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Abstract 

Background: Stroke is a serious complication in patients with type 2 diabetes (T2DM). Arterial stiffness may improve 
stroke prediction. We investigated the association between carotid‑femoral pulse wave velocity [PWV] and the pro‑
gression of cerebral white matter hyperintensities (WMH), a marker of stroke risk, in patients with T2DM and controls.

Methods: In a 5‑year cohort study, data from 45 patients and 59 non‑diabetic controls were available for analysis. At 
baseline, participants had a mean (± SD) age of 59  ±  10 years and patients had a median (range) diabetes duration 
of 1.8 (0.8–3.2) years. PWV was obtained by tonometry and WMH volume by an automated segmentation algorithm 
based on cerebral T2‑FLAIR and T1 MRI (corrected by intracranial volume, cWMH). High PWV was defined above 
8.94 m/s (corresponding to the reference of high PWV above 10 m/s using the standardized path length method).

Results: Patients with T2DM had a higher PWV than controls (8.8  ±  2.2 vs. 7.9  ±  1.4 m/s, p  <  0.01). WMH progres‑
sion were similar in the two groups (p  =  0.5). One m/s increase in baseline PWV was associated with a 16% [95% CI 
1–32%], p  <  0.05) increase in cWMH volume at 5 years follow‑up after adjustment for age, sex, diabetes, pulse pres‑
sure and smoking. High PWV was associated with cWMH progression in the combined cohort (p  <  0.05). We found 
no interaction between diabetes and PWV on cWMH progression.

Conclusions: PWV is associated with cWMH progression in patients with type 2 diabetes and non‑diabetic controls. 
Our results indicate that arterial stiffness may be involved early in the pathophysiology leading to cerebrovascular 
diseases.
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Introduction
Patients with type 2 diabetes are at high risk of cerebro-
vascular complications including stroke, vascular demen-
tia and cognitive impairment [1, 2]. The epidemic burden 
of type 2 diabetes worldwide highlights the need for new 
biomarkers to improve individual risk prediction and 
to elucidate mechanisms underlying cerebrovascular 
disease.
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Carotid-femoral pulse wave velocity (PWV), a simple 
and non-invasive measure of arterial stiffness, is a strong 
predictor of stroke [3, 4]. Stiffening of the elastic arteries 
may impair the normal protective impedance mismatch 
between elastic and muscular arteries permitting excess 
pulsatile energy to be transmitted into the microcircula-
tion [5]. High-flow low-impedance organs, such as the 
brain, are particularly vulnerable to these effects, and 
the pulsatile energy may inflict target organ damage [6]. 
This notion is supported by cross-sectional studies dem-
onstrating associations between PWV and cerebral white 
matter hyperintensities (WMH) in various populations 
[7], including patients with type 2 diabetes [8]. WMHs 
are established markers of future cerebrovascular disease 
[9, 10]. It is currently unknown whether PWV is asso-
ciated with WMH progression and whether this asso-
ciation differs between patients with and without type 2 
diabetes.

The aim of this cohort study was to investigate the 
association between PWV and WMH progression during 
5 years follow-up in patients with type 2 diabetes without 
a history of symptomatic cerebrovascular disease and in 
healthy sex- and age-matched controls.

Methods
Design and subjects
We performed a 5-year follow-up study comprising 100 
patients with type 2 diabetes and 100 age- (± 2 years) and 
sex-matched controls at the Department of Endocrinol-
ogy and Internal Medicine, Aarhus University Hospital, 
Denmark. Other data regarding this population have pre-
viously been published [8]. Inclusion criteria at baseline 
were age  >  18  years and, for patients,  <  5  years since 
diagnosis of diabetes. Controls were excluded if diabetes 
was diagnosed by fasting glucose and oral glucose toler-
ance tests. Other exclusion criteria were: acute or chronic 
infectious disease, end-stage renal failure, pregnancy or 
lactation, prior or current cancer and contraindications 
to magnetic resonance imaging (MRI) (claustropho-
bia, magnetic material in the body and a body weight  >  
120  kg). Participants were invited for a baseline visit 
(2009–2011) and a 5-year follow-up visit (2014–2016). 
We obtained blood and urine samples and assessed arte-
rial stiffness, office and ambulatory blood pressure (BP), 
and anthropometrics at both visits. Moreover, we per-
formed a cerebral MRI at both visits in order to assess 
WMH burden.

