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Abstract 

Background:  Deterioration of sleep quality has been reported to contribute to the incidence of diabetes and may 
be responsible for glycemic status in diabetes. The present study explored the relationship between sleep quality and 
glycemic variability in patients with type 2 diabetes (T2D).

Methods:  We recruited 111 patients with T2D for this cross-sectional study. Each patient underwent flash glucose 
monitoring for 14 days to obtain glycemic variability parameters, such as standard deviation of glucose (SD), coeffi‑
cient of variation of glucose (CV), mean amplitude of glycemic excursions (MAGE), mean of daily differences (MODD), 
and time in glucose range of 3.9–10 mmol/L (TIR3.9–10). After 14 days of flash glucose monitoring, each patient 
received a questionnaire on the Pittsburgh Sleep Quality Index (PSQI) to evaluate subjective sleep quality. HbA1c was 
also collected to assess average glucose.

Results:  HbA1c was comparable among the subgroups of PSQI score tertiles. Across ascending tertiles of PSQI 
scores, SD, CV and MAGE were increased, while TIR3.9–10 was decreased (p for trend  <  0.05), but not MODD (p for trend  
=  0.090). Moreover, PSQI scores were positively correlated with SD, CV, MODD and MAGE (r =  0.322, 0.361, 0.308 and 
0.354, respectively, p  <  0.001) and were inversely correlated with TIR3.9–10 (r  =  − 0.386, p  <  0.001). After adjusting for 
other relevant data by multivariate linear regression analyses, PSQI scores were independently responsible for SD (β  
=  0.251, t  =  2.112, p  =  0.041), CV (β  =  0.286, t  =  2.207, p  =  0.033), MAGE (β  =  0.323, t  =  2.489, p  =  0.018), and 
TIR3.9–10 (β  =  − 0.401, t  =  − 3.930, p  <  0.001) but not for MODD (β  =  0.188, t  =  1.374, p  =  0.177).

Conclusions:  Increased glycemic variability assessed by flash glucose monitoring was closely associated with poor 
subjective sleep quality evaluated by the PSQI in patients with T2D.
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Background
Glycemic variability, defined as the instability between 
high and low values of glycemia [1], has been demon-
strated to stimulate oxidative stress and provoke pro-
inflammatory mediators [2–4], which in turn lead to 
various vascular complications in patients with type 2 
diabetes (T2D) [5–7]. Moreover, glycemic variability is 
independent of average glucose levels reflected by glyco-
sylated hemoglobin A1c (HbA1c), and diabetic patients 
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with comparable HbA1c may present with different fea-
tures of glycemic variability [8, 9] and subsequent dia-
betic complications [10]. At present, ongoing research 
efforts worldwide are trying to screen intrinsic and exter-
nal risk factors for increased glycemic variability, which 
can help guide the development of appropriate therapeu-
tic regimens to improve glycemic variability and subse-
quent diabetic prognosis.

Currently, several technologies are available to quan-
titatively assess all-day glycemic variability, such as con-
tinuous glucose monitoring (CGM) systems (such as 
systems from Medtronic MiniMed Inc.) for 3–7 days and 
flash glucose monitoring (FGM) systems (such as the sys-
tems from Abbott Inc.) for 14 days, which can present a 
full range of glycemic variability in any time period [11, 
12]. A fully detailed profile of glycemic variability may 
facilitate screening the risk factors for increased glycemic 
variability.

Sleep is a necessary part of human daily life, and a good 
quality of sleep is essential to human physical and mental 
recovery after exhausting work. Conversely, deterioration 
in sleep quality was reported to account for a wide spec-
trum of adverse health outcomes, such as chronic meta-
bolic diseases, malignant tumors, adverse cardiovascular 
events, and all-cause mortality [13–16]. Accordingly, in 
several previous studies, poor sleep quality was demon-
strated to contribute to glycemic disturbances and the 
occurrence and progression of diabetes [17, 18]. Thus, we 
hypothesized that poor sleep quality may be an impor-
tant risk factor for increased glycemic variability. The 
Pittsburgh Sleep Quality Index (PSQI) is a potent tool 
to assess subjective sleep quality and is widely applied in 
sleep studies [19, 20].

