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Abstract 

Background  Observational research reported the underlying correlation of metabolic syndrome (MetS) and its com-
ponents with rotator cuff tendinopathy (RCT), but their causality remained unclear. This study aimed to investigate 
whether genetically predicted MetS was related to the risk of RCT.

Methods  Both univariable and multivariable Mendelian randomization (MR) analysis was applied using summary-
level data from the most comprehensive genome-wide association studies to estimate the associations of MetS 
and its component with RCT, with the inverse variance weighted (IVW) as the primary method, and the method 
of Causal Analysis Using Summary Effect Estimates (CAUSE) as a supplement for false positives detection. The media-
tion analysis was furtherly used for the assessment of direct and indirect effects.

Results  Univariable analysis revealed that genetically predicted MetS (OR: 1.0793; 95% CI 1.0311 to 1.1297), body 
mass index (BMI) (OR 1.2239; 95% CI 1.1357 to 1.3189), and waist circumference (WAC) (OR 1.3177; 95% CI 1.2015 
to 1.4451) had a significant positive association with the risk of RCT. Triglycerides and systolic blood pressure were 
suggestively associated with RCT risk. These associations were also identified by CAUSE. There was independent cau-
sality of BMI (OR: 1.1806; 95% CI 1.0788 to 1.2920) and WAC (OR 1.3716; 95% CI 1.2076 to 1.5580) on RCT after adjust-
ment for confounders. No mediator was found in the causal associations.

Conclusion  Our study revealed the genetic causality of MetS and its components, especially BMI and WAC, with RCT 
risk. Early prevention and diagnosis of excess central adiposity contributing to MetS are significant in the RCT risk 
management.
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Introduction
Shoulder pain ranks third among primary care musculo-
skeletal consultations and has a self-reported prevalence 
ranging from 16% to 26%[1–3]. Rotator cuff syndrome 
(RCS), also called rotator cuff tendinopathy (RCT) pro-
duces major clinical signs of pain and weakness dur-
ing external rotation and elevation and is considered to 
account for over 70% of conditions of shoulder pain[2]. 
The condition involves subacromial structures, such as 
rotator cuff tendinitis/tendinosis, subacromial bursi-
tis, and shoulder impingement syndrome[4–6]. RCT is 
commonly refractory to treatment, leading to restriction 
of daily activities and considerable socio-economic bur-
den[7]. Extrinsic and inherent mechanisms associated 
with RCT are multifactorial and understanding of the 
condition is limited as a result.

Metabolic syndrome (MetS), is known as a complex 
group of metabolic disorders including central obesity, 
elevated blood pressure, hyperglycemia, and hyperlipi-
demia. The condition affects billions of the worldwide 
population and shows a rising global prevalence[8, 9], 
contributing to a serious health burden and mortal-
ity[10–12]. Epidemiological studies have indicated a 
potential relationship between MetS and RCT. Pooled 
meta-analyses have shown that diabetes [13] and dyslipi-
demia [14] are associated with a respective 1.24 and 1.17-
fold increased risk of RCT. Hyperglycemia, hypertension, 
and excess body weight have also been found to be linked 
with symptomatic rotator cuff tears[15]. It has also been 
shown that hypertension [16] and excessive waist cir-
cumference [17] were associated with increased RCT 
risks in different observational studies. However, associa-
tions of MetS or its components with RCT identified by 
traditional observational studies are likely to be affected 
by confounders, limited sample capacity, short follow-up 
time, and reverse causation[18]. Thus, any causal effects 
of MetS in determining RCT risk remain unclear.

