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Abstract
Background  Glucose fluctuations (GF) are a risk factor for cardiovascular complications associated with type 2 
diabetes. However, there is a lack of adequate research on the effect of GF on myocardial fibrosis and the underlying 
mechanisms in type 2 diabetes. This study aimed to investigate the impact of glucose fluctuations on myocardial 
fibrosis and explore the potential mechanisms in type 2 diabetes.

Methods  Sprague Dawley (SD) rats were randomly divided into three groups: the control (Con) group, the type 2 
diabetic (DM) group and the glucose fluctuations (GF) group. The type 2 diabetic rat model was established using a 
high-fat diet combined with low-dose streptozotocin injection and the GF model was induced by using staggered 
glucose and insulin injections daily. After eight weeks, echocardiography was used to assess the cardiac function 
of the three groups. Hematoxylin-eosin and Masson staining were utilized to evaluate the degree of pathological 
damage and fibrosis. Meanwhile, a neonatal rat cardiac fibroblast model with GF was established. Western and 
immunofluorescence were used to find the specific mechanism of myocardial fibrosis caused by GF.

Results  Compared with rats in the Con and the DM group, cardiac function in the GF group showed significant 
impairments. Additionally, the results showed that GF aggravated myocardial fibrosis in vitro and in vivo. Moreover, 
Ca2+/calmodulin‑dependent protein kinase II (CaMKII) was activated by phosphorylation, prompting an increase 
in phosphorylation of signal transducer and activator of transcription 3 (Stat3) and induced nuclear translocation. 
Pretreatment with KN-93 (a CaMKII inhibitor) blocked GF-induced Stat3 activation and significantly suppressed 
myocardial fibrosis.

Conclusions  Glucose fluctuations exacerbate myocardial fibrosis by triggering the CaMKII/Stat3 pathway in type 2 
diabetes.
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Introduction
Diabetes is a common chronic disease manifesting as 
chronic persistent hyperglycemia and glucose fluctua‑
tions  (GF). Glucose fluctuations, also known as glucose 
variability, are developing as an emerging indicator of 
glycemic control [1,  2]. Previous studies have shown 
that a higher GF is independently associated with heart 
failure [3], arrhythmias [4], and cardiovascular events 
[5]. In type 1 diabetes, GF can lead to myocardial fibro‑
sis [6]; however, there is currently limited understand‑
ing of whether GF can lead to myocardial fibrosis in type 
2 diabetes and the mechanisms involved have not been 
clarified.

Ca2+/calmodulin‑dependent protein kinase II (CaM‑
KII), a multifunctional serine/threonine-protein kinase, 
has been identified as a critical factor in various cardiac 
diseases [7–9]. Many studies have shown that diabetes 
can increase CaMKII activity in the myocardium [10], 
resulting in ROS induction [11], necroptosis [12] and 
ion channel anomalies and so on. Furthermore, Das et al. 
[13] demonstrated that CaMKII inhibition can prevent 
chemotherapy-induced cardiac fibrosis. However, the 
potential effects of CaMKII in myocardial fibrosis result‑
ing from GF are still unknown.

Signal transducer and activator of transcription 3 
(Stat3), one of the STAT members, has increasingly 
gained focused attention due to its significant roles in 
metabolic diseases [14], cardiac hypertrophy [15, 16], 
heart failure [17] and arteriosclerosis [18]. Previous stud‑
ies have verified that inhibition of p-Stat3 attenuated car‑
diomyopathy caused by type 1 diabetes [19]. Additionally, 
Unudurthi et al. have found that CaMKII and Stat3 can 
interact with each other [20]. However, the role of Stat3 
activation in myocardial fibrosis induced by GF and 
upstream events leading to Stat3 activation still needs to 
be elucidated. Hence, the present study was carried out 
to unravel the effect of glucose fluctuations on myocar‑
dial fibrosis in type 2 diabetes and explore the underlying 
mechanisms.