Pulse wave velocity measurements
Examinations were conducted from 8 to 12 a.m. The 
study subjects had abstained from smoking and intake 
of food or caffeinated beverages for at least 2  h before 
examination. Measurements of PWV were performed 

using an applanation tonometer (SPT-301B; Millar, Hou-
ston, TX, USA) and SphygmoCor equipment and soft-
ware, version 8.0 (AtCor Medical, Sydney, Australia). 
After a minimum of 5 min of rest in the supine position, 
sequential electrocardiogram-referenced tonometry-
based recordings of the pulse wave at the carotid and the 
femoral artery were performed to determine the PWV. 
The transit time was determined by the intersecting tan-
gent algorithm method [11], and the path length was cal-
culated by subtracting the distance between the site of 
the carotid artery pulse measurement and the supraster-
nal notch from the distance between the site of the femo-
ral artery pulse measurement and the suprasternal notch, 
all measured directly using a tape measure. The direct 
path length method was not applied in our primary anal-
ysis, as the study was initiated prior to publication of the 
consensus document on path length measurements. A 
PWV of 8.94 m/s in our data set corresponds to 10 m/s 
when converting PWV to the standard path length [4]; a 
cut-off value that is associated with greater risk of stroke 
and cardiovascular events [12]. The mean of two PWV 
measurements per examination was calculated. PWV 
assessed by the SphygmoCor device is characterized by 
good reproducibility in patients with type 2 diabetes and 
healthy individuals [13].

Magnetic resonance imaging
At baseline, a cerebral MRI was performed with an 
eight-channel SENSE head coil on a 1.5 T MRI scanner 
(Achieva, Philips, Best, Netherlands) to obtain both axial 
T2-FLAIR scans (256 × 256 × 22 with acquisition matrix 
of 256 × 191; slice thickness 5 mm; TE  =  130 ms; TR  =  
6000 ms; TI  =  2200 ms; flip angle 90º) and T1-weighted 
3D FFE scans (256 × 256 × 150 with acquisition matrix 
of 256 × 256; slice thickness 2 mm; TE  =  4.60 ms; TR  =  
25 ms; flip angle 30º).

At follow-up, cerebral MRI was performed using a 
32-channel head coil on a 3  T scanner (MAGNETOM 
Skyra system, Siemens Healthcare, Erlangen, Germany) 
to obtain both a T2-FLAIR sequence (320 × 310 × 45 
with acquisition matrix of 320 × 217; slice thickness 
3  mm; TE  =  117  ms; TR  =  9000  ms; TI  =  2500  ms; 
flip angle 150º), and T1-weighted uniform MP2RAGE 
sequence (256 × 240 × 176 with acquisition matrix of 
256 × 240; slice thickness 1  mm; TE  =  2.98  ms; TR  =  
5000 ms; flip angle 0º).

After manual inspection of image quality, the obtained 
sequences were processed with an  × 86-based worksta-
tion. The T1W-images from follow-up (MP2RAGE) were 
prepared for analysis with removal of background noise 
using the robust T1W method. We used the same β-value 
for all image sequences which yielded an adequate noise 
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suppression without introduction of significant intensity 
bias [14].

The volume and number of WMH at baseline and fol-
low-up was quantified by an automated segmentation 
of both T1 and T2-FLAIR sequences using the Lesion 
Growth Algorithm (LGA) [15] as implemented in the 
LST toolbox 1.2.3 (www. stati stical- model ling. de/ lst. html) 
working in Statistical Parametric Mapping (SPM) version 
8 (http:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm8/) as 
described elsewhere[16]. In the analysis we used an ini-
tial threshold (κ  =  0.3) which was confirmed by visual 
inspection. As patients were evaluated with different 
scanners at baseline and follow-up, we conducted sec-
ondary analysis with the LGA (T1 and T2FLAIR images, 
κ  =  0.3) and the Lesion Prediction Algorithm (LPA) (T2 
FLAIR images only) [17] using SPM12 and LST tool-
box 3.0.0 in order to validate the primary analysis (LGA 
SPM8 has shown better correlation with visual volume 
assessment[16] and were thus used in our primary analy-
sis). WMH volumes were divided by intracranial volume 
in order to correct for individual differences in head size 
(cWMH). Furthermore, we included another second-
ary analysis of white matter hypointensity volumes using 
volumetric segmentation of the recorded T1-weighted 
images (Freesurfer 5.3, https:// surfer. nmr. mgh. harva rd. 
edu) [18]. Longitudinal analysis was performed according 
to Reuter et al. [19].