This study has applied Mendelian randomization (MR) 
analysis, an approach of causal inferences with relative 
robustness, to investigate associations of MetS with RCT 
to overcome the limitations in traditional study designs. 
Genetic variants closely related to exposure were used 
as instrumental variables (IVs) to eliminate the effects of 
confounders or reverse causality[18–20]. Genome-wide 
association studies (GWAS) have provided IVs associ-
ated with the target phenotype. The IVs associated with 
10 predominant ingredients for MetS were identified, 
including body mass index (BMI), waist circumference 
(WAC), serum triglycerides (TC), high-density lipo-
protein (HDL) cholesterol, fasting serum insulin (INS), 
fasting serum glucose (GLU), type 1 and type 2 diabetes 
(T1D and T2D), diastolic blood pressure (DBP), and sys-
tolic blood pressure (SBP). Additional mediators, such as 

alcohol and cigarette consumption, were also taken into 
consideration. A two-sample MR method, including both 
univariable MR (UVMR) and multivariable MR (MVMR), 
was used to explore genetic causal associations of MetS 
or its component conditions with RCT.

Methods
Data sources and instrumental variables selection
This study was guided by the Strengthening the Report-
ing of Observational Studies in Epidemiology using Men-
delian Randomization (STROBE-MR) Statement.The 
following principal assumptions were made (Additional 
file  1: Figure S1): genetic variables should be strongly 
related to the exposure and variables could only have 
effects on the outcome through exposure with effects 
being independent of any confounding factors. Publicly 
available summary-level data was used and no addi-
tional ethical approval was needed. RCT summary data 
was obtained from the FinnGen Biobank Analysis Con-
sortium database (Release 8, https://​finng​en.​gitbo​ok.​
io/​docum​entat​ion/) with diagnosis according to ICD-
10 (International Classification of Diseases) criteria. A 
total of 274320 participants, including 21998 cases and 
253122 controls, of European ancestry, were analyzed. 
The MetS dataset was obtained from a large GWAS study 
[21] using the UK biobank cohort, including 291107 par-
ticipants aged 40–69 years of European ancestry. BMI 
(mg/kg2) data was obtained from a large GWAS meta-
analysis which included 681275 individuals of European 
ancestry[22], WAC (462,166 individuals), HDL (403,943 
individuals), and TC (441,016 individuals) were obtained 
from the UK biobank database[23]. Recent GWAS data-
sets for T1D (n=24840)[24] and T2D ( n= 655666)[25] 
patients of European ancestry were also used. GLU and 
INS were obtained from two European GWAS cohorts 
with 200622 and 151013 participants, respectively[26]. 
SBP and DBP were obtained from a European cohort 
of the International Consortium of Blood Pressure with 
757601 individuals. MVMR and a two-step mediation 
MR model were constructed for the component condi-
tions of MetS to adjust the mediation effect for poten-
tial confounders. Five mediators were adjusted for BMI, 
WAC, HDL, and TC, including alcohol intake, ciga-
rette consumption, age at recruitment, genetic sex, and 
level of physical activity (moderate or vigorous). BMI 
was additionally adjusted as a mediator for the other 
six components of MetS. All mediators were obtained 
from different databases than the one used for the out-
come to avoid the influence of sample overlap. A strict 
genome-wide significant threshold of p < 5 × 10-8 was 
set to filter out all strongly related SNPs and a process of 
the clump with a window of kb = 10000 and r2 = 0.001 
was performed to avoid linkage disequilibrium (LD). The 

https://finngen.gitbook.io/documentation/
https://finngen.gitbook.io/documentation/
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phenome-wide association studies database (pheWAS) 
was also matched to prevent the potential linkage 
between SNPs and confounders with the threshold of 
p-value < 5 × 10-6. All the estimates are given per one SD 
unit increase and the effect size is presented as the odds 
ratio (OR) with a 95% confidence interval (CI).

Statistical approach
UVMR was performed using R packages MRPRESSO 
(version 1.0) and Two-Sample MR (version 0.5.6). Six dif-
ferent statistical methods were combined to evaluate the 
causal effects of MetS on RCT and a Bonferroni correc-
tion was applied to the UVMR to avoid multiple compar-
ison errors. A post-correction p threshold < 0.0083 was 
considered statistically significant and 0.0083 < p < 0.05 
was considered suggestively significant.