Therefore, our present study was conducted to deter-
mine whether there was a possible relationship between 
subjective sleep quality assessed by the PSQI and glyce-
mic variability indices acquired from the FGM system in 
T2D patients.

Methods
Participant recruitment
We released a notification to recruit participants for this 
study from the Department of Endocrinology, Affiliated 
Hospital 2 of Nantong University, between December 
2019 and January 2021. The inclusion criteria for partici-
pants were as follows: (1) aged from 25 to 70  years; (2) 
diagnosis of T2D referring to the statement released by 
the American Diabetes Association in 2015 [21]; and (3) 
consent to join the study. The exclusion criteria for par-
ticipants were as follows: (1) type 1 diabetes or presence 
of diabetes-related antibodies; (2) history of malignancy; 
(3) chronic obstructive pulmonary disease; (4) severe 
cardio-cerebrovascular diseases, such as myocardial 

and cerebral infarction; (5) chronic liver and kidney dis-
eases; (6) severe obstructive sleep apnea syndrome; (7) 
hyperthyroidism or hypothyroidism; (8) current use of 
glucocorticoids; (9) serious psychiatric diseases; and 
(10) connective tissue diseases. Ultimately, 111 eligible 
patients with full data were pooled for statistical analyses. 
The study was reviewed and approved by the Ethics Com-
mittee of Affiliated Hospital 2 of Nantong University, and 
was conducted in accordance with the Declaration of 
Helsinki. In addition, all participants provided informed 
consent when they were recruited into the study.

Clinical data collection
Clinical data of participants were collected when they 
were screened by medical history, physical examination 
and biochemical tests. Relevant data for the final analy-
sis included age, sex, waist circumference (WC), height, 
weight, systolic blood pressure (SBP), diastolic blood 
pressure (DBP), history of hypertension and glucose-low-
ering therapies. Body mass index (BMI) was calculated 
based on weight and height (kg/m2). Hypertension was 
defined as we described in our previous study [22]. Glu-
cose-lowering therapies in our study were classified into 
lifestyle alone, insulin treatments, insulin secretagogues, 
metformin, pioglitazone, α-glucosidase inhibitors (AGIs), 
dipeptidyl peptidase-4 inhibitors (DPP-4Is) and sodium-
glucose cotransporter-2 inhibitors (SGLT-2Is).

Fasting blood samples were drawn to assess triglycer-
ides (TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDLC), low-density lipoprotein cholesterol 
(LDLC), creatinine (Cr), uric acid (UA) and glycosylated 
hemoglobin (HbA1c). The estimated glomerular filtration 
rate (eGFR) was acquired using the Modification of Diet 
in Renal Disease (MDRD) equation [23].

All patients also received a 75-g oral glucose tolerance 
test (OGTT) for the assessment of α-cell and β-cell func-
tions. Venous blood samples were drawn at 0, 30, 60, 
120, and 180 min after glucose loading to synchronously 
determine serum glucose, C-peptide and glucagon levels. 
Overall glucose levels were measured by the area under 
the glucose curve (AUC​glu). Overall, α-cell and β-cell 
functions were measured by the area under the glucagon 
curve (AUC​gluca) and the area under the C-peptide curve 
(AUC​cp), respectively [24, 25].

Assessment for glycemic variability
After initial screening, eligible patients with T2D were 
detected by a flash continuous glucose monitoring 
(FGM) system for 14  days. The FGM system we used 
in the present study is a hospital version (FreeStyle™ 
Libre H, Abbott Diabetes Care Ltd., Witney, Oxon, UK), 
which contains three parts: a sensor kit, a reader and a 
software for downloading glucose data from the reader. 
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During the FGM, the individualized plan for daily dietary 
energy intake was prepared by nutritionists, which was 
also described in our previous study [22]. The sensor kit 
can store glucose data at 15-min intervals. To make sen-
sor’s glucose data blind to the patients during the FGM, a 
reader was not provided to the patients. The sensor’s glu-
cose data were unblinded to the patients after they com-
pleted the PSQI questionnaire on the last day of FGM. 
After 14 days of FGM, glucose data could be downloaded 
from the reader by the FGM software, the software then 
generated ambulatory glucose profile (AGP) reports [26], 
and the time in glucose range from 3.9 to 10  mmol/L 
(TIR3.9–10) could be obtained from the AGP reports. 
Other multiple glycemic variability indices, including 
standard deviation of glucose (SD), coefficient of varia-
tion of glucose (CV), mean of daily differences (MODD), 
and mean amplitude of glycemic excursions (MAGE), 
could be calculated from the downloaded glucose data. 
The methods of calculation were also described in our 
previous studies [22, 27] and other studies [7, 28].

Subjective measurement for sleep quality
After 14 days of FGM, all participants received a Chinese 
version of the PSQI questionnaire by face-to-face inter-
views to measure subjective sleep quality [29, 30]. The 
PSQI, a self-evaluation of sleep quality in the past month, 
has 19 items, 9 questions and 7 component scales. The 7 
components are listed below: (1) subjective sleep quality; 
(2) sleep latency; (3) sleep duration; (4) sleep efficiency; 
(5) sleep disturbances; (6) use of sleep medication; and 
(7) daytime dysfunction. Each component is rated equally 
on a 0–3 scale, and the 7 components are then pooled to 
generate total PSQI scores ranging from 0 to 21. Higher 
PSQI scores represent poorer quality of sleep, which 
indicates that 0 is better than 21. The Chinese version of 
the PSQI had an overall reliability coefficient of 0.82–0.83 
and an acceptable test–retest reliability coefficient of 0.85 
for all subjects [30].

Statistical analyses
Clinically relevant data of recruited patients with T2D 
are exhibited for the total and three subgroups according 
to the tertiles of PSQI scores. Continuous and categori-
cal data are expressed as the mean  ±  standard deviation 
and frequency (percentage), respectively. We used one-
way analysis of variance (ANOVA) with a linear trend to 
explore trends in continuous data among PSQI score ter-
tiles and used the chi-squared test with linear-by-linear 
association to explore trends in categorical data among 
PSQI score tertiles. In addition, we used Pearson’s corre-
lation analysis to explore the correlation of PSQI scores 
with multiple glycemic variability parameters.

Furthermore, multivariate linear regression analysis 
was used to adjust for other clinically relevant vari-
ables to explore the independent effects of PSQI scores 
on multiple glycemic variability parameters. In each 
regression analysis, the initial Model 0 was unadjusted; 
Model 1 was adjusted for age, sex, BMI, WC, SBP, DBP 
and diabetes duration; Model 2 was further adjusted 
for hypertension and glucose-lowering therapies; and 
Model 3 was further adjusted for eGFR, UA, lipid pro-
files, HbA1c, AUC​glu, AUC​cp and AUC​gluca.

We used SPSS for Windows, standard version 19.0 
(IBM Co., Armonk, NY, USA), to input and analyze 
the data. Statistical significance was determined by a p 
value  <  0.05.

Results
Clinical characteristics of participants
The clinical characteristics of the recruited patients 
with T2D are displayed in Table  1. The mean PSOI 
score of all recruited patients was 6.9 ±  2.9, and the 
range of PSOI scores was 1–16. The ranges of the PSQI 
score tertiles were 1–4 (first tertile, T1), 5–7 (second 
tertile, T2) and 8–16 (third tertile, T3). From T1, T2, 
to T3 of PSQI scores, SD, CV and MAGE were notably 
increased, while TIR3.9–10 was decreased (p for trend  
<  0.05), but not MODD (p for trend  =  0.090). Moreo-
ver, across ascending tertiles of PSQI scores, TC levels 
were significantly increased, but age, ratio of females, 
BMI,WC, SBP, DBP, diabetes duration, hypertension 
prevalence, TG, HDLC, LDLC, UA, eGFR, AUC​glu, 
AUC​cp, AUC​gluca and HbA1c did not show any differ-
ences among the tertiles of PSQI scores. Regarding glu-
cose-lowering therapies, the frequency of metformin 
use was increased when the tertiles of PSQI scores 
increased, but lifestyle alone, insulin treatments, insu-
lin secretagogues, AGIs, DPP-4Is and SGLT-2Is were 
comparable among the tertiles of PSQI scores.

Correlations between PSQI scores and multiple glycemic 
variability parameters
Pearson’s correlation analysis showed that SD, CV, 
MODD and MAGE were positively correlated with 
PSQI scores (r  =  0.322, 0.361, 0.308 and 0.354, respec-
tively, p  <  0.001), while TIR3.9–10 was negatively corre-
lated with PSQI scores (r  =  − 0.386, p  <  0.001). These 
correlations are also graphically displayed in Fig.  1. 
Additionally, the corrections of the 7 components in 
the PSQI with multiple glycemic variability parameters 
are shown in Additional file  1: Table  S1. Overall, sub-
jective sleep quality, sleep latency, sleep duration, sleep 
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efficiency and daytime dysfunction were related to gly-
cemic variability parameters.

Multivariate linear regression analyses exploring 
the independent effects of PSQI scores on multiple 
glycemic variability parameters
The effects of the PSQI scores on the outcomes of mul-
tiple glycemic variability parameters by multivariate 
linear regression analyses are shown in Table 2. In the 

Table 1  Clinical characteristics of the total patients and subgroups based on the tertiles of PSQI scores

Continuous data are expressed as mean  ±  standard deviation, and categorical data are expressed as frequency (percentage)

ANOVA with a linear trend and chi-squared test with linear-by-linear association were applied to detect trends in continuous data and categorical data among tertiles 
of PSQI scores, respectively

PSQI Pittsburgh Sleep Quality Index; BMI body mass index; WC waist circumference; SBP/DBP systolic/diastolic blood pressure; AGIs α-glucosidase inhibitors; DPP-4Is 
dipeptidyl peptidase-4 inhibitors; SGLT-2Is sodium-glucose cotransporter-2 inhibitors; TG triglycerides; TC total cholesterol; HDLC high-density lipoprotein cholesterol; 
LDLC low-density lipoprotein cholesterol; UA uric acid; HbA1c glycosylated hemoglobin A1c; eGFR estimated glomerular filtration rate; AUC​glu area under the glucose 
curve; AUC​gluca area under the glucagon curve; AUC​cp area under the C-peptide curve; SD standard deviation of glucose; CV coefficient of variation of glucose; MAGE 
mean amplitude of glycemic excursions; MODD mean of daily differences; TIR3.9–10 time in glucose range of 3.9–10 mmol/L

Variables Total Tertiles of PSOI scores F/x2 value p for trend

T1 T2 T3

n 111 25 41 45 – –

PSOI scores (range) 6.9 ± 2.9 (1–16) 3.5 ± 0.8 (1–4) 5.8 ± 0.8 (5–7) 9.9 ± 2.0 (8–16) – –

Age (year) 50.1 ± 11.1 49.4 ± 9.8 49.4 ± 9.6 51.0 ± 10.7 0.315 0.730

Female, n (%) 40 (36.0) 11 (44.0) 13 (31.7) 16 (35.6) 0.315 0.574

BMI (kg/m2) 25.3 ± 3.3 26.0 ± 3.2 24.5 ± 2.9 25.6 ± 3.6 1.835 0.165

WC (cm) 89.9 ± 10.5 91.9 ± 8.5 87.8 ± 10.6 90.8 ± 11.2 1.453 0.238

SBP (mmHg) 127.6 ± 14.4 124.6 ± 15.3 130.1 ± 15.3 126.9 ± 13.1 1.193 0.307

DBP (mmHg) 79.8 ± 9.3 79.4 ± 10.7 79.9 ± 9.6 80.0 ± 8.5 0.043 0.958

Diabetes duration (year) 1.73 ± 1.02 1.56 ± 0.87 1.80 ± 1.03 1.76 ± 1.09 0.470 0.627

Glucose-lowering therapies

   Lifestyle alone, n (%) 10 (9.0) 1 (4.0) 3 (7.3) 6 (13.3) 1.862 0.172

   Insulin treatments, n (%) 29 (26.1) 4 (16.0) 10 (24.4) 15 (33.3) 2.579 0.108

   Insulin-secretagogues, n (%) 17 (15.3) 4 (16.0) 6 (14.6) 7 (15.6) 0.001 0.983

   Metformin, n (%) 75 (67.6) 21 (84.0) 28 (68.3) 26 (57.8) 4.937 0.026

   Pioglitazone, n (%) 12 (10.8) 3 (12.0) 4 (9.8) 5 (11.1) 0.004 0.949

   AGIs, n (%) 6 (5.4) 3 (12.0) 2 (4.9) 1 (2.2) 2.771 0.096

   DPP-4Is, n (%) 3 (2.7) 1 (4.4) 1 (2.4) 1 (2.2) 0.166 0.684

   SGLT-2Is, n (%) 15 (13.5) 5 (20.0) 4 (9.8) 6 (13.3) 0.370 0.543

Hypertension, n (%) 45 (40.5) 8 (32.0) 16 (39.0) 21 (46.7) 1.482 0.224

TG (mmol/L) 2.57 ± 2.53 3.52 ± 4.19 2.40 ± 1.74 2.13 ± 1.43 1.997 0.143

TC (mmol/L) 4.57 ± 1.04 5.09 ± 1.01 4.37 ± 1.06 4.42 ± 0.95 4.529 0.034

HDLC (mmol/L) 1.14 ± 0.28 1.11 ± 0.25 1.11 ± 0.31 1.19 ± 0.27 0.697 0.501

LDLC (mmol/L) 2.96 ± 0.93 3.31 ± 0.86 2.79 ± 0.89 2.89 ± 0.97 2.048 0.136

UA (μmol/L) 332.1 ± 92.0 336.3 ± 91.3 327.6 ± 113.7 333.4 ± 74.1 0.055 0.947

eGFR (mL/min/1.73m2) 164.7 ± 32.9 174.8 ± 35.1 161.5 ± 29.0 161.5 ± 34.2 1.241 0.295

AUC​glu (mmol/L·h) 42.9 ± 8.9 44.0 ± 7.1 41.9 ± 8.9 43.3 ± 10.1 0.401 0.671

AUC​cp (ng/mL·h) 13.8 ± 4.4 14.1 ± 4.1 13.5 ± 4.8 13.9 ± 4.2 0.159 0.853

AUC​gluca (pg/mL·h) 464.4 ± 185.3 481.7 ± 240.0 430.7 ± 144.1 485.1 ± 180.9 0.888 0.415

HbA1c (%) 7.73 ± 1.54 7.35 ± 1.29 7.75 ± 1.58 7.92 ± 1.63 1.087 0.341

SD (mmol/L) 2.62 ± 0.79 2.32 ± 0.63 2.67 ± 0.73 2.73 ± 0.88 4.010 0.048

CV (%) 34.5 ± 6.9 31.3 ± 6.6 35.1 ± 6.2 35.7 ± 7.2 5.897 0.017

MAGE (mmol/L) 5.85 ± 1.25 5.24 ± 1.03 5.94 ± 1.15 6.09 ± 1.36 6.849 0.010

MODD (mmol/L) 2.13 ± 0.69 1.93 ± 0.56 2.14 ± 0.70 2.23 ± 0.74 2.923 0.090

TIR3.9–10 (%) 72.0 ± 12.4 78.1 ± 9.8 71.9 ± 12.0 68.6 ± 12.9 9.837 0.002
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initial unadjusted Model 0, PSQI scores were inde-
pendently associated with SD (β  =  0.322, t  =  3.551, 
p  =  0.001, adjusted R2 = 0.104), CV (β  =  0.361, t  
=  4.307, p  <  0.001, adjusted R2 = 0.130), MODD (β  
=  0.308, t  =  3.381, p  =  0.001, adjusted R2 = 0.095), 
MAGE (β  =  0.354, t  =  3.948, p  <  0.001, adjusted R2 
= 0.125), and TIR3.9–10 (β  =  −  0.386, t  =  −  4.373, 
p  <  0.001, adjusted R2 = 0.149). After adjusting for 
other clinically relevant variables by multivariate lin-
ear regression analyses, the adjusted R2 was revealed 
to gradually increase from Model 0 to Model 3. In fully 
adjusted Model 3, PSQI scores remained independently 

associated with SD (β  =  0.251, t  =  2.112, p  =  
0.041), CV (β  =  0.286, t  =  2.207, p  =  0.033), MAGE 
(β  =  0.323, t  =  2.489, p  =  0.018), and TIR3.9–10 
(β  =  −  0.401, t  =  −  3.930, p  <  0.001) but not with 
MODD (β  =  0.188, t  =  1.374, p  =  0.177).

Discussion
In the present study, we systemically analyzed the rela-
tionship between sleep quality assessed by PSQI scores 
and glycemic variability assessed by FGM in 111 patients 
with T2D. The main findings of our study were as follows: 
first, PSQI scores were closely correlated with multiple 
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glycemic variability parameters by univariate analysis, 
including SD, CV, MODD, MAGE and TIR3.9–10; second, 
PSQI scores were independently associated with SD, CV, 
MAGE and TIR3.9–10 by multivariate linear regression 
analysis, but not with MODD; third, HbA1c was compa-
rable among the subgroups of PSQI score tertiles, which 
may suggest that poor subjective sleep quality may have 
effects on glycemic variability, but not on HbA1c; fourth, 
after adjusting for other relevant clinical data, each one-
point increment in PSQI scores may correspond to an 
SD increase of 0.251 mmol/L, a CV increase of 0.286%, a 
MAGE increase of 0.323 mmol/L and a TIR3.9–10 decrease 
of 0.401%.

Classical glycemic variability parameters and adverse 
consequences
It is well known that increased glycemic variability is 
independently associated with a variety of adverse out-
comes [31]. Classical glycemic variability parameters, cal-
culated from detailed glycemic profiles obtained by CGM 
or FGM, including SD, CV, MODD, MAGE and TIR3.9–10, 
have been widely applied in clinical studies. Glycemic 
variability has its own independent potential to prompt 
oxidative stress and subsequent adverse health outcomes. 
As early as 2006, Monnier et  al. [4] demonstrated that 
MAGE was closely associated with urinary 8-iso pros-
taglandin F2α in patients with T2D, which indicated 
that glycemic variability could induce a special effect 
on oxidative stress and paved the road linking glycemic 
variability to diabetic complications. Ohara et  al. [3] 
also demonstrated that day-to-day glycemic variability 

Table 2  Multiple linear regression models displaying the effects of PSQI scores on the outcomes of glycemic variability parameters

PSQI Pittsburgh Sleep Quality Index; SD standard deviation of glucose; CV coefficient of variation of glucose; MAGE mean amplitude of glycemic excursions; MODD 
mean of daily differences; TIR3.9–10 time in glucose range of 3.9–10 mmol/L; BMI body mass index; WC waist circumference; SBP/DBP systolic/diastolic blood pressure; 
UA uric acid; HbA1c glycosylated hemoglobin A1c; eGFR estimated glomerular filtration rate; AUC​glu area under the glucose curve; AUC​gluca area under the glucagon 
curve; AUC​cp area under the C-peptide curve

Models B (95% CI) β t p Adjusted R2

SD

 Model 0: unadjusted 0.086 (0.038–0.134) 0.322 3.551 0.001 0.104

 Model 1: age, sex, BMI, WC, SBP, DBP and diabetes duration 0.080 (0.031–0.129) 0.300 3.231 0.002 0.145

 Model 2: Model 1  +  hypertension and glucose-lowering therapies 0.060 (0.014–0.106) 0.225 2.588 0.011 0.366

 Model 3: Model 2  +  eGFR, UA, lipid profiles, HbA1c, AUC​glu, AUC​cp and  
AUC​gluca

0.065 (0.003–0.128) 0.251 2.112 0.041 0.678

CV

 Model 0: unadjusted 0.838 (0.427–1.250) 0.361 4.037 < 0.001 0.130

 Model 1: age, sex, BMI, WC, SBP, DBP and diabetes duration 0.810 (0.391–1.229) 0.348 3.832 < 0.001 0.179

 Model 2: Model 1  +  hypertension and glucose-lowering therapies 0.676 (0.254–1.099) 0.291 3.177 0.002 0.295

 Model 3: Model 2  +  eGFR, UA, lipid profiles, HbA1c, AUC​glu, AUC​cp and  
AUC​gluca

0.667 (0.055–1.279) 0.286 2.207 0.033 0.618

MODD

 Model 0: unadjusted 0.072 (0.030–0.115) 0.308 3.381 0.001 0.095

 Model 1: age, sex, BMI, WC, SBP, DBP and diabetes duration 0.065 (0.022–0.109) 0.279 2.999 0.003 0.143

 Model 2: Model 1  +  hypertension and glucose-lowering therapies 0.050 (0.009–0.091) 0.213 2.402 0.018 0.342

 Model 3: Model 2  +  eGFR, UA, lipid profiles, HbA1c, AUC​glu, AUC​cp and  
AUC​gluca

0.041 (–0.019 to 0.100) 0.188 1.374 0.177 0.575

MAGE

 Model 0: unadjusted 0.150 (0.075–0.225) 0.354 3.948 < 0.001 0.125

 Model 1: age, sex, BMI, WC, SBP, DBP and diabetes duration 0.138 (0.061–0.215) 0.326 3.563 0.001 0.169

 Model 2: Model 1  +  hypertension and glucose-lowering therapies 0.113 (0.038–0.187) 0.266 3.004 0.003 0.342

 Model 3: Model 2  +  eGFR, UA, lipid profiles, HbA1c, AUC​glu, AUC​cp and  
AUC​gluca

0.135 (0.025–0.246) 0.323 2.489 0.018 0.614

TIR3.9–10

 Model 0: unadjusted − 1.619 (− 2.353 to − 0.885) − 0.386 − 4.373 < 0.001 0.149

 Model 1: age, sex, BMI, WC, SBP, DBP and diabetes duration − 1.597 (− 2.345 to − 0.849) − 0.381 − 4.236 < 0.001 0.196

 Model 2: Model 1  +  hypertension and glucose-lowering therapies − 1.339 (− 2.076 to − 0.602) − 0.319 − 3.607 < 0.001 0.347

 Model 3: Model 2  +  eGFR, UA, lipid Profiles, HbA1c, AUC​glu, AUC​cp and  
AUC​gluca

− 1.701 (− 2.577 to − 0.825) − 0.401 − 3.930 < 0.001 0.763



Page 7 of 10Yang et al. Diabetol Metab Syndr          (2021) 13:102 	

assessed by MODD was related to diacron-reactive oxy-
gen metabolites reflective of oxidative stress. Moreover, 
with respect to diabetic complications, SD was recog-
nized as a significant risk factor for diabetic retinopathy 
in patients with pooled type 1 diabetes and T2D [32], 
and CV was closely connected to the prevalence of car-
diovascular autonomic neuropathy in patients with T2D 
[7]. In addition, increased MAGE was not only found to 
be associated with the presence and severity of coronary 
artery disease in patients with T2D but could also pre-
dict major adverse cardiovascular events in patients who 
had experienced acute myocardial infarction [5, 33]. Fur-
thermore, TIR3.9–10 has been the center of much atten-
tion in recent years. Decreased TIR3.9–10 was revealed 
to be associated with diabetic retinopathy [34], painful 
diabetic polyneuropathy [35], impaired peripheral nerve 
functions [36], increased carotid intima-media thick-
ness [37] and cardiovascular autonomic neuropathy [38] 
in patients with T2D. Therefore, screening modifiable 
risk factors for increased glycemic variability would be of 
significance.

Possible risk factors for increased glycemic variability
Accumulated studies have revealed the intrinsic and 
external risk factors for increased glycemic variabil-
ity. Our previous studies have shown that impaired islet 
β-cell function may account for increased glycemic vari-
ability in subjects at high risk for diabetes and in patients 
with T2D [39, 40], which was consistent with a prior 
study by Kohnert et  al. [41] in T2D using oral hypogly-
cemic agents. Correspondingly, glycemic variability could 
be attenuated by improvement in β-cell function [42]. 
Moreover, increased glycemic variability may also be 
related to lower levels of fasting C-peptide, longer dia-
betic duration in T2D using insulin, older age, obesity, 
higher TG, lower LDLC and the use of sulfonylurea in 
T2D without insulin treatment [43]. In addition, abnor-
mal glucagon secretion [44], hyperthyroidism [45], higher 
serum thyrotropin [22], more severe dawn phenomenon 
[46] and acute stress conditions [47] could prompt glyce-
mic variability. Furthermore, in our present study, poor 
subjective sleep quality estimated by the PSQI may lead 
to deterioration in glycemic variability.

Poor sleep quality and adverse consequences
Normal sleep is a physiological process for energy resto-
ration and replenishment and serves a reparative role in 
physical and mental fatigue relief. Normal sleep is char-
acterized by decreases in glucose turnover and metabolic 
demand. Sleep inefficiency or poor sleep quality was 
demonstrated to be responsible for obesity [48], hyper-
tension [49], type 2 diabetes [50], gestational diabetes 
mellitus [51], cardiovascular disease [14], and prognosis 

of chronic diseases [52]. In our present study, we found 
that multiple glycemic variability parameters, such as SD, 
CV, MODD, MAGE and TIR3.9–10, were correlated well 
with subjective sleep quality. In the final analysis, sub-
jective sleep quality may independently account for SD, 
CV, MAGE and TIR3.9–10. More surprisingly, HbA1c was 
comparable among the subgroups of PSQI score tertiles. 
These results suggested that poor subjective sleep qual-
ity may have effects on glycemic variability but not on 
HbA1c. Approaches to improve sleep quality may facili-
tate the amelioration of glycemic variability.

Underlying mechanism for the linkage of sleep quality 
to glycemic variability
Several studies have suggested multiple pathways in 
the possible connection between poor sleep qual-
ity and increased glycemic variability. These pathways 
involve impaired cerebral glucose utilization, a hyperac-
tive sympathetic system, the release of proinflammatory 
cytokines, rhythmic alterations in cortisol and growth 
hormone secretion, abnormalities in adipocyte func-
tion and dysregulation in appetite-regulating hormones 
[53, 54]. During the period of sleep deprivation, cerebral 
glucose utilization was revealed to be markedly reduced, 
notably in some cortical and subcortical regions [55]. 
After poor sleep quality, the sympathetic nervous system 
is overactivated, which in turn leads to insulin resist-
ance and aberrant glucagon secretion [54, 56]. Consist-
ently, elevation of systemic inflammatory responses in 
relation to sleep restriction was also well demonstrated, 
and proinflammatory cytokines such as tumor necrosis 
factor and C-reactive protein were released and subse-
quently promoted insulin resistance [57, 58]. Moreover, 
increased cortisol secretion in the afternoon and evening 
and prolonged growth hormone secretion at night due 
to sleep restriction could also facilitate insulin resistance 
[59, 60]. Additionally, abnormalities in adipocyte func-
tion were proven to be connected to adverse metabolic 
consequences after poor sleep quality. Sleep restriction 
may account for a 30% reduction in the efficiency of the 
insulin signaling pathways in adipocytes [61]. Further-
more, appetite-regulating hormones were found to be 
dysregulated during sleep restriction; for example, leptin, 
a satiety hormone, was decreased, while ghrelin, a hunger 
hormone, was increased [62]. These changes in appetite-
regulating hormones may be responsible for increases in 
food intake and body mass and subsequent insulin resist-
ance. Therefore, as a result of insufficient sleep, numer-
ous risk factors for the above suggestive pathways could 
cross-promote with each other, induce insulin resistance, 
and facilitate islet β-cell dysfunction and the incidence of 
T2D, ultimately contributing to the increased glycemic 
variability.
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Strengths
Our present study exhibits several strengths. First, our 
study may be the first to explore the relationship between 
subjective sleep quality assessed by PSQI and glycemic 
variability assessed by FGM in patients with T2D. Sec-
ond, the FGM data were blinded to the patients dur-
ing FGM detection. Third, multiple glycemic variability 
parameters were applied in our present study, especially 
TIR3.9–10, which has received extensive attention because 
of its central role in diabetic complications.

Limitations
Several limitations of our present study should be recog-
nized. First, our study was cross-sectionally conducted 
and may not conclude a causal relationship between poor 
sleep quality and increased glycemic variability. A longi-
tudinal study must be performed to compensate for this 
defect. Second, our study is restricted to the Chinese 
population with T2D in a single center, and the findings 
have limited generalizability. Third, the PSQI is a self-
report measurement to subjectively assess sleep quality 
over the previous month. Our study lacks an objective 
measure for sleep, such as polysomnography (PSG), but 
PSG is restricted to monitoring sleep for only one or two 
nights. It would be ideal to combine PSQI with PSG for 
sleep studies.

Conclusions
In summary, increased glycemic variability assessed 
by FGM was closely associated with poor sleep quality 
assessed by the PSQI score in patients with T2D, which 
indicated that clinical strategies targeting improving 
sleep quality may ameliorate glycemic variability.
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