Cerebral infarctions were defined as areas with volume 
loss surrounded by signals consistent with gliosis and 
were classified as lacunar when their size was less than 
15 mm.

Other measurements
Ambulatory BP was measured at 20-min intervals for 
24  h using Spacelab 90,217 (Spacelabs Healthcare, Issa-
quah, WA, USA). Office BP was measured on the right 
arm with an appropriately sized cuff, and mean systolic 
and diastolic BPs were calculated as the average of three 
measurements obtained after a minimum of 5 min of rest 
in seated position (Riester Champion N, Riester GmbH, 
Jungingen, Germany). Urinary albumin excretion was 
evaluated by albumin-to-creatinine ratios in three morn-
ing urine samples. Finally, the participants’ medical histo-
ries were obtained by questionnaire.

Statistics
Variables with a normal distribution are presented as 
either mean  ±  SD (participant characteristics) or mean 
and 95% CI (analysis of association), and skewed data are 
presented as median (interquartile range). Dichotomous 
data are presented as n (%).

The distributions of continuous variables were tested 
with histograms and QQ-plots.

If normally distributed, means of two groups were 
compared with Student’s paired t test for matched data 
or with Student’s unpaired t test for independent data. 
Skewed data were log-transformed before using a t test. 
If normal distribution was not achieved by log trans-
formation, the Wilcoxon signed rank test or the Wil-
coxon–Mann–Whitney test was applied as appropriate. 
Dichotomous variables were compared with McNemar’s 
test or the  Chi2 test as appropriate.

We used linear and logistic regression to evaluate the 
association between PWV at baseline and cWMH pro-
gression. Robust standard errors were calculated to 
account for clustering in repeated measurements. The 
following covariates were considered for inclusion in 
multivariate logistic regression models: age, sex, diabe-
tes (yes/no), office pulse pressure (PP)[20] and smoking 
(no smoking vs. current/former smoking). Additionally, 
we exchanged PWV as a continuous variable with PWV 
dichotomized  < / >  8.94  m/s (corresponding to the 
clinical cut-off of 10  m/s when using the standard path 
length). There were small differences in follow-up time 
between patients with type 2 diabetes and controls, and 
therefore we repeated the analysis with cWMH volume 
progression corrected for follow-up time. Furthermore, 
as lacunar infarcts may have been included in the auto-
matic cWMH segmentation, we repeated the analyses 
without patients with presence of infarcts. Finally, we 
tested the interaction between diabetes status and PWV 
on the effect on cWMH progression.

Two-sided P values  <  0.05 were considered statistically 
significant. Statistical analyses were performed with Stata 
software version 13 (StataCorp, College Station, TX, 
USA).

Results
Participant characteristics
A total of 63 patients with type 2 diabetes and 72 controls 
attended the follow-up visit. Data from participants with 
a history of stroke or transient ischaemic attack at base-
line (n  =  4), participants with missing PWV (n  =  10) or 
missing MRI (n  =  17) were excluded from the analysis 
(Additional file 1: Figure S1). Data from 45 patients and 
59 controls were available for our final analysis (Base-
line characteristics of participants attending versus those 
not attending the follow-up visit are listed in Additional 
file 1: Table S1).

Patients with type 2 diabetes had, compared with 
controls, a higher BMI, heart rate and PWV, but more 
favourable plasma lipids, and BP profiles at baseline 
(Table  1). The good risk factor control observed in the 
diabetes group could probably be ascribed to the fact that 
a high proportion of the patients with diabetes received 
antihypertensive drugs and statins.

http://www.statistical-modelling.de/lst.html
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
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White matter hyperintensity progression
Patients with type 2 diabetes had comparable WMH 
volumes compared to controls both at baseline and fol-
low-up. In accordance, progression in WMH volumes 
was similar in the two groups during the study period 
(Table 2) and the median volume increase in WMH was 
 984mm3 for the combined cohort. Similarly, the number 

of WMHs was low at baseline but increased similarly in 
both groups. Using cWMH did not change the results 
(p  <  0.44). At baseline, three (7%) patients and three (8%) 
controls had signs of subclinical cerebral infarctions on 
MRI (p  =  1.0), which did not change at follow-up. No 
participants had signs of brain tumors.

PWV and cWMH progression
Baseline PWV was associated with increased cWMH 
volume progression in both crude and adjusted lin-
ear regression analysis in the combined cohort (Fig.  1; 
Table 3). In adjusted separate group analysis, this associa-
tion was attenuated.

PWV  >  8.94 m/s (corresponding to a high PWV above 
10  m/s using the standard path length measurement), 
was associated with high cWMH volume progression 
in the combined cohort and in the diabetes and control 
groups separately (Fig. 2). The association remained sig-
nificant in the combined cohort in multivariate analy-
sis (Table  3). The results were similar in analysis with 
cWMH volume progression corrected for follow-up 
time and in analysis exchanging PP with mean arterial 

Table 1 Participant characteristics at baseline

Parametric data presented as mean  ±  SD

PWV carotid-femoral pulse wave velocity
a Median (interquartile range)

Participant characteristics DM (n  =  45) Controls (n  =  59) p value

Male n (%) 22 (49) 28 (47) 0.89

Age (years) 59.3  ±  9.8 57.9  ±  9.8 0.47

Diabetes duration (years) 1.8 (0.8–3.2) Na –

Follow‑up (years) 5.6  ±  0.4 5.4  ±  0.3 < 0.05

BMI (kg/m2) 29.3  ±  5.1 25.9  ±  3.3 0.08

HbA1c (mmol/mol) 47  ±  6 38  ±  4 < 0.05

HbA1c (%) 6.5  ±  0.6 5.6  ±  0.4 < 0.05

Total cholesterol (mmol/l) 4.4  ±  0.8 5.7  ±  1.0 < 0.05

LDL (mmol/l) 2.2  ±  0.7 3.4  ±  1.0 < 0.05

Office systolic blood pressure (mmHg) 126  ±  9 131  ±  14 0.07

Office diastolic blood pressure (mmHg) 79  ±  7 83  ±  9 < 0.05

Office heart rate (bpm) 66  ±  9 62  ±  10 < 0.05

24‑h systolic blood pressure (mmHg) 125  ±  9 124  ±  11 0.58

24‑h diastolic blood pressure (mmHg) 74  ±  6 75  ±  7 0.47

24‑h heart rate (bpm) 73  ±  10 68  ±  9 < 0.05

Urine albumin creatinine ratio (mg/mmol)a 0.4 (0.3–1.0) 0.2 (0.2–0.4) < 0.05

Antidiabetic medicine (oral and GLP‑1‑analogues) n (%) 32 (71) 0 (0) < 0.05

Insulin n (%) 5 (11) 0 (0) < 0.05

Antihypertensives n (%) 28 (62) 15 (25) < 0.05

Statin n (%) 33 (73) 9 (15) < 0.05

Aspirin n (%) 25 (56) 2 (3) < 0.05

Current or former smoker n (%) 24 (53) 29 (49) 0.67

PWV (m/s) 8.8  ±  2.1 7.9  ±  1.4 < 0.05

Table 2 Cerebral white matter lesions

Median (interquartile range)

Type 2 diabetes (n  =  
45)

Controls (n  =  59) p value

Volume of white matter lesions  (mm3)

 Baseline 258 (52–588) 196 (35–825) 0.82

 Follow‑up 1402 (452–2816) 1250 (388–3013) 0.60

 Progression 1003 (402–2304) 964 (288–2252) 0.50

Number of white matter lesions (n)

 Baseline 2 (1–7) 3 (1–7) 0.92

 Follow‑up 12 (7–16) 9 (4–15) 0.35

 Progression 7 (4–11) 6 (3–9) 0.24
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pressure (data not shown). Furthermore, the results were 
not attenuated when we added antidiabetic, anthihyper-
tensive and/or lipid-lowering drug use (both separately 
or all three variables together) nor when we added hba1c 
to the multivariate regression model of the combined 
cohort. Finally, we rerun the analysis without the par-
ticipants with presence of lacunar infarcts, with similar 
results in crude/adjusted analysis of continuous PWV 
(p  <  0.05), however attenuated in adjusted analysis with 
dichotomized PWV (p  =  0.08). Diabetes did not modify 
the association between PWV and cWMH volume pro-
gression (interaction term  − 11%, 95%CI  − 32 to 18%, 
p  =  0.44).