The inverse-variance weighted method (IVW) pro-
duces a relatively accurate assessment by combining 
all the Wald values of causality for each IV, with the 
assumption of invalid genetic instruments [27, 28]. The 
MR-Egger and MR pleiotropy residual sum and outlier 
(MR-PRESSO) methods were used to test the violation 
caused by directional pleiotropy. The intercept of the 
MR-Egger regression quantified pleiotropy across IVs, 
and the MR-Egger method could estimate a relatively 
robust value independent of IV validity, and obtain an 
adjusted result via the regression slope and intercept [29, 
30]. MR-PRESSO was used for the detection of distorted 
effects related to horizontal pleiotropy and provided a 
corrected causal effect. The weighted model allowed the 
generation of a valid MR result even when the majority 
of IVs were invalid [31]. The weighted-median estima-
tor method could give a consistent valid inference under 
the condition of over 50% of valid IVs [32]. MR-Robust 
Adjusted Profile Score (MRAPS) was applied to obtain 
an accurate estimate for the causality when there was 
ideally independent of IVs [33]. However, other methods 
produced wider confidence intervals (CI) than the IVW 
method and were only considered complements [34]. 
Thus, the MR-Egger Regression Model would be applied 
when significant pleiotropy was detected, and the MR-
PRESSO model was applied to detect final outliers. Oth-
erwise, the results by the IVW result method were given 
priority.

MVMR and two-step mediation MR were performed 
using the R packages, Two-Sample MR (version 0.5.6), 
MVMR (version 0.3.0), and MendelianRandomization 
(version 0.5.1). Random-effect IVW and MR-Egger mod-
els were constructed in MVMR and selected IVs were 
further analyzed by the two multi-variable models with 
an independent significance level of p < 0.05. MR-Egger 
results were prioritized under the condition of significant 
pleiotropy (p-value < 0.05). A two-step mediation MR 

analysis based on the difference method [35] was con-
ducted to measure the mediation effects and mechanisms 
for each mediator. The total effect was estimated by the 
IVW method without correction of heterogeneity or plei-
otropy and the direct effect was estimated using the mul-
tivariable IVW method. The indirect effect of MetS on 
RCT via the mediator was generated from the differences 
between total and direct estimates and the proportion 
mediated was calculated if the indirect effect was signifi-
cant [36]. A value of p < 0.05 was considered statistically 
significant in the MVMR and mediation MR analysis.

Sensitivity analysis
F-statistics were used to test the first assumption, calcu-
lated according to the formula: F =

(

n−k−1

k

)(

R2

1−R2

)

  
(n: sample size; k: number of instrumental variables; R2: 
variance of exposure explained by selected instrumental 
variables generated by the MR Steiger directionality test). 
The conditional F-statistic was generated using the R 
package, MVMR, and was used to measure the instru-
ment strength in MVMR to test whether the SNP 
strongly predicts each exposure conditional on the other 
exposures. Both an F or conditional F < 10 suggested sig-
nificant weak instrument bias. Cochran’s Q-statistic was 
used to assess the heterogeneity caused by invalid IVs 
and a p-value < 0.05 was considered to indicate significant 
heterogeneity [38] in which case, a random-effect IVW 
model was adopted. The Causal Analysis Using the Sum-
mary Effect Estimates (CAUSE) method which utilizes 
the full genome-wide summary results rather than 
genome-wide significant loci only was used to correct the 
bias due to correlated and uncorrelated horizontal pleiot-
ropy. Sample overlap was corrected by combining the 
largest sample sizes available for both exposure and out-
come and improving the statistical power. Those associa-
tions inconsistent with the results of CAUSE were likely 
to have a false-positive error [39]. An arbitrary value of 
p < 1 × 10−3 for SNPs was set for the CAUSE analysis. If 
the pareto-k-diagnostic test reported a high-risk k value, 
a more strict p threshold would be adopted. A value of 
p < 0.05 was considered statistically significant for CAUSE 
analysis. The proportion of phenotypic variance 
explained by all SNPs (R2xy) was calculated by MR 
Steiger methods and was used to measure heritability. A 
binary-outcome-model from the mRnd tools was used to 
evaluate the statistical power of the current study 
(https://​shiny.​cnsge​nomics.​com/​mRnd/). A power lower 
than 80% would be considered insufficient and the mini-
mum sample size required at 80% power calculated. 
Leave-one-out analysis was performed to detect an 
unstable SNP which showed a disproportionately large 
individual influence on IVW regression coefficients. The 