Methods
Experimental animals
Male 6–8 weeks Sprague–Dawley (SD) rats were pur‑
chased from Changzhou Cavins Biotechnology Com‑
pany. The rats were housed in a standard environment 
with 23 ± 1◦C, 55–65% humidity and under a 12-h 
light/12-h dark cycle. All rats were fed with the normal 
diets and water freely. After one week of adaptive feed‑
ing, the rats were randomly divided into two groups, 
the control (Con) group (n = 15) and the type 2 diabetic 
(T2DM) group. The Con group rats were fed with nor‑
mal chow. The T2DM model was established by a low 
dose (35 mg/kg) of streptozotocin (STZ, Sigma-Aldrich, 
S0130) intraperitoneally after four weeks on a high-fat 

and high-sugar diet (D12492, Suzhou SPF Biotechnol‑
ogy Co., Ltd, China), according to the method used in 
previous studies [21]. Blood was extracted from the tail 
vein after three days and blood glucose > 16.7 mmol/L 
was considered successful in modeling. Then, T2DM rats 
were divided into the diabetic (DM) group (n = 15) and 
the GF group (n = 15). The rats in the DM group contin‑
ued to be fed with the high-fat diet. The GF model was 
established based on the previous literature [22]. In brief, 
the rats in the GF group were injected with insulin sub‑
cutaneously at 8:00, 12:00 and 16:00 daily, and 3  g/kg 
glucose was injected intraperitoneally at 10:00, 14:00 and 
18:00 daily for eight weeks. Blood glucose was measured 
in the tail vein 30 min after each insulin or glucose injec‑
tion. All animal experiments complied with the Guide 
for the Care and Use of Laboratory Animals (the revised 
Animals (Scientific Procedures) Act 1986) and were 
approved by the Ethics Committee of the Affiliated Wuxi 
People’s Hospital of Nanjing Medical University.

Echocardiography evaluation
After eight weeks, heart function was evaluated using 
echocardiography (Philip, ie33). After being anesthe‑
tized with isoflurane (2%), the hair on the chest of the 
rats in the three groups (n = 6 per group) was shaved 
and acoustic coupling gel was then applied. M mode of 
echocardiography was performed to record the follow‑
ing parameters: left ventricular percent ejection fraction 
(EF), left ventricular fractional shortening (FS), left ven‑
tricular internal diameter at end-diastole (LVIDd), and 
left ventricular internal diameter at end-systole (LVIDs).

Histopathological analysis
After the rats were sacrificed, the left ventricular tissue 
samples were fixed for 24  h in 4% paraformaldehyde, 
then paraffin-embedded and sliced into 4-µm sections 
for hematoxylin-eosin (HE, Beyotime, C0105) and Mas‑
son staining (Nanjing Jiancheng Bioengineering Institute, 
D026). Afterward, the sections were observed under a 
light microscope (DP73, OLYMPUS).

Primary culture of neonatal rat cardiac fibroblasts
Neonatal rat cardiac fibroblasts (NRCFs) were extracted 
using the previous method [6]. Neonatal rats born 1–3 
days old were selected, and the hearts were quickly 
removed and digested several times at 37  °C using 
0.125% trypsin (Gibco, 25200072) and 0.1% collagenase 
(Worthington, LS004176). The cell suspension was then 
seeded in DMEM mediums containing 10% fetal bovine 
serum (FBS, Gibco, 12664025). After 1  h, remove the 
unadhered cells and add new mediums. The cells were 
incubated in a 37 °C incubator with 5% CO2.
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Glucose fluctuations cell model and treatments
NRCFs were divided into three groups as previously 
reported: the normal glucose (Ctrl) group, the high glu‑
cose (HG) group and the glucose fluctuations (GF) group. 
Cells in the Ctrl group were cultured using DMEM con‑
taining 5.5 mmol/L glucose, cells in the HG group were 
cultured in DMEM containing 33 mmol/L glucose, and 
cells in the GF group were cultured in DMEM contain‑
ing 5.5 mmol/L and 33 mmol/L glucose alternately every 
12 h for 72 h. In addition, to confirm the effect of CaM‑
KII on myocardial fibrosis, the NRCFs were also treated 
with KN-93 (a CaMKII inhibitor, 0.5 µmol/L, Medchem‑
express, HY-15465) [23].

Western blot analysis
Rat ventricular myocardial tissue or fibroblasts were 
lysed in lysis buffer containing a cocktail of protein‑
ase/phosphatase inhibitors and then centrifuged at 
12000  rpm for 15  min at 4  °C. The proteins were then 
transferred to PVDF membranes using SDS-PAGE. The 
PVDF membrane was then incubated with primary anti‑
bodies of p-CaMKII (Abcam, ab32678), CaMKII (Santa 
Cruz, sc100362), p-Stat3 (Cell Signaling Technology, 
9145S), Stat3(Cell Signaling Technology, 12640S), Col‑
lagen I (Proteintech, 14695-1-AP), Collagen III (Protein‑
tech, 22734-1-AP), TGF-β1 (Abcam, ab179695), β-actin 
(Abcam, ab6276), β-tubulin(Abcam, ab21058) at 4  °C 
overnight followed by corresponding secondary antibody 
incubation. Blot bands were quantified using the Image J 
software.

Immunofluorescence analysis
Neonatal rat cardiac fibroblasts were washed with phos‑
phate buffered saline  (PBS) and fixed using 4% parafor‑
maldehyde for 15 min. Then, the cells were permeabilized 
with 0.5% Triton X-100 (Sigma-Aldrich, T9284) and 
blocked with goat serum (Solarbio, SL038) in PBS for 
30  min at 37  °C. After that, NRCFs were incubated at 
4  °C overnight with the primary rabbit antibody against 
p-Stat3, and a fluorescence secondary antibody was 
added for incubation of 1 h at 37 °C. Afterward, the cells 
were washed with PBS and counterstained the nucleus 
with DAPI (Beyotime, C1005) for 10  min and analyzed 
under a fluorescence microscope.

Statistical analysis
Data were shown as mean ± standard error of mean 
(SEM). Shapiro-Wilk normality test was used to test the 
data distribution. Non-normally distributed data were 
analyzed by nonparametric tests. Normally distributed 
data were analyzed by One-way ANOVA with post hoc 
LSD. P < 0.05 was considered statistically significant. All 
statistics were determined using SPSS 25.0 software.

Results
Glucose fluctuations exacerbated the impairment of 
cardiac dysfunction
The blood glucose of rats in the three groups 30 min after 
glucose, insulin injection or normal saline solution was 
shown in Fig. 1A. Rats in the GF and DM groups had sig‑
nificantly lower body weight than those in the Con group 
(Fig.  1B). In addition, this study also showed that GF 
exacerbated cardiac dysfunction by suppressing the EF 
and increasing the LVIDd and LVIDs (Figures C-G).

Glucose fluctuations aggravated myocardial fibrosis
The HE staining of the three groups showed that the 
arrangement of myocardial fibers was disordered and 
there were myocardial fiber breaks in the GF compared to 
the Con and DM groups. Moreover, the Masson staining 
showed a significant increase in fibrosis in the ventricular 
tissue of the GF group rats (Fig. 2A and D). Additionally, 
GF can significantly increase the protein expression of 
Collagen I, Collagen III and TGF-β1 in vitro and in vivo 
(Fig. 2B-C and E-J). Those results indicated that GF can 
lead to myocardial fibrosis.

Glucose fluctuations promoted the activation of CaMKII 
and Stat3
To determine whether CaMKII and Stat3 were acti‑
vated in GF-induced myocardial fibrosis, the relative 
expressions of total and phosphorylated/activated forms 
of CaMKII and Stat3 were tested. The results showed 
upregulation of CaMKII phosphorylation and Stat3 phos‑
phorylation protein expression in the GF rats (Fig.  3A-
C) and the cells with fluctuated glucose concentrations 
(Fig. 3D-F). Immunofluorescent staining showed that GF 
increased p-Stat3 nuclear accumulation compared to the 
Con and DM groups (Fig. 4D).

Inhibition of CaMKII reduced myocardial fibrosis
To investigate the role of CaMKII in GF-induced myocar‑
dial fibrosis, we used a CaMKII-specific inhibitor, KN-93. 
As shown in Fig.  5, KN-93 can significantly reduce the 
expression of Collagen I and Collagen III in HG and GF 
groups compared with the Con group (Fig. 5A-C). More‑
over, the inhibition of CaMKII reversed the upregula‑
tion of TGF-β1 in GF groups (Fig. 5A and D). The above 
results suggested that inhibition of CaMKII can attenuate 
myocardial fibrosis caused by GF.

Activation of CaMKII promoted GF-induced myocardial 
fibrosis via activating Stat3
To determine whether Stat3 was the downstream target 
of CaMKII, we examined the expression of phosphory‑
lated Stat3 in the three groups. The results revealed that 
inhibition of CaMKII decreased the phosphorylation of 
Stat3 (Fig.  4A-C). In addition, an immunofluorescence 
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assay was used to evaluate the nuclear translocation of 
p-Stat3. After the application of KN-93, highly expressed 
phosphorylated Stat3 in the nucleus of NRCFs in the GF 
group can be reversed (Fig. 4D).

Discussion
Glycemic management in diabetic patients is now 
focused not only on effective glucose reduction, but 
also on how to avoid glucose fluctuations [1]. Our pre‑
vious studies have shown that glucose fluctuations con‑
tribute to the development of many cardiovascular 
diseases [5, 24]. More importantly, GF in type 1 diabe‑
tes can lead to increased myocardial fibrosis [6], but the 

pathophysiological mechanisms contributing to GF-
induced myocardial fibrosis remain elusive, especially in 
type 2 diabetes. Here, we demonstrated that GF in type 2 
diabetes can increase myocardial fibrosis. CaMKII activa‑
tion played an essential role in this process by activating 
Stat3, which led to increased myocardial fibrosis (Fig. 6).

As widely reported, CaMKII is a multifunctional ser‑
ine, threonine protein kinase with four isoforms, α, β, 
γ and δ. The δ isoform is predominantly expressed in 
the myocardium and is involved in the development of 
various cardiovascular diseases, especially in electrical 
remodeling [9, 10, 25, 26]. However, studies on the role 
of CaMKII in the development of diabetic myocardial 

Fig. 1  Glucose fluctuations accelerated cardiac dysfunction. (A) Daily blood glucose levels in three groups of rats (n = 15). (B) Body weight levels in the 
three groups (n = 15). (C) Representative echocardiographic images of rats. (D-G) Measurements of ejection fraction (EF), fractional shortening (FS), left 
ventricular internal diameter at end-diastole (LVIDd) and left ventricular internal diameter at end-systole (LVIDs) (n = 6)
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fibrosis are limited, especially in diabetic glucose fluctua‑
tions. This study showed that GF in type 2 diabetes acti‑
vated CaMKII, leading to the development of myocardial 
fibrosis. In contrast, the use of the CaMKII inhibitor 
KN-93 attenuated myocardial fibrosis. These data dem‑
onstrated the vital role of CaMKII in myocardial fibrosis 
due to GF in type 2 diabetes. Similarly, a previous report 
has shown that inhibition of CaMKII can attenuate myo‑
cardial fibrosis caused by chemotherapy [13]. In addition, 
upregulation of BACH1 mediated activation of CaMKII 
was proven to accelerate cardiac hypertrophy and fibrosis 
[27]. In the current study, it was observed that hesperidin, 

a specific small-molecule inhibitor of CaMKII-δ, directly 
bound to CaMKII-δ and specifically blocked its activa‑
tion in an ATP-competitive manner, may provide a strat‑
egy for the joint therapy of cardiovascular disease [28].

Stat3 can be activated through multiple mechanisms 
and translocated to the nucleus, where it acts as a tran‑
scription factor and cofactor [20]. Recent studies have 
revealed that high glucose can activate Stat3 in fibro‑
blasts, and promote their proliferation and migration 
[29]. Similarly, high-concentration glucose can induce 
EGFR-mediated Stat3 phosphorylation, and blocking 
of Stat3 can repress procollagen gene expressions [19]. 

Fig. 2  Glucose fluctuations promoted myocardial fibrosis. (A, D) HE and Masson staining of ventricular muscle tissue from three groups of rats (n = 3). (B, 
C, E, F) The protein expressions of Collagen I (n = 5), Collagen III (n = 5) and TGF-β1 (n = 6) in rat hearts of the three groups. (G-J) The protein expressions of 
Collagen I (n = 6), Collagen III (n = 5) and TGF-β1 (n = 4) in NRCFs of the three groups
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Some studies on the mechanism by which Stat3 exac‑
erbates myocardial fibrosis showed that Stat3 is bound 
with COL1A1 and COL3A1 promoter and activates 
their transcription [30]. In this study, we demonstrated 
GF can contribute to increased phosphorylation of Stat3 
into the nucleus. Moreover, the ability of the CaMKII 
inhibitor KN-93 can counteract the fibrotic remodel‑
ing induced by GF in type 2 diabetes, underscoring the 
functional importance of the CaMKII/Stat3 interaction 
in myocardial fibrosis. Of note, the relationship of CaM‑
KII and Stat3 differs in different diseases. A study showed 
that KN-93 could down-regulated Stat3 aggravated 
myocardial microvessel remodelling [31]. Furthermore, 
cardiomyocyte-specific Stat3 deficiency was also shown 
to impair cardiac contractility in hypertensive mice [32]. 
Therefore, the CaMKII/Stat3 pathway may serve distinct 
roles in different diseases.

In our study, we found that glucose fluctuations in type 
2 diabetes exacerbated myocardial fibrosis via the CaM‑
KII/Stat3 pathway. However, there were also some limita‑
tions in our study. First, we only investigated the role of 
CaMKII/Stat3 in regulating myocardial fibrosis with the 
inhibitors at the cellular level instead of the animal level. 

Second, we only used the inhibitor KN-93 to explore the 
underlying mechanisms, and did not use other inhibitors 
of CaMKII or knockout animals.

Conclusion
In summary, our present study reveals that CaMKII plays 
a pivotal role in myocardial fibrosis in type 2 diabetes 
with GF. Targeting the CaMKII-Stat3 pathway may pro‑
tect the heart from myocardial fibrosis induced by GF in 
type 2 diabetes.

Fig. 3  Glucose fluctuations upregulated the expression of phosphorylated CaMKII and Stat3. (A-C) The protein expressions of phosphorylated CaMKII 
(n = 5) and Stat3 (n = 6) in rat hearts of the three groups. (D-F) The protein expressions of phosphorylated CaMKII (n = 3) and Stat3 (n = 6) in NRCFs of the 
three groups
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Fig. 4  Inhibition of CaMKII attenuated p-Stat3 elevation due to glucose fluctuations. (A) Representative bands of Western blotting of p-Stat3 in NRCFs 
after using KN-93. (B-C) Relative levels of p-Stat3 in three groups after using KN-93 (n = 4). (D) Immunofluorescence staining of nuclear translocation of 
p-Stat3 in three groups
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Fig. 5  Role of CaMKII in glucose fluctuation-induced myocardial fibrosis. (A) Representative bands of Western blotting of Collagen I, Collagen III and TGF-
β1 in NRCFs after using KN-93. (B-D) Relative levels of Collagen I, Collagen III and TGF-β1 in three groups after using KN-93 (n = 4)
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