In secondary analyses, we used the LST toolbox 3.0.0 
and SPM12 to perform lesion segmentation of both T2 
FLAIR images only (LPA12) and of a combination of T1 
and T2 FLAIR (LGA12). White matter hypointensity 
volumes were also estimated using Freesurfer 5.3 based 
volumetric segmentation of T1-weighted images (as 
a proxy for T2 FLAIR WMH). We found results with 
similar direction of association although the associa-
tions were attenuated in the analysis of WMH segmen-
tation based on T1-weighted images (Additional file 1: 
Table S2).

Crude logtransformed beta coefficients (95%CI)

Type 2 diabetes: 0.28 (95%CI 0.12−0.45), p<0.01 

Controls: 0.39 (95% CI 0.08−0.70), p<0.05
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Fig. 1 Pulse wave velocity and 5‑year white matter hyperintensitiy volume progression. Diamond and dashed line  =  Type 2 diabetes. Circles and 
solid line  =  Controls. cWMH white matter hyperintensity volume progression corrected for intracranial volume

Table 3 Pulse wave velocity and white matter hyperintensity progression

cWMH white matter hyperintensities corrected for intracranial volume; PWV pulse wave velocity
a Adjusted model: age, sex, diabetes status (yes/no), baseline pulse pressure and smoking status (no smoking or current/former smoking). In separate group analysis, 
diabetes status was omitted

Linear regression

All (n  =  104) p DM (n  =  45) p Controls (n  =  59) p

% change in cWMH volume per 1 m/s increase in PWV (95% CI)s

 Crude 34 (20–51) < 0.01 32 (12–56) < 0.01 48 (8–102) < 0.05

  Adjusteda 16 (1–32) < 0.05 18 (− 5 to 47) 0.13 31 (− 8 to 87) 0.13

% change cWMH volume if PWV  >  8.94 m/s

 Crude 208 (73–451) < 0.01 214 (57–526) < 0.01 218 (18–756) < 0.05

  Adjusteda 92 (2–263) < 0.05 88 (− 20 to 339) 0.14 161 (− 5 to 618) 0.06
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Discussion
To our knowledge, our study is the first to evaluate PWV 
and cWMH volume progression in a cohort of patients 
with type 2 diabetes with no clinical history of cerebro-
vascular disease and age- and sex-matched controls. We 
found that PWV was associated with higher cWMH vol-
ume progression in the combined cohort, independent of 
known risk factors such as age, sex, blood pressure, and 
smoking status.

Cerebral WMHs are established surrogate markers of 
cerebrovascular disease like stroke, dementia and cog-
nitive decline [9, 10]. Cerebral small-vessel damage is 
considered the causative factor in WMH development 
[21–23], and major determinants of WMH include age, 
hypertension, smoking, and diabetes [24–26]. We found 
no difference in WMH burden or progression between 
patients with type 2 diabetes and controls at either base-
line [8] or follow-up. However, the potential differences 
between the two groups may be ameliorated by the good 
glycaemic, lipid and BP control observed in the patient 
group. Additionally, as patients were enrolled shortly 
after their diagnosis of diabetes, it may be speculated 
that WMH progression would start to progress faster at 
later stages of the disease (i.e., after the 5-year follow-up 
visit). This is supported by the findings of Debette et al. 
[27] showing no association between midlife diabetes 
and WMH progression. In contrast, the study results 

of King et al. [28] showed WMH progression at a faster 
pace in patients with type 2 diabetes compared to healthy 
individuals after the age of 50 years, but not before (the 
mean age at inclusion in our study was 58.5  years). Yet 
another explanation may be that diabetes status modi-
fies the effect of WMH on stroke risk, e.g., the presence 
of WMH in diabetes patients may confer a higher risk of 
stroke compared to similar WMH presence in non-dia-
betic individuals. Prospective studies are needed to fur-
ther investigate these questions.

Arterial stiffness may be a key factor in the pathogen-
esis of WMH. PWV has been linked to WMH in sev-
eral cross-sectional studies [7], and we have previously 
reported a cross-sectional association between PWV 
and WMH in newly diagnosed patients with type 2 dia-
betes [8]. In contrast, Nomura and colleagues found no 
independent association between brachial-ankle PWV 
and the presence of silent infarctions in older Japanese 
patients with type 2 diabetes [29]. Two studies have 
observed longitudinal associations between baseline 
PWV and WMH [30, 31]. Rosano et al. [30] found base-
line PWV to be associated with WMH 10 years later in a 
population study of elderly subjects (12% with diabetes). 
Tsao et al. [31] did not find an association between base-
line PWV and WMH progression in a population-based 
cohort in which 9% were patients with diabetes. How-
ever, no previous studies prospectively investigated the 
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association between PWV and progression of WMH in a 
diabetes population.

Interestingly, we found an association between PWV 
and cWMH progression in the combined cohort and our 
test for interaction did not suggest diabetes to modify 
the association between PWV and WMH progression. 
The discrepancy between our results and that of Tsao, 
might be due to different methodologies. Alternatively, 
the higher proportion of diabetes patients in our study 
may change the distribution of PWV towards higher val-
ues. In line with this speculation, it has been suggested 
that PWV only becomes a risk factor when it exceeds 
a certain threshold [32], e.g., 10  m/s which is the sug-
gested cut-off value for high arterial stiffness [4]. Another 
important question is, whether high PWV affects the 
brain globally or preferentially in specific regions of the 
brain. In the latter case, the global assessment of WMH 
burden may have attenuated the observed associations 
between PWV and WMH progression. In general, stiff-
ness of the elastic arteries impairs the normal impedance 
mismatch between elastic and muscular arteries, leading 
to a transfer of high pulsatile energy to the microcircula-
tion [5]. This pulsatile barotrauma as well as the compen-
satory remodelling of the arteries that leads to a reduced 
vasodilatatory reserve, may affect the brain globally [5]. 
However, it has also been suggested that increased pulse 
wave velocity and pressure pulsatility may lead to pres-
sure changes of the cerebrovascular fluid. In turn this 
may affect the periventricular parenchyma and cause 
periventricular WMLs [33]. Future studies evaluating 
WMH progression in specific brain regions may help 
answer these questions.

The present study has some limitations. Firstly, a 1.5 T 
MR scanner was used at baseline and a 3.0 T MR scanner 
at follow-up. This may cause a higher volume estimation 
at follow-up, partly because of better detection of punc-
tate lesions [34, 35]. Theoretically, our results may there-
fore reflect the cross-sectional association between PWV 
and WMH as reported previously [8]. However, in both 
LGA8 analysis and sensitivity analysis using different seg-
mentation techniques (see “Methods”), we have visually 
observed that WMH progression vary considerably at 
similar baseline WMH volumes which suggests that our 
results reflect actual WMH progression. Furthermore, all 
of the analyses showed the same direction of association 
as the main analysis based on LGA8. Finally, the scanner 
changed in all patients at follow-up, independent of PWV 
value, and therefore it might not affect the association of 
PWV with cWMH. Secondly, due to the modest sample 
size, analysis was at risk of type 2 error, and multivari-
able regression analysis was restricted to only few con-
founding covariates. Thirdly, the dropout of 37 patients 
and 28 controls before the follow-up visit might affect the 

external validity of the study. However, importantly, the 
baseline characteristics between participants who par-
ticipated in the follow-up visit were not different from 
the participants who did not attend (Additional file  1: 
Table S1). Thus, the findings of this study may be applica-
ble to other patients newly diagnosed with diabetes and 
individuals without diabetes.

Conclusions
Arterial stiffness is associated with cWMH progression 
in patients with type 2 diabetes and matched controls. 
Arterial stiffness may candidate as a new risk marker 
for future cerebrovascular events and could potentially 
be an important target for intervention.
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