib. On the operation 
day’s morning, blood for hematological and bio-chemi-
cal analyses was collected from patients who had fasted 
for 8–12  h. High-performance liquid chromatography 
served as a detection method for HbA1c. Two qualified 
professionals assessed the outcomes of the PCI and echo-
cardiography tests, respectively. Coronary intervention 
procedures were performed according to the most recent 
recommendations [20–22]. Using the standard formula 
found in https://​synta​xscore.​org, the Synergy between 
percutaneous coronary intervention with taxus and car-
diac surgery (SYNTAX) scores was computed. The sever-
ity of coronary lesions was also assessed by the Gensini 
score [23]. The calculation of eGDR was conducted as [11, 
12, 24]: eGDR = 21.16−(0.09*WC [in cm])−(3.41*Hyper-
tension [affirmative or negative])−(0.55*HbA1c [in %]).

Follow‑up and research endpoint
The monitoring period entailed 48  months after hospi-
tal release or until the patient died (average monitoring 
time: 41.84  months). The primary end point was major 
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adverse cardio-cerebral events (MACCEs), counting all-
cause mortality, non-fatal myocardial infarction (MI), 
non-fatal ischemic stroke, and ischemia-driven revascu-
larization. MI shows that the level of creatine kinase or 
heart troponin is higher than the superior limit in the ref-
erence range, and electrocardiogram (ECG) results and/
or ischemic factors indicate ischemia in the myocardium. 
Using magnetic resonance images  (MRI) or computed 
tomography (CT), ischemic lesions that induce nerve 
injury are what define a stroke. Revascularization of ves-
sels of target and/or non-target nature reveals ischemia-
induced revascularization as a result of recurrent or 
insistent ischemic signs, such as CABG and PCI.

Statistical evaluation
Included participants were divided into two groups 
regarding their median eGDR, this is lower eGDR: 
eGDR ≤ 7.76, and higher eGDR: eGDR > 7.76. The mean 
standard deviation of continuous variables with normal 
distribution is displayed and contrasted by a two inde-
pendent t-test. In the case of the Mann–Whitney U test, 
it compares continuous variables with skew distributions 
represented by the median, 25th, and 75th percentiles. 
Nominal variables were expressed as numbers and per-
centages, and then contrasted by chi square, continuity-
corrected chi square, or using the Fisher’s exact.

The Kaplan–Meier curve employed described the 
growing amounts of the primary endpoint events under 
diverse eGDR levels, and a log-rank test allowed compar-
ison. Variables that probably had collinearity were elimi-
nated from the 4 multivariate models, which included 
contained potential risk factors for MACCE that were 
initially identified in univariate Cox regression analysis. 
Nominal and continuous variables, respectively, were 
used to evaluate eGDR. Correlations involved hazard 
ratios (HR) and 95% confidence intervals (CI). In particu-
lar, the multivariate Cox regression models were as fol-
lows: in Model 1, adjustments comprised age, sex, body 
mass index (BMI); Model 2 as Model 1 plus previous MI, 
previous PCI, previous stroke, smoking history and fam-
ily history of coronary artery disease (CAD); Model 3 
adjusted as Model 2 plus triglyceride (TG), total choles-
terol (TC), high-density lipoprotein cholesterol (HDL-C), 
estimated glomerular filtration rate (eGFR), high-sen-
sitivity C-reactive protein (hs-CRP), angiotensin-con-
verting enzyme inhibitor (ACEI)/angiotensin receptor 
blocker (ARB) at admission, and left ventricular ejec-
tion fraction (LVEF); Model 4 adjusted as Model 3 plus 
left main artery (LM) lesion, bifurcation, SYNTAX score, 
multi-vessel lesion, in-stent restenosis, chronic total 
occlusion lesion, complete revascularization, number of 
drug-eluting stent (DES), and treatments for: LM, left 

Fig. 1  Flow diagram for the enrollment of study population. NSTE-ACS Non-ST-segment elevation acute coronary syndrome, PCI Percutaneous 
coronary intervention, CABG Coronary artery bypass grafting, eGFR estimated glomerular filtration rate, eGDR estimated glucose disposal rate
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anterior descending artery (LAD), left circumflex artery 
(LCX), and right coronary artery (RCA).

In agreement with model 4, a restricted cubic spline 
curve represents the dose–response connection of eGDR 
and the primary endpoint. Nonlinear hypotheses are 
tested using a likelihood ratio analysis. Stratified scru-
tiny adjusted for model 4 variables considered sex, age, 
BMI,  hyperlipidemia, family history of CAD, smok-
ing history, diagnosis, ACEI/ARB at admittance, and 
statins at admittance to define the consistency of eGDR 
in MACCEs prediction. To evaluate eGDR’s ability to 
predict MACCEs, the area under the receiver operating 
characteristic (ROC) curve, this is, AUC, was obtained. 
Integrated discrimination improvement (IDI) plus con-
tinuous net reclassification improvement (continuous-
NRI) confirmed the progressive influence of eGDR 
introduction on the prognostic competency of presently 
recognized risk models.

Data examination was performed using SPSS v26.0 and 
R3.6.3. Statistical significance was acknowledged when 
two-tailed P < 0.05 was obtained.

Results
Patient characterization at the starting point
This study comprised 1510 individuals (mean 
age = 59.67 ± 9.27) with a 73.7% male participation 
rate (n = 1113). Age, BMI, WC, SBP, DBP, TG, hs-CRP, 
HbA1c, FBG, uric acid, creatinine, incidence of hyper-
tension and prior stroke were all higher in the lower 
eGDR cluster when contrasted to the higher eGDR clus-
ter, whereas HDL-C and eGFR were lower. Patients with 
lower eGDRs received more ACEI/ARB and β-blocker 
prescriptions for admission and discharge medication. 
Participants with low eGDR presented a higher multi-
vessel lesions rate and target vessels of LCX and RCA 
treated, an inferior percentage of complete revasculari-
zation, and increased DES implanted. Additionally, the 
lower eGDR group’s SYNTAX score was higher than the 
higher eGDR group’s (Table 1). A representative case of 
the extent of coronary artery disease is shown in Addi-
tional file 1: Figure S1.

Incidence of MACCE
A total of 316 patients (20.9%) experienced MACCE 
throughout the course of the 48-month follow-up period, 
including 205 (13.6%) cases of ischemia-induced revas-
cularization, 65 (4.3%) non-fatal myocardial infarctions, 
27 (1.8%) non-fatal ischemic strokes, and 19 (1.3%) all-
cause mortality. The lower eGDR group had significantly 
greater incidences of MACCEs (P < 0.001), non-fatal 
ischemic stroke (P = 0.011), and revascularization due to 
ischemia (P < 0.001) than the higher eGDR group. Never-
theless, no statistically significant difference was found 

when the two groups were contrasted in the proportion 
of all-cause mortality and non-fatal MI (Table 2).

MACCE cumulative risk during follow‑up
The time-subject cumulative occurrence of MACCE 
and its components in the two clusters were evalu-
ated using the Kaplan–Meier method. Lower eGDR 
had a greater cumulative incidence of MACCE (Fig. 2A, 
log-rank P < 0.001), non-fatal ischemic stroke (Fig.  2D, 
log-rank was P = 0.011), and ischemia-driven revascu-
larization (Fig. 2E, log-rank was P < 0.001). The cumula-
tive incidence of all-cause mortality (Fig.  2B, log-rank 
was P = 0.814) and non-fatal MI (Fig.  2C, log-rank was 
P = 0.383) had no statistical variance between the two 
clusters.

Prognostic worth of eGDR for MACCE
To evaluate the eGDR’s ability to predict the primary 
endpoint, four multivariate models were built (as shown 
in Methods). Additional file 1: Table S1 summarizes the 
test of univariate Cox proportional hazards that origi-
nally identified predictors of MACCE. After adjusting the 
variables in the four models, whether eGDR is regarded 
as a variable either nominal or continuous, it shows sub-
stantial independent predictive worth in all models (see 
Table 3). eGDR was found to be strongly correlated with 
the possibility of revascularization due to ischemia as a 
nominal variable and with the possibility of non-fatal MI 
and revascularization due to ischemia as a continuous 
variable in the study’s further examination of the impact 
of eGDR in terms of prognosis on each constituent of 
MACCE (Table 4).

Dose–response association of eGDR with MACCE
A restricted cubic spline curve showed the dose response 
relationship between eGDR and MACCE (Fig. 3). It was 
found that the risk of MACCE decreased with the surge 
of eGDR (P < 0.001). This suggested that eGDR was lin-
early correlated with the risk of MACCE. A non-linear 
correlation analysis (P < 0.001) confirmed the above 
results.

Stratified analysis of eGDR
Stratified analysis revealed no difference in the eGDR 
predictive performance for MACCE considering age 
(< 65 or ≥ 65  years), sex (male/female), hyperlipidemia 
(no/yes), smoking history (no/yes), family history of 
CAD (no/yes), diagnosis (UA or NSTEMI), ACEI/ARB 
at admittance (on/yes) and statins at admittance (no/
yes) (for all, P for interaction > 0.05). More importantly, 
the eGDR predictive value seemed higher in patients 
with a higher BMI level [HR (95%CI) BMI < 28  kg/m2 
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Table 1  Baseline characteristics of the study population in two groups of eGDR

Total population 
(n = 1510)

Lower eGDR (≤ 7.76; 
n = 754)

Higher eGDR (> 7.76; 
n = 756)

P value

Age, years 59.67 ± 9.27 60.14 ± 9.20 59.20 ± 9.31 0.048

Sex, male, n (%) 1113 (73.7) 570 (75.6) 543 (71.8) 0.096

BMI, kg/m2 25.78 ± 3.15 27.03 ± 2.88 24.53 ± 2.90  < 0.001

WC, cm 89.60 ± 11.96 94.48 ± 10.67 84.75 ± 11.17  < 0.001

Heart rate, bpm 68.62 ± 9.96 68.93 ± 10.18 68.31 ± 9.74 0.233

SBP, mmHg 129.48 ± 16.02 133.03 ± 16.44 125.94 ± 14.79  < 0.001

DBP, mmHg 77.09 ± 9.57 78.70 ± 9.77 75.48 ± 9.10  < 0.001

Smoking history, n (%) 892 (59.1) 460 (61.0) 432 (57.1) 0.127

Drinking history, n (%) 352 (23.3) 179 (23.7) 173 (22.9) 0.694

Family history of CAD, n (%) 143 (9.5) 70 (9.3) 73 (9.7) 0.805

Medical history, n (%)

 Hypertension 863 (57.2) 745 (98.8) 118 (15.6)  < 0.001

 Hyperlipidemia 1276 (84.5) 647 (85.8) 629 (83.2) 0.161

 Previous MI 309 (20.5) 150 (19.9) 159 (21.0) 0.584

 Previous PCI 231 (15.3) 114 (15.1) 117 (15.5) 0.847

 Previous stroke 155 (10.3) 102 (13.5) 53 (7.0)  < 0.001

 Previous PAD 51 (3.4) 29 (3.8) 22 (2.9) 0.314

Clinical diagnosis, n (%) 0.962

 UA 1271 (84.2) 635 (84.2) 636 (84.1)

 NSTEMI 239 (15.8) 119 (15.8) 120 (15.9)

Laboratory examinations

 TG, mmol/L 1.46 (1.04, 2.03) 1.54 (1.10, 2.11) 1.35 (0.99, 1.93)  < 0.001

 TC, mmol/L 4.20 ± 1.03 4.17 ± 1.00 4.24 ± 1.06 0.190

 LDL-C, mmol/L 2.55 ± 0.88 2.53 ± 0.86 2.58 ± 0.90 0.351

 HDL-C, mmol/L 1.00 ± 0.24 0.98 ± 0.22 1.02 ± 0.25  < 0.001

 hs-CRP, mg/L 1.16 (0.52, 2.82) 1.32 (0.61, 3.14) 0.97 (0.45, 2.55)  < 0.001

 Creatinine, μmol/L 77.19 ± 16.18 79.52 ± 16.75 74.87 ± 15.25  < 0.001

 eGFR, mL/(min × 1.73m2) 92.00 ± 18.85 89.43 ± 18.72 94.56 ± 18.64  < 0.001

 Uric acid, μmol/L 353.47 ± 82.03 366.25 ± 81.91 340.72 ± 80.19  < 0.001

 FBG, mmol/L 5.32 ± 0.60 5.37 ± 0.61 5.27 ± 0.59 0.001

 HbA1c, % 5.64 ± 0.39 5.70 ± 0.38 5.59 ± 0.39  < 0.001

 LVEF, % 64.03 ± 6.78 64.12 ± 6.47 63.94 ± 7.09 0.590

Medication at admission, n (%)

 ACEI/ARB 304 (20.1) 242 (32.1) 62 (8.2)  < 0.001

 DAPT 440 (29.1) 224 (29.7) 216 (28.6) 0.627

 Aspirin 793 (52.5) 403 (53.4) 390 (51.6) 0.469

 P2Y12 inhibitors 473 (31.3) 238 (31.6) 235 (31.1) 0.841

 β-Blocker 339 (22.5) 195 (25.9) 144 (19.0) 0.002

 Statins 474 (31.4) 234 (31.0) 240 (31.7) 0.766

Medication at discharge, n (%)

 ACEI/ARB 984 (65.2) 732 (97.1) 252 (33.3)  < 0.001

 DAPT 1510 (100.0) 754 (100.0) 756 (100.0) -

 Aspirin 1510 (100.0) 754 (100.0) 756 (100.0) -

 P2Y12 inhibitors 1510 (100.0) 754 (100.0) 756 (100.0) -

 β-Blocker 1351 (89.5) 688 (91.2) 663 (87.7) 0.025

 Statins 1469 (97.3) 734 (97.3) 735 (97.2) 0.881

Angiographic data, n (%)

 LM lesion 59 (3.9) 29 (3.8) 30 (4.0) 0.903

 Bifurcation 291 (19.3) 140 (18.6) 151 (20.0) 0.489
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1.267 (1.133–1.417) vs. BMI ≥ 28  kg/m2 1.542 (1.277–
1.862), P for interaction = 0.030] (Fig. 4).

eGDR enhances the prognostic capacities of further 
parameters in MACCE
On the basis of currently acknowledged cardiovascular 
risk factors, a baseline model was created (including age, 
sex, BMI, previous stroke, MI, or PCI, hyperlipidemia, 
family history of CAD, smoking history, LVEF, SYN-
TAX score, eGFR, complete revascularization). Adding 
eGDR significantly enhances the prediction ability of 
the starting-point model for MACCE (AUCs: baseline 
model + eGDR 0.699 vs. baseline model 0.588; P for con-
trast < 0.001) (Table 5; Fig. 5). After adding eGDR, the re-
categorizing and discrimination aptitudes considerably 
outperformed the starting-point risk model (continuous-
NRI = 0.089, P < 0.001, IDI = 0.017, P < 0.001) (Table 5).

Discussion
The predictive value of eGDR for unfortunate prognosis 
in those with NSTE-ACS but no diabetes following PCI 
is being assessed for the first time in this study. Studies 
have shown an increment in the incidence frequency of 
MACCEs in those with low eGDR levels. The decline in 
eGDR is still a relevant independent forecaster of poor 
prognosis in the evaluated subjects even after adjusting 
confounding variables. The ability of baseline models 
comprising traditional risk factors to forecast the possi-
bility of unfortunate prognosis was greatly enhanced by 
eGDR.

The development of atherosclerosis in non-diabetic 
patients was highly correlated with IR evaluated by the 
gold standard for diagnosing IR, the HIEG clamp [25]. 
Since HIEG cannot be extensively employed, studies on 
the relationship between IR and CVD progression and 
prognosis mostly use HOMA-IR to evaluate IR [8, 9]. 
HOMA-IR assessment of IR requires the detection of 

eGDR estimated glucose disposal rate, BMI body mass index, WC waist circumference, SBP systolic blood pressure, DBP diastolic blood pressure, CAD coronary artery 
disease, MI myocardial infarction, PCI percutaneous coronary intervention, PAD peripheral artery disease, UA unstable angina, NSTEMI non-ST-segment elevation 
myocardial infarction, TG triglyceride, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, hs-CRP HIGH-
sensitivity C-reactive protein, eGFR estimated glomerular filtration rate, FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, LVEF left ventricular ejection 
fraction, ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, DAPT dual antiplatelet therapy, LM left main artery, SYNTAX synergy 
between PCI with taxus and cardiac surgery, LAD left anterior descending artery, LCX left circumflex artery, RCA​ right coronary artery, DES drug-eluting stent

Table 1  (continued)

Total population 
(n = 1510)

Lower eGDR (≤ 7.76; 
n = 754)

Higher eGDR (> 7.76; 
n = 756)

P value

 Multi-vessel lesion 905 (59.9) 498 (66.0) 407 (53.8)  < 0.001

 In-stent restenosis 67 (4.4) 33 (4.4) 34 (4.5) 0.909

 Chronic total occlusion lesion 182 (12.1) 103 (13.7) 79 (10.4) 0.055

 SYNTAX score 9.86 ± 5.25 10.38 ± 5.32 9.34 ± 5.13  < 0.001

 Gensini score 30.97 ± 14.39 31.14 ± 14.30 30.79 ± 14.50 0.639

Procedural information

 Target vessel territory, n (%)

  LM 35 (2.3) 15 (2.0) 20 (2.6) 0.397

  LAD 993 (65.8) 479 (63.5) 514 (68.0) 0.068

  LCX 469 (31.1) 261 (34.6) 208 (27.5) 0.003

  RCA​ 580 (38.4) 313 (41.5) 267 (35.3) 0.013

Complete revascularization, n (%) 949 (62.8) 453 (60.1) 496 (65.6) 0.026

 Number of DES 2.00 (1.00, 2.00) 2.00 (1.00, 3.00) 1.00 (1.00, 2.00) 0.002

Table 2  Incidence of MACCE and each component according to the median of eGDR

eGDR estimated glucose disposal rate, MACCE Major adverse cardio-cerebral events, MI Myocardial infarction

Total population 
(n = 1510)

Lower eGDR (≤ 7.76; 
n = 754)

Higher eGDR (> 7.76; 
n = 756)

P value

MACCE, n (%) 316 (20.9) 194 (25.7) 122 (16.1)  < 0.001

All-cause death, n (%) 19 (1.3) 10 (1.3) 9 (1.2) 0.813

Non-fatal MI, n (%) 65 (4.3) 36 (4.8) 29 (3.8) 0.369

Non-fatal ischemic stroke, n (%) 27 (1.8) 20 (2.7) 7 (0.9) 0.011

Ischemia-driven revascularization, n (%) 205 (13.6) 128 (17.0) 77 (10.2)  < 0.001
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fasting insulin levels in patients. Even diabetic patients 
who were  hospitalized for PCI in the cardiovascular 
department do not routinely have their fasting insu-
lin levels checked in clinical practice. Moreover, the 

accuracy of insulin measurement methods is difficult to 
ensure consistently across laboratories, especially when 
insulin levels are low. Several investigations have found 
a slight correlation between HOMA-IR and the level of 
IR in healthy individuals [26, 27]. As a result, clinical 
practice is more likely to adopt more operable alterna-
tive assessment indicators to assess each patient’s level 
of IR in non-diabetic patients. Studies revealed that 
IR is frequently characterized by elevated fasting glu-
cose, elevated TG, and obesity in addition to elevated 
fasting insulin levels (especially increased visceral fat) 
[28]. Based on these factors, a selection of less com-
plex alternative indicators of IR have been proposed by 
researchers, such as TG/HDL-C, triglyceride-glucose 
(TyG) index, visceral adiposity index (VAI), etc., and 
have been confirmed to be significantly correlated with 
HIEG clamp [29–31]. Subsequent studies have estab-
lished that the development and prognosis of diabetes 
and cardiovascular disease are closely associated to 
these simple surrogate assessment indicators of IR [32–
34]. Studies have indicated that excessive TG/HDL-C 
levels and the TyG index are independently related 
to a greater risk of coronary heart disease in non-
diabetic patients, while this correlation is not signifi-
cant in diabetic patients [35]. Compared to the HIEG 
clamp, eGDR was shown to have similar accuracy. The 

Fig. 2  Kaplan–Meier survival curves according to the median of eGDR. A Kaplan–Meier survival curve of MACCE; B Kaplan–Meier survival curve of 
all-cause death; C Kaplan–Meier survival curve of non-fatal MI; D Kaplan–Meier survival curve of non-fatal ischemic stroke; E Kaplan–Meier survival 
curve of ischemia-driven revascularization. eGDR estimated glucose disposal rate, MACCE major adverse cardio-cerebral events, MI myocardial 
infarction, PCI percutaneous coronary intervention

Table 3  Predictive value of eGDR for the risk of MACCE

Model 1: adjusted for age, sex, BMI

Model 2: adjusted for variates in Model 1 and previous MI, previous PCI, previous 
stroke, smoking history, family history of CAD

Model 3: adjusted for variates in Model 2 and TG, TC, HDL-C, eGFR, hs-CRP, LVEF, 
ACEI/ARB at discharge

Model 4: adjusted for variates in Model 3 and LM lesion, bifurcation, multi-
vessel lesion, in-stent restenosis, chronic total occlusion lesion, SYNTAX score, 
LM treatment, LAD treatment, LCX treatment, RCA treatment, complete 
revascularization, number of DES

eGDR estimated glucose disposal rate, MACCE major adverse cardio-cerebral 
events, HR hazard ratio, CI confidence interval
a The HR was evaluated regarding the higher median of eGDR as reference
b The HR was evaluated by per 1-unit decrease of eGDR

As nominal variatea As continuous variateb

HR (95% CI) P value HR (95% CI) P value

Unadjusted 1.668 (1.330–2.093)  < 0.001 1.194 (1.131–1.260)  < 0.001

Model 1 1.554 (1.213–1.992)  < 0.001 1.260 (1.171–1.357)  < 0.001

Model 2 1.442 (1.125–1.848) 0.004 1.224 (1.137–1.317)  < 0.001

Model 3 1.651 (1.178–2.313) 0.004 1.485 (1.324–1.665)  < 0.001

Model 4 1.557 (1.124–2.158) 0.008 1.337 (1.201–1.488)  < 0.001
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simplicity of eGDR calculation makes it suitable for 
large-scale clinical applications. When using as a sim-
ple surrogate for assessing IR, eGDR proved a signifi-
cant correlation with an increased possibility of CVD in 
T1DM patients [36, 37]. Minor eGDR is associated with 
an increased possibility of stroke and death in T2DM 
patients, indicating that eGDR may behave as a predic-
tive marker for these outcomes [38]. Therefore, eGDR 

is speculated to have good performance in predicting 
long-standing poor forecast after PCI.

Our study shows that low eGDR is a strong and stable 
predictor of poor prognosis after PCI in NSTE-ACS and 
non-diabetic populations. The findings in this study are 
consistent with previous related studies. Analyzing our 
findings in terms of pathophysiological mechanisms, 
as a potent growth factor, the compensatory increase of 
insulin in the state of IR stimulates the growth, prolifera-
tion, and differentiation of vascular smooth muscle cells 
and activates inflammatory pathways [39]. IR can cause 
vascular endothelial dysfunction by affecting the activa-
tion of nitric oxide, which may be the most important 
mechanism that causes cardiovascular disease at the cel-
lular level [39, 40]. Therefore, as a simple surrogate index 
for IR assessment, eGDR can predict the prognosis of 
patients with cardiovascular disease to a certain extent. 
On the other hand, eGDR holds three elements: HbA1c, 
hypertension, and WC. As a recognized traditional risk 
factor for CVD, hypertension is the most essential con-
stituent of eGDR [11]. In CVD patients with or without 
diabetes, HbA1c is thought as an independent forecaster 
of poor outcomes following PCI [41, 42]. Obesity is not 
only highly correlated with IR [28], but also with mala-
dies such dyslipidemia, CVD, hypertension, and stroke 
[43]. In patients undergoing PCI, WC is connected with 
an augmented possibility of cardiac death and non-lethal 
MI [44]. The release of various cytokines from visceral 
adipose tissue can lead to inflammation and thrombo-
sis, induce endothelial dysfunction, and accelerate the 
atherosclerotic process [45, 46]. In the Kaplan–Meier 

Table 4  Predictive value of eGDR for MACCE and each component in univariate and multivariate analysis

eGDR estimated glucose disposal rate, MACCE major adverse cardio-cerebral events, HR hazard ratio, CI confidence interval, MI myocardial infarction
a The multivariate analysis was performed by using Model 4
b The HR was evaluated regarding the higher median of eGDR as reference
c The HR was evaluated by per 1-unit decrease of eGDR

Univariate analysis Multivariate analysisa

HR 95% CI P value HR 95% CI P value

eGDR as a nominal variableb

 MACCE 1.688 1.330–2.093  < 0.001 1.557 1.124–2.158 0.008

 All-cause death 1.114 0.453–2.742 0.814 0.518 0.135–1.982 0.337

 Non-fatal MI 1.246 0.764–2.033 0.377 1.140 0.580–2.241 0.704

 Non-fatal ischemic stroke 2.898 1.225–6.853 0.015 0.819 0.260–2.584 0.734

 Ischemia-driven revascularization 1.722 1.298–2.285  < 0.001 2.158 1.394–3.342 0.001

eGDR as a continuous variablec

 MACCE 1.194 1.131–1.260  < 0.001 1.337 1.201–1.488  < 0.001

 All-cause death 1.074 0.871–1.325 0.504 0.776 0.520–1.158 0.214

 Non-fatal MI 1.110 0.990–1.245 0.075 1.279 1.027–1.594 0.028

 Non-fatal ischemic stroke 1.444 1.173–1.779 0.001 1.791 0.997–3.219 0.051

 Ischemia-driven revascularization 1.188 1.112–1.270  < 0.001 1.363 1.190–1.561  < 0.001

Fig. 3  Restricted cubic smoothing for the risk of MACCE according 
to the eGDR. The analysis was adjusted for Model 4. HR was evaluated 
by per 1-unit increase of eGDR. eGDR estimated glucose disposal rate, 
MACCE major adverse cardio-cerebral events, CI confidence interval
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analysis, the differences between the two groups were not 
statistically significant in all-cause death and non-fatal 
MI. Because, in this study, patients were predominantly 
with UA, resulting in a low incidence of adverse events 
and potentially leading to bias. In addition, it may also 
be because eGDR is difficult to reflect relatively severe 
poor prognosis. Notably, in the subgroup analysis, eGDR 
presented greater predictive worth in the high BMI sub-
category (BMI ≥ 28 kg/m2) versus the low BMI subgroup 
(BMI < 28  kg/m2). Earlier studies have shown that obe-
sity can cause and exacerbate IR [47]. At the same time, 

obesity is also a recognized traditional risk factor for 
CVD. We conjecture that elevated BMI enhances the 
predictive power of eGDR for long-term outcomes in the 
study population, but further research is needed to verify 
this.

There are several limitations to this study as well, which 
cannot be overlooked. Firstly, it should be considered 
that this is a single-center, observational study. Therefore, 
a larger-scale multi-center clinical trial involving more 
ethnic groups is needed to further validate the conclu-
sions of this study. Secondly, this study did not perform 

Fig. 4  Subgroup analysis evaluating the robustness of eGDR in predicting the risk of the MACCE. The analysis was adjusted for Model 4 except 
for variates applied for grouping. HR was evaluated by per 1-unit decrease of eGDR. eGDR estimated glucose disposal rate, MACCE major adverse 
cardio-cerebral events, HR hazard ratio, CI confidence interval, BMI body mass index, CAD coronary artery disease, UA unstable angina, NSTEMI 
non-ST-segment elevation myocardial infarction, ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker

Table 5  Incremental effects of eGDR on risk stratification for MACCE beyond existing risk factors

eGDR estimated glucose disposal rate, MACCE Major adverse cardio-cerebral events, ROC Receiver-operating characteristic, NRI Net reclassification improvement, IDI 
Integrated discrimination improvement, AUC​ Area under curve, CI Confidence interval
a  Baseline model includes age, sex, BMI, previous MI, previous PCI, previous stroke, hyperlipidemia, smoking history, family history of CAD, eGFR, LVEF, SYNTAX score, 
complete revascularization

ROC curve analysis Continuous-NRI IDI

AUC​ 95% CI P value P for comparison Estimation 95% CI P value Estimation 95% CI P value

Baseline modela 0.588 0.560–0.617  < 0.001 – – – – – – –

Baseline model + eGDR 0.699 0.672–0.725  < 0.001  < 0.001 0.089 0.037–0.156  < 0.001 0.017 0.007–0.030  < 0.001
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a cross-sectional comparison of eGDR with other simple 
surrogate metrics for assessing IR. Therefore, future stud-
ies need to further clarify the role of eGDR as a predictor 
of CVD prognosis. Thirdly, since most of the NSTE-ACS 
patients in this investigation had UA, the predictive value 
of eGDR in NSTEMI patients may not be accurately 
reflected by these data. Fourthly, the end points of this 
study did not include heart failure and cardiac death.

Conclusions
eGDR proved to be an independent predictor of a poor 
prognosis in diabetes-negative patients with NSTE-
ACS and PCI. The prediction ability that conventional 
risk variables showed for a poor prognosis was greatly 
improved by eGDR.
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