https://shiny.cnsgenomics.com/mRnd/
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identification of such an SNP indicates that conclusions 
should be drawn with caution[31].

Results
Genetic instruments
A total of 77 SNPs were identified as IVs for MetS, 475 
were for BMI, 344 were for WAC, 308 were for HDL, 
267 were for TC, 38 were for T1D, 113 were for T2D, 60 
were for GLU, 37 were for INS, 426 were for SBP and 430 
were for DBP (Additional file 2:Table S1-S11). The sensi-
tivity analysis is shown in Table 1. MetS (11.96%), HDL 
(11.76%), TC (9.63%), T1D (17.93%), and T2D (13.95%) 
showed relatively high heritability but BMI (4.91%), WAC 
(4.49%), GLU (4.40%), INS (1.75%), SBP (4.63%) and DBP 
(4.80%) showed relatively low heritability. F-statistics 
indicated high instrumental strength for all exposures, 
ranging from 63.04 to 940.31. HDL (6%), T1D (7%), T2D 
(51%), GLU (43%), SBP (5%), and DBP (5%) all generated 
insufficient statistical power, perhaps due to insufficient 
sample size and low heritability.

UVMR analysis
All traits showed significant heterogeneity except for 
INS (Q = 50.313; p = 0.057) while only T2D (inter-
cept = 0.0072; p = 0.0185) and HDL (intercept =   0.003; 
p = 0.033) showed pleiotropy. No distorted effect outliers 
were detected by MR-PRESSO analysis.

MetS (OR: 1.0793; 95% CI 1.0311 to 1.1297; p = 1.57E-
03), BMI (OR:1.2239; 95% CI 1.1357 to 1.3189; p = 1.82E-
07) and WAC (OR: 1.3177; 95% CI 1.2015 to 1.4451; 
p = 1.05E-08) were all causally related to RCT while TC 
(OR 1.3177; 95% CI 1.2015 to 1.4451; p = 1.94E-02) and 
SBP (OR 1.0045; 95% CI 1.0003 to 1.0089; p = 3.59E-02) 
had a suggestively significant association with RCT. T2D 
also showed a significant positive effect on RCT (IVW 
OR: 1.10534; 95% CI 1.0172 to 1.0909; p = 3.57E-03). 
However, after the MR-Egger correction, no significant 
association between T2D and RCT remained (MR-Egger 
OR: 0.9620; 95% CI 0.8864 to 1.0441; p = 3.56E-01) 
(Fig. 1). 

The CAUSE models gave similar results (Additional 
file 1:Figure S4). A genetically determined causal associa-
tion was found for MetS-RCT (CAUSE OR 1.0408; 95% 
CI 1.0202 to 1.0725; p = 0.023), BMI-RCT (CAUSE OR 
1.1503; 95% CI 1.0618 to 1.2461; p = 0.024) and WAC-
RCT (CAUSE OR 1.2214; 95% CI 1.1504 to 1.2840; 
p = 0.001) and a suggestively significant association 
for TC (CAUSE OR: 1.0101; 95% CI 0.7558 to 1.3100; 
p = 0.859) and SBP (CAUSE OR: 1.0202; 95% CI 0.9900 to 
1.0513; p = 0.520) were caused by horizontal pleiotropy.

The Wald ratio estimates for individual SNPs are 
described in Additional file 2: Table S12-S22. Leave-one-
out plots are shown in Additional file  1: Figure S3 and 

indicated that no individual genetic variants appeared 
to significantly affect the results under the Bonferroni 
corrected threshold. Scatter plots are presented in Addi-
tional file 1: Figure S2.

MVMR and mediation effect analysis
MVMR models were built for MetS components to avoid 
the influence of other confounders (Fig. 2 and Additional 
file  2: Table  S23). Weak instrumental strength was only 
found for T1D (conditional F = 2.5323) and INS (condi-
tional F = 3.5613). Heterogeneity remained significant 
across all components.

Five mediators were controlled for BMI, WAC, HDL, 
and TC. Significant pleiotropy was only found in the 
MVMR models of HDL (intercept =   0.003, p = 0.045) 
and TC (intercept = 0.003, p = 0.024). There was strong 
evidence for a causal effect of BMI (OR: 1.1806; 95% CI 
1.0788 to 1.2920; p = 0.000) and WAC (OR: 1.3716; 95% 
CI 1.2076 to 1.5580; p = 0.000) on the increased risk 
of RCT. T2D, GLU, INS, SBP, and DBP gave no signifi-
cant pleiotropy in the MVMR models of T1D. No direct 
causal association was identified after controlling for six 
mediators.

Details of mediation MR analysis are shown in Fig. 3. 
The directions of the total effect were mainly consistent 
with the UVMR results. BMI (total OR 1.2237; 95% CI 
1.1298 to 1.3255; p = 7.20E-07), WAC (total OR 1.3208; 
95% CI 1.1943 to 1.4606; p = 6.00E-08), HDL (total OR: 
0.9259; 95% CI 0.8661 to 0.9898; p = 2.38E-02), TC (total 
OR: 1.090; 95% CI 1.0250 to 1.1583; p = 5.93E-03), T1D 
(total OR: 1.0184; 95% CI 1.0050 to 1.0319; p = 6.96E-
03) and T2D (total OR: 1.0536; 95% CI 1.0157 to 1.0930; 
p = 5.24E-03) all had a significant effect on RCT occur-
rence. The direct effects of these components also 
remained significant while no significant indirect effect 
was identified. No mediator was thus found to influence 
the causal associations identified from UVMR.

Discussion
UVMR during the current MR study revealed that 
genetically predicted MetS, BMI, and WAC had a sig-
nificant positive association with the risk of RCT. TC 
and SBP were suggestively associated with RCT risk. 
The associations of MetS-RCT, BMI-RCT, and WAC-
RCT were identified by CAUSE models. There was 
strong evidence for independent causal associations 
between both BMI and WAC and RCT after adjustment 
for confounders. No mediator was found in the causal 
associations identified from UVMR. Our study unveils 
a genetic predisposition to RCT in patients with MetS, 
and we hope that the insights gained will contribute 
to the enhancement of early diagnosis and monitor-
ing of RCT risk in MetS populations. Given the rising 
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Fig. 1  Forest plot of the univariable Mendelian randomization analyses exploring associations between childhood sunburn to skin carcinoma risk 
using different Mendelian randomization statistical models. OR: odds ratio; CIs: confidence intervals
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adoption of sedentary lifestyles and physical inactivity, 
coupled with the increasing prevalence of metabolic 
syndrome with age, recognizing the heightened genetic 
risk of RCTs in patients with metabolic syndrome is 
crucial. This awareness is essential for ensuring appro-
priate early prevention and management of shoulder 
pain, especially among overweight MetS patients or 
those with excess WAC, in real-life medical practice. 

Additionally, these findings could suggest a subcategory 
of metabolic shoulder pain, thereby introducing new 
concepts for management and prognosis.

Epidemiological data have consistently suggested an 
association of RCT with cardiometabolic risk factors, 
such as obesity, BMI, and body fat [17, 31, 40–42]. Sev-
eral meta-analyses have also indicated that blood glu-
cose and body mass are potential risk factors for MetS, 

Fig. 2  Forest plot of the multivariable Mendelian randomization analyses exploring genetically determined metabolic syndrome and its ingredients 
with rotator cuff syndrome risk-adjusted for confounding traits (alcohol intake, cigarettes consumption, age at recruitment, genetic sex, moderate 
to vigorous physical activity levels, and body mass index). OR: odds ratio; CIs: confidence intervals
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largely consistent with the current results[15]. However, 
previous observational design data for the impact of 
MetS on RCT risk have been inconclusive. Some MetS 
components, such as diabetes, hypertension, and dys-
lipidemia, have been proposed a significant positive asso-
ciation with RCT risk, [43, 44] but the possibility of bias 
existed for the three morbidities evaluated due to a lack 
of high-quality studies [45]. Obesity, hypertension, DM, 
and dyslipidemia are interrelated MetS components, 
making it hard to distinguish the contributions of the 
individual component versus the combination. The cur-
rent MR analysis presents evidence supporting a deter-
minate causal effect of some components of MetS, such 
as BMI and WAC on RCT. Suggestively significant asso-
ciations found for TC and SBP may be false positives with 
observed associations being due to horizontal pleiotropy 
or confounders.

The underlying pathogenesis and mechanisms of RCT 
cannot be fully illustrated based on the available studies. 
Low-grade inflammatory biomarkers have been reported 
to be associated with RCT progression, although causal-
ity is unclear. MR analyses indicated that the genetically 
predicted risk of RCT is associated with high WAC (an 
indicator of central obesity) and BMI. Excess central adi-
posity has been considered a key component of MetS and 
adipose tissue may produce circulating proinflammatory 
cytokines (adipokines), such as tumor necrosis factor 
(TNF)-α, interleukin (IL)-1/6/1β, leptin and adiponec-
tin. Elevated levels of cytokines IL-1 and IL-6 have been 
shown in the structure of subacromial bursa and par-
tial thickness rotator cuff tear tissue [46–48]. Increased 
serum TNF-α has also been reported in the specimens of 
subacromial bursa extracted during symptomatic rotator 
cuff tendon surgery [49]. Decreased levels of the anti-
inflammatory IL-10 have been found in obesity, insu-
lin resistance, and dyslipidemia patients [50]. Increased 
proinflammatory and decreased anti-inflammatory adi-
pokine expression may be a risk factor for RCT develop-
ment [51]. However, these observations are speculative 
since no study has revealed appropriate biomarkers that 

Fig. 3  The forest plot of the mediation MR analyses. Causal estimates 
were given as odds ratio (OR) and 95% confidence intervals (CIs) 
for the effect of metabolic syndrome and its ingredients with rotator 
cuff syndrome risk. Red: total effect; Green: effect of alcohol intake; 
Purple: effect of cigarettes smoked; Blue: effect of genetic sex; 
Orange: effect of age at recruitment; Cyan: effect of physical activity 
levels; Brown: effect of body mass index

◂
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might be possible regulatory factors between MetS and 
RCT. It should be noted that adipokines do not operate 
in isolation but interact with many other factors within a 
complex system.

The current MR study has the key strength of avoiding 
reverse causality and minimizing residual confounders. 
In addition, the summary-level dataset with predominant 
comprehensiveness and extensiveness for both RCT and 
MetS was utilized in this analysis, which provides high 
power in the causality investigation, as well as accurate 
estimated effect values. However, we also acknowledge 
some limitations. Firstly, the functions of the IVs and 
the pathway of their actual effects on the risk factors are 
not fully understood. Secondly, as weak instrumental 
strength was still found in T1D and INS in the MVMR 
results, these results should be interpreted with caution. 
Third, it is acknowledged that the pleiotropy effect could 
not be eliminated and may be obscured by potential con-
founders. Although we have adjusted for several signifi-
cant common confounders in the MVMR and mediation 
MR models, considering the complex clinical and genetic 
backgrounds of both RCT and MetS, achieving complete 
avoidance of pleiotropy in MR analysis is nearly impossi-
ble. While significant covariates like occupational activity 
and concomitant tendinopathy could potentially influ-
ence the results, the absence of available high-quality 
datasets for these specific phenotypes currently hinders 
the verification of their potential pleiotropy. However, we 
believe that the bias in our results caused by pleiotropy is 
minimal, as several robust MR methods were employed. 
These methods can yield reliable inferences even if some 
genetic variants violate the IV assumptions. Last but not 
least, to mitigate biases stemming from population strati-
fication and sample overlap, we strategically selected 
datasets from the FinnGen and UKB databases, confining 
our study to participants of European ancestry for expo-
sure and outcomes, respectively. As a result, the findings 
of this study should be generalized to other populations 
with caution. Future investigations will necessitate the 
inclusion of high-quality GWAS datasets from diverse 
racial groups to determine the validity of our conclu-
sions across varied genetic backgrounds. Furthermore, 
the absence of raw individual-level data limits our abil-
ity to conduct further stratified analysis on population 
subgroups.

Conclusion
In conclusion, the current MR study revealed the genetic 
causality of MetS and its components, especially BMI and 
WAC, with the risk of RCT. The current findings indicate 
that the prevention, management, and treatment of RCTs 
need to be strengthened in a clinical setting by control-
ling the excess central adiposity that contributes to MetS.
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Additional file 1: Figure S1. Diagram for key assumptions of MR analyses.
MR study relies on three assumptions: (I) the instrumental variables (IVs) 
should be associated with the exposure (MetS). (II) the IVs should not be 
related to confounders. (III) the lVs should influence the outcome (RCT) 
risk via the exposure, not through other pathways. Line with arrows 
indicate that the genetic instruments (SNPs) are associated with the 
exposure and could only affect the outcome via the exposure. Dashed 
lines indicate that the genetic instruments (SNPs) are independent of any 
confounding variables between the results. MR: mendelian randomiza-
tion; MetS:metabolic syndrome; RCT: rotator cuff tendinopathy. Figure S2. 
Scatter plots of the univariable mendelian randomisation analyses. The 
slope of each line corresponding to the estimated MR effect in different 
models, including the conventional IVW, WM, WMM, MR-Egger, MR-RAPS 
and MR-PRESSO methods. The effect of A: MetS on RCT; B: BMI on RCT; C: 
WAC on RCT; D: HDL on RCT; E: TC on RCT; F: T1D on RCT; G: T2D on RCT; 
H: GLU on RCT; I: INS on RCT; J: SBP on RCT; K: DBP on RCT. BMI: body mass 
index; WAC: waist circumference; HDL: serum HDL cholesterol; TC: tri-
glycerides; T1D: type 1 diabetes; T2D: type 2 diabetes; GLU: fasting serum 
glucose; INS: fasting serum insulin; SBP: systolic blood pressure; DBP: 
diastolic blood pressure. Figure S3. Leave-one-out stability tests of the 
univariable mendelian randomisation analyses. Calculate the MR results of 
the remaining IVs after removing the IVs one by one. The effect of A: MetS 
on RCT; B: BMI on RCT; C: WAC on RCT; D: HDL on RCT; E: TC on RCT; F: T1D 
on RCT; G: T2D on RCT; H: GLU on RCT; I: INS on RCT; J: SBP on RCT; K: DBP 
on RCT. BMI: body mass index; WAC: waist circumference; HDL: serum HDL 
cholesterol; TC: triglycerides; T1D: type 1 diabetes; T2D: type 2 diabetes; 
GLU: fasting serum glucose; INS: fasting serum insulin; SBP: systolic blood 
pressure; DBP: diastolic blood pressure. Figure S4. The forest plot of the 
CAUSE method MR analysis. Causal estimates were given as beta and 95% 
confidence intervals (CIs).

Additional file 2. Table S1. Information of identified SNPs in exposure 
(metabolic syndrome) and outcomes(rotator cuff syndrome). Table S2. 
Information of identified SNPs in exposure (body mