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Abstract

achieved almost perfect models.

Diabetes Mellitus is a severe, chronic disease that occurs when blood glucose levels rise above certain limits. Over the
last years, machine and deep learning techniques have been used to predict diabetes and its complications. However,
researchers and developers still face two main challenges when building type 2 diabetes predictive models. First,
there is considerable heterogeneity in previous studies regarding techniques used, making it challenging to identify
the optimal one. Second, there is a lack of transparency about the features used in the models, which reduces their
interpretability. This systematic review aimed at providing answers to the above challenges. The review followed the
PRISMA methodology primarily, enriched with the one proposed by Keele and Durham Universities. Ninety studies
were included, and the type of model, complementary techniques, dataset, and performance parameters reported
were extracted. Eighteen different types of models were compared, with tree-based algorithms showing top perfor-
mances. Deep Neural Networks proved suboptimal, despite their ability to deal with big and dirty data. Balancing data
and feature selection techniques proved helpful to increase the model’s efficiency. Models trained on tidy datasets
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Introduction

Diabetes mellitus is a group of metabolic diseases charac-
terized by hyperglycemia resulting from defects in insulin
secretion, insulin action, or both [1]. In particular, type
2 diabetes is associated with insulin resistance (insulin
action defect), i.e., where cells respond poorly to insulin,
affecting their glucose intake [2]. The diagnostic criteria
established by the American Diabetes Association are: (1)
a level of glycated hemoglobin (HbAlc) greater or equal
to 6.5%; (2) basal fasting blood glucose level greater than
126 mg/dL, and; (3) blood glucose level greater or equal
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to 200 mg/dL 2 h after an oral glucose tolerance test with
75 g of glucose [1].

Diabetes mellitus is a global public health issue. In
2019, the International Diabetes Federation estimated the
number of people living with diabetes worldwide at 463
million and the expected growth at 51% by the year 2045.
Moreover, it is estimated that there is one undiagnosed
person for each diagnosed person with a diabetes diag-
nosis [2].

The early diagnosis and treatment of type 2 diabetes
are among the most relevant actions to prevent further
development and complications like diabetic retinopa-
thy [3]. According to the ADDITION-Europe Simulation
Model Study, an early diagnosis reduces the absolute and
relative risk of suffering cardiovascular events and mor-
tality [4]. A sensitivity analysis on USA data proved a 25%
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relative reduction in diabetes-related complication rates
for a 2-year earlier diagnosis.

Consequently, many researchers have endeavored to
develop predictive models of type 2 diabetes. The first
models were based on classic statistical learning tech-
niques, e.g., linear regression. Recently, a wide variety
of machine learning techniques has been added to the
toolbox. Those techniques allow predicting new cases
based on patterns identified in training data from previ-
ous cases. For example, Kélsch et al. [5] identified asso-
ciations between liver injury markers and diabetes and
used random forests to predict diabetes based on serum
variables. Moreover, different techniques are sometimes
combined, creating ensemble models to surpass the sin-
gle model’s predictive performance.

The number of studies developed in the field creates
two main challenges for researchers and developers aim-
ing to build type 2 diabetes predictive models. First, there
is considerable heterogeneity in previous studies regard-
ing machine learning techniques used, making it chal-
lenging to identify the optimal one. Second, there is a
lack of transparency about the features used to train the
models, which reduces their interpretability, a feature
utterly relevant to the doctor.

This review aims to inform the selection of machine
learning techniques and features to create novel type 2
diabetes predictive models. The paper is organized as fol-
lows. “Background” section provides a brief background
on the techniques used to create predictive models.
“Methods” section presents the methods used to design
and conduct the review. “Results” section summarizes
the results, followed by their discussion in “Discussion”
section, where a summary of findings, the opportunity
areas, and the limitations of this review are presented.
Finally, “Conclusions” section presents the conclusions
and future work.

Background

Machine learning and deep learning

Over the last years, humanity has achieved technologi-
cal breakthroughs in computer science, material science,
biotechnology, genomics, and proteomics [6]. These dis-
ruptive technologies are shifting the paradigm of medical
practice. In particular, artificial intelligence and big data
are reshaping disease and patient management, shifting
to personalized diagnosis and treatment. This shift ena-
bles public health to become predictive and preventive
[6].

Machine learning is a subset of artificial intelligence
that aims to create computer systems that discover pat-
terns in training data to perform classification and pre-
diction tasks on new data [7]. Machine learning puts
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together tools from statistics, data mining, and optimiza-
tion to generate models.

Representational learning, a subarea of machine learn-
ing, focuses on automatically finding an accurate repre-
sentation of the knowledge extracted from the data [7].
When this representation comprises many layers (i.e.,
a multi-level representation), we are dealing with deep
learning.

In deep learning models, every layer represents a level
of learned knowledge. The nearest to the input layer rep-
resents low-level details of the data, while the closest to
the output layer represents a higher level of discrimina-
tion with more abstract concepts.

The studies included in this review used 18 different
types of models:

o Deep Neural Network (DNN): DNNs are loosely
inspired by the biological nervous system. Artifi-
cial neurons are simple functions depicted as nodes
compartmentalized in layers, and synapses are the
links between them [8]. DNN is a data-driven, self-
adaptive learning technique that produces non-linear
models capable of real-world modeling problems.

+ Support Vector Machines (SVM): SVM is a non-par-
ametric algorithm capable of solving regression and
classification problems using linear and non-linear
functions. These functions assign vectors of input
features to an n-dimensional space called a feature
space [9].

+ k-Nearest Neighbors (KNN): KNN is a supervised,
non-parametric algorithm based on the “things that
look alike” idea. KNN can be applied to regression
and classification tasks. The algorithm computes the
closeness or similarity of new observations in the fea-
ture space to k training observations to produce their
corresponding output value or class [9].

+ Decision Tree (DT): DTs use a tree structure built by
selecting thresholds for the input features [8]. This
classifier aims to create a set of decision rules to pre-
dict the target class or value.

+ Random Forest (RF): RFs merge several decision
trees, such as bagging, to get the final result by a vot-
ing strategy [9].

+ Gradient Boosting Tree (GBT) and Gradient Boost
Machine (GBM): GBTs and GBMs join sequential
tree models in an additive way to predict the results
[9].

+ J48 Decision Tree (J48): J48 develops a mapping tree
to include attribute nodes linked by two or more sub-
trees, leaves, or other decision nodes [10].

+ Logistic and Stepwise Regression (LR): LR is a lin-
ear regression technique suitable for tasks where the
dependent variable is binary [8]. The logistic model
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is used to estimate the probability of the response
based on one or more predictors.

+ Linear and Quadratic Discriminant Analysis (LDA):
LDA segments an n-dimensional space into two or
more dimensional spaces separated by a hyper-plane
[8]. The aim of it is to find the principal function for
every class. This function is displayed on the vectors
that maximize the between-group variance and mini-
mizes the within-group variance.

+ Cox Hazard Regression (CHR): CHR or proportional
hazards regression analyzes the effect of the features
to occur a specific event [11]. The method is partially
non-parametric since it only assumes that the effects
of the predictor variables on the event are constant
over time and additive on a scale.

+ Least-Square Regression: (LSR) method is used
to estimate the parameter of a linear regression
model [12]. LSR estimators minimize the sum of the
squared errors (a difference between observed values
and predicted values).

+ Multiple Instance Learning boosting (MIL): The
boosting algorithm sequentially trains several weak
classifiers and additively combines them by weighting
each of them to make a strong classifier [13]. In MIL,
the classifier is logistic regression.

+ Bayesian Network (BN): BNs are graphs made up of
nodes and directed line segments that prohibit cycles
[14]. Each node represents a random variable and its
probability distribution in each state. Each directed
line segment represents the joint probability between
nodes calculated using Bayes’ theorem.

+ Latent Growth Mixture (LGM): LGM groups
patients into an optimal number of growth trajectory
clusters. Maximum likelihood is the approach to esti-
mating missing data [15].

« DPenalized Likelihood Methods: Penalizing is an
approach to avoid problems in the stability of the
estimated parameters when the probability is rela-
tively flat, which makes it difficult to determine the
maximum likelihood estimate using simple meth-
ods. Penalizing is also known as shrinkage [16]. Least
absolute shrinkage and selection operator (LASSO),
smoothed clipped absolute deviation (SCAD), and
minimax concave penalized likelihood (MCP) are
methods using this approach.

+ Alternating Cluster and Classification (ACC): ACC
assumes that the data have multiple hidden clusters
in the positive class, while the negative class is drawn
from a single distribution. For different clusters of the
positive class, the discriminatory dimensions must be
different and sparse relative to the negative class [17].
Clusters are like “local opponents” to the complete
negative set, and therefore the “local limit” (classifier)
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has a smaller dimensional subspace than the feature
vector.

Some studies used a combination of multiple machine
learning techniques and are subsequently labeled as
machine learning-based method (MLB).

Systematic literature review methodologies

This review follows two methodologies for conduct-
ing systematic literature reviews: the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [18] and the Guidelines for per-
forming Systematic Literature Reviews in Software Engi-
neering [19]. Although these methodologies hold many
similarities, there is a substantial difference between
them. While the former was tailored for medical lit-
erature, the latter was adapted for reviews in computer
science. Hence, since this review focuses on computer
methods applied to medicine, both strategies were com-
bined and implemented. The PRISMA statement is the
standard for conducting reviews in the medical sciences
and was the principal strategy for this review. It contains
27 items for evaluating included studies, out of which 23
are used in this review. The second methodology is an
adaptation by Keele and Durham Universities to con-
duct systematic literature reviews in software engineer-
ing. The authors provide a list of guidelines to conduct
the review. Two elements were adopted from this meth-
odology. First, the protocol’s organization in three stages
(planning, conducting, and reporting). Secondly, the
quality assessment strategy to select studies based on the
information retrieved by the search.

Related works

Previous reviews have explored machine learning tech-
niques in diabetes, yet with a substantially different focus.
Sambyal et al. conducted a review on microvascular com-
plications in diabetes (retinopathy, neuropathy, nephrop-
athy) [20]. This review included 31 studies classified into
three groups according to the methods used: statistical
techniques, machine learning, and deep learning. The
authors concluded that machine learning and deep learn-
ing models are more suited for big data scenarios. Also,
they observed that the combination of models (ensemble
models) produced improved performance.

Islam et al. conducted a review with meta-analysis
on deep learning models to detect diabetic retinopathy
(DR) in retinal fundus images [21]. This review included
23 studies, out of which 20 were also included for meta-
analysis. For each study, the authors identified the model,
the dataset, and the performance metrics and concluded
that automated tools could perform DR screening.
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Chaki et al. reviewed machine learning models in dia-
betes detection [22]. The review included 107 studies and
classified them according to the model or classifier, the
dataset, the features selection with four possible kinds of
features, and their performance. The authors found that
text, shape, and texture features produced better out-
comes. Also, they found that DNNs and SVMs delivered
better classification outcomes, followed by RFs.

Finally, Silva et al. [23] reviewed 27 studies, including
40 predictive models for diabetes. They extracted the
technique used, the temporality of prediction, the risk of
bias, and validation metrics. The objective was to prove
whether machine learning exhibited discrimination abil-
ity to predict and diagnose type 2 diabetes. Although this
ability was confirmed, the authors did not report which
machine learning model produced the best results.

This review aims to find areas of opportunity and rec-
ommendations in the prediction of diabetes based on
machine learning models. It also explores the optimal
performance metrics, the datasets used to build the mod-
els, and the complementary techniques used to improve
the model’s performance.

Methods

Objective of the review

This systematic review aims to identify and report the
areas of opportunity for improving the prediction of dia-
betes type 2 using machine learning techniques.

Research questions

1. Research Question 1 (RQ1): What kind of features
make up the database to create the model?

2. Research Question 2 (RQ2): What machine learning
technique is optimal to create a predictive model for
type 2 diabetes?

3. Research Question 3 (RQ3): What are the optimal
validation metrics to compare the models’ perfor-
mance?

Information sources
Two search engines were selected to search:

+ PubMed, given the relationship between a medical
problem such as diabetes and a possible computer
science solution.

+ Web of Science, given its extraordinary ability to
select articles with high affinity with the search
string.

These search engines were also considered because they
search in many specialized databases (IEEE Xplore,
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Table 1 Strings used in the search

Data Base String of keywords

PubMed ((diabetes[Title] AND predictive) AND

machine learning)
Ti=(diabetes) AND
All=(predictive AND machine learning)

Web of Science

Science Direct, Springer Link, PubMed Central, Plos
One, among others) and allow searching using keywords
combined with boolean operators. Likewise, the data-
base should contain articles with different approaches to
predictive models and not specialized in clinical aspects.
Finally, the number of articles to be included in the sys-
tematic review should be sufficient to identify areas of
opportunity for improving models’ development to pre-
dict diabetes.

Search strategy

Three main keywords were selected from the research
questions. These keywords were combined in strings as
required by each database in their advanced search tool.
In other words, these strings were adapted to meet the
criteria of each database Table 1.

Eligibility criteria
Retrieved records from the initial search were screened
to check their compliance with eligibility criteria.

Firstly, papers published from 2017 to 2021 only were
considered. Then, two rounds of screening were con-
ducted. The first round focused mainly on the scope of
the reported study. Articles were excluded if the study
used genetic data to train the models, as this was not a
type of data of interest in this review. Also, articles were
excluded if the full text was not available. Finally, review
articles were also excluded.

In the second round of screening, articles were
excluded when machine learning techniques were not
used to predict type 2 diabetes but other types of dia-
betes, treatments, or diseases associated with diabe-
tes (complications and related diseases associated with
metabolic syndrome). Also, studies using unsupervised
learning were excluded as they cannot be validated using
the same performance metrics as supervised learning
models, preventing comparison.

Quality assessment

After retrieving the selected articles, three parameters
were selected, each one generated by each research ques-
tion. The eligibility criteria are three possible subgroups
according to the extent to which the article satisfied it.
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QA1. The dataset contains sociodemographic and life-
style data, clinical diagnosis, and laboratory test
results as attributes for the model.

1.1. Dataset contains only one kind of attributes.

1.2. Dataset contains similar kinds of attributes.

1.3. Dataset uses EHRs with multiple kinds of
attributes.

QA2. The article presents a model with a machine
learning technique to predict type 2 diabetes.

2.1. Machine Learning methods are not used at all.

2.2. The prediction method in the model is used
as part of the prepossessing for the data to do
data mining.

2.3. Model used a machine learning technique to
predict type 2 diabetes.

QA3. The authors use supervised learning with valida-
tion metrics to contrast their results with previous
work.

3.1. The authors used unsupervised methods.

3.2. The authors used a supervised method with
one validation metric or several methods with
supervised and unsupervised learning.

3.3. The authors used supervised learning with
more than one metric to validate the model
(accuracy, specificity, sensitivity, area under the
ROC, Fl1-score).

Data extraction

After assessing the papers for quality, the intersection of
the subgroups QA2.3 and QA1.1 or QA1.2 or QA1.3 and
QA3.2 or QA3.3 were processed as follows.

First, the selected articles were grouped in two possible
ways according to the data type (glucose forecasting or
electronic health records). The first group contains mod-
els that screen the control levels of blood glucose, while
the second group contains models that predict diabetes
based on electronic health records.

The second classification was more detailed, applying
for each group the below criteria.

The data extraction criteria are:

+ Machine learning model (specify which machine
learning method use)

+ Validation parameter (accuracy, sensitivity, specific-
ity, F1-score, AUC (ROC))
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+ Complementary techniques (complementary statis-
tics and machine learning techniques used for the
models)

o Data sampling (cross-validation, training-test set,
complete data)

+ Description of the population (age, balanced or
imbalance, population cohort size).

Risk of bias analyses

Risk of bias in individual studies

The risk of bias in individual studies (i.e., within-study
bias) was assessed based on the characteristics of the
sample included in the study and the dataset used to
train and test the models. One of the most common risks
of bias is when the data is imbalanced. When the data-
set has significantly more observations for one label, the
probability of selecting that label increases, leading to
misclassification.

The second parameter that causes a risk of bias is the
age of participants. In most cases, diabetes onset would
be in older people making possible bound between 40 to
80 years. In other cases, the onset occurs at early age gen-
erating another dataset with a range from 21 to 80.

A third parameter strongly related to age is the early
age onset. Complications increase and appear early when
a patient lives more time with the disease, making it
harder to develop a model only for diabetes without cor-
relation of their complications.

Finally, as the fourth risk of bias, according to Forbes
[24] data scientists spend 80% of their time on data prep-
aration, and 60% of it is in data cleaning and organiza-
tion. A well-structured dataset is relevant to generate a
good performance of the model. That can be check in the
results from the data items extraction the datasets like
PIMA dataset that is already clean and organized well
generate a model with the recall of 1 [25] also the same
dataset reach an accuracy of 0.97 [26] in another model.
Dirty data can not achieve values as good as clean data.

Risk of bias across studies

The items considered to assess the risk of bias across the
studies (i.e., between-study bias) were the reported vali-
dation parameters and the dataset and complementary
techniques used.

Validation metrics were chosen as they are used to
compare the performance of the model. The studies must
be compared using the same metrics to avoid bias from
the validation methods.

The complementary techniques are essential since they
can be combined with the primary approach to creating
a better performance model. It causes a bias because it is
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impossible to discern if the combination of the comple-
mentary and the machine learning techniques produces
good performance or if the machine learning technique
per se is superior to others.

Results

Search results and reduction

The initial search generated 1327 records, 925 from Pub-
Med and 402 from Web of Science. Only 130 records
were excluded when filtering by publication year (2017-
2021). Therefore, further searches were conducted using
fine-tuned search strings and options for both databases
to narrow down the results. The new search was carried
out using the original keywords but restricting the word
‘diabetes’ to be in the title, which generated 517 records
from both databases. Fifty-one duplicates were dis-
carded. Therefore, 336 records were selected for further
screening.

Further selection was conducted by applying the exclu-
sion criteria to the 336 records above. Thirty-seven
records were excluded since the study reported used
non-omittable genetic attributes as model inputs, some-
thing out of this review’s scope. Thirty-eight records were
excluded as they were review papers. All in all, 261 arti-
cles that fulfill the criteria were included in the quality
assessment.

Figure 1 shows the flow diagram summarizing this
process.

Quality assessment

The 261 articles above were assessed for quality and clas-
sified into their corresponding subgroup for each quality
question (Fig. 2).

The first question classified the studies by the type of
database used for building the models. The third sub-
group represents the most desirable scenario. It includes
studies where models were trained using features from
Electronic Health Records or a mix of datasets including
lifestyle, socio-demographic, and health diagnosis fea-
tures. There were 22, 85, and 154 articles in subgroups
one to three, respectively.

The second question classified the studies by the type
of model used. Again, the third subgroup represents
the most suitable subgroup as it contains studies where
a machine learning model was used to predict diabetes
onset. There were 46 studies in subgroup one, 66 in sub-
group two, and 147 in subgroup three. Two studies were
omitted from these subgroups: one used cancer-related
model; another used a model of no interest to this review.

The third question clustered the studies based on their
validation metrics. There were 25 studies in subgroup
one (semi-supervised learning), 68 in subgroup two (only
one validation metric), and 166 in subgroup three (> 1
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validation parameters). The criteria are not applied to
two studies as they used special error metrics, making it
impossible to compare their models with the rest.

Data extraction excluded 101 articles from the quan-
titative synthesis for two reasons. twelve studies used
unsupervised learning. Nineteen studies focused on
diabetes treatments, 33 in other types of diabetes (eight-
een type 1 and fifteen Gestational), and 37 associated
diseases.

Furthermore, 70 articles were left out of this review as
they focus on the prediction of diabetes complications
(59) or tried to forecast levels of glucose (11), not onset.
Therefore, 90 articles were chosen for the next steps.

Data extraction

Table 2 summarize the results of the data extraction.
These tables are divided into two main groups, each of
them corresponding to a type of data.

Risk of bias analyses

For the risk of bias in the studies: unbalanced data means
that the number of observations per class is not equally
distributed. Some studies applied complementary tech-
niques (e.g., SMOTE) to prevent the bias produced by
unbalance in data. These techniques undersample the
predominant class or oversample the minority class to
produce a balanced dataset.

Other studies used different strategies to deal with
other risks for bias. For instance, they might exclude spe-
cific age groups or cases presenting a second disease that
could interfere with the model’s development to deal with
the heterogeneity in some cohorts’ age.

For the risk of bias across the studies: the comparison
between models was performed on those reporting the
most frequently used validation metrics, i.e., accuracy
and AUC (ROC). The accuracy is estimated to homog-
enize the criteria of comparison when other metrics from
the confusion matrix were calculated, or the population’s
knowledge is known. The confusion matrix is a two-by-
two matrix containing four counts: true positives, true
negatives, false positives, and false negatives. Different
validation metrics such as precision, recall, accuracy, and
F1-score are computed from this matrix.

Two kinds of complementary techniques were found.
Firstly, techniques for balancing the data, including over-
sampling and undersampling methods. Secondly, feature
selection techniques such as logistic regression, principal
component analysis, and statistical testing. A comparison
still can be performed between them with the bias caused
by the improvement of the model.
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RESULTS OF STUDY SELECTION
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Fig. 2 Percentage of each subgroup in the quality assessment. The
criteria does not apply for two result for the Quality Assessment
Questions 1 and 3

Discussion
This section discusses the findings for each of the
research questions driving this review.

RQ1: What kind of features makes up the database

to create the model?

Our findings suggest no agreement on the specific fea-
tures to create a predictive model for type 2 diabetes.
The number of features also differs between studies:
while some used a few features, others used more than
70 features. The number and choice of features largely
depended on the machine learning technique and the
model’s complexity.

However, our findings suggest that some data types
produce better models, such as lifestyle, socioeconomic
and diagnostic data. These data are available in most
but not all Electronic Health Records. Also, retinal fun-
dus images were used in many of the top models, as they
are related to eye vessel damage derivated from diabetes.
Unfortunately, this type of image is no available in pri-
mary care data.

RQ2: What machine learning technique is optimal to create
a predictive model for type 2 diabetes?

Figure 3 shows a scatter plot of studies that reported
accuracy and AUC (ROC) values (x and y axes, respec-
tively. The color of the dots represents thirteen of the
eighteen types of model listed in the background. Dot
labels represent the reference number of the study. A
total of 30 studies is included in the plot. The studies
closer to the top-right corner are the best ones, as they
obtained high values for both validation metrics.

Figures 4 and 5 show the average accuracy and AUC
(ROC) by model. Not all models from the background
appear in both graphs since not all studies reported both
metrics. Notably, most values represent a single study or
the average of two studies. The exception is the average
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values for SVMs, RFs, GBTs, and DNNSs, calculated with
the results reported by four studies or more. These were
the most popular machine learning techniques in the
included studies.

RQ3: Which are the optimal validation metrics to compare
the models’improvement?

Considerable heterogeneity was found in this regard,
making it harder to compare the performance between
the models. Most studies reported some metrics com-
puted from the confusion matrix. However, studies
focused on statistical learning models reported hazard
ratios and the c-statistic.

This heterogeneity remains an area of opportunity for
further studies. To deal with it, we propose reporting
at least three metrics from the confusion matrix (i.e.,
accuracy, sensitivity, and specificity), which would allow
computing the rest. Additionally, the AUC (ROC) should
be reported as it is a robust performance metric. Ide-
ally, other metrics such as the F1-score, precision, or the
MCC score should be reported. Reporting more metrics
would enable benchmarking studies and models.

Summary of the findings

+ Concerning the datasets, this review could not iden-
tify an exact list of features given the heterogeneity
mentioned above. However, there are some findings
to report. First, the model’s performance is signifi-
cantly affected by the dataset: the accuracy decreased
significantly when the dataset became big and com-
plex. Clean and well-structured datasets with a few
numbers of samples and features make a better
model. However, a low number of attributes may not
reflect the real complexity of the multi-factorial dis-
eases.

+ The top-performing models were the decision tree
and random forest, with an similar accuracy of 0.99
and equal AUC (ROC) of one. On average, the best
models for the accuracy metric were Swarm Optimi-
zation and Random Forest with a value of one in both
cases. For AUC (ROC) decision tree with an AUC
(ROC) of 0.98, respectively.

o The most frequently-used methods were Deep
Neural Networks, tree-type (Gradient Boosting
and Random Forest), and support vector machines.
Deep Neural Networks have the advantage of deal-
ing well with big data, a solid reason to use them
frequently [27, 28]. Studies using these models
used datasets containing more than 70,000 obser-
vations. Also, these models deal well with dirty
data.
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Comparison Accuracy vs AUC(ROC)
betweem Models
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Fig. 3 Scatterplot of AUC (ROC) vs. Accuracy for included studies.
Numbers correspond to the number of reference and color dot the
type of model, desired model has values of x-axis equal 1 and y-axis
also equal 1

+ Some studies used complementary techniques to
improve their model’s performance. First, resampling
techniques were applied to otherwise unbalanced
datasets. Second, feature selection techniques were
used to identify the most relevant features for predic-
tion. Among the latter, there is principal component
analysis and logistic regression.

The model that has a good performance but can be
improved is the Deep Neural Network. As shown in
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Figure 4, their average accuracy is not top, yet some
individual models achieved 0.9. Hence, they repre-
sent a technique worth further exploration in type 2
diabetes. They also have the advantage that can deal
with large datasets. As shown in Table 2 many of the
datasets used for DNN models were around 70,000
or more samples. Also, DNN models do not require
complementary techniques for feature selection.
Finally, model performance comparison was chal-
lenging due to the heterogeneity in the metrics
reported.

Conclusions

This systematic review analyzed 90 studies to find the
main opportunity areas in diabetes prediction using
machine learning techniques.

Findings

The review finds that the structure of the dataset is rel-
evant to the accuracy of the models, regardless of the
selected features that are heterogeneous between stud-
ies. Concerning the models, the optimal performance is
for tree-type models. However, even tough they have the
best accuracy, they require complementary techniques to
balance data and reduce dimensionality by selecting the
optimal features. Therefore, K nearest neighborhoods,
and Support vector machines are frequently preferred
for prediction. On the other hand, Deep Neural Net-
works have the advantage of dealing well with big data.
However, they must be applied to datasets with more
than 70,000 observations. At least three metrics and the
AUC (ROC) should be reported in the results to allow
estimation of the others to reduce heterogeneity in the
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higher value

performance comparison. Therefore, the areas of oppor-
tunity are listed below.

Areas of opportunity

First, a well-structured, balanced dataset containing dif-
ferent types of features like lifestyle, socioeconomically,
and diagnostic data can be created to obtain a good
model. Otherwise, complementary techniques can be
helpful to clean and balance the data.

The machine learning model will depend on the char-
acteristics of the dataset. When the dataset contains a
few observations, machine learning techniques present
a better performance; when observations are more than
70,000, Deep Learning has a good performance.

To reduce the heterogeneity in the validation param-
eters, the best way to do it is to calculate a minimum
of three parameters from the confusion matrix and the
AUC (ROC). Ideally, it should report five or more param-
eters (accuracy, sensitivity, specificity, precision, and
F1-score) to become easier to compare. If one misses, it
can be estimated from the other ones.

Limitations of the study

The study’s limitations are observed in the heterogene-
ity between the models that difficult to compare them.
This heterogeneity is present in many aspects; the main is
the populations and the number of samples used in each
model. Another significant limitation is when the model
predicts diabetes complications, not diabetes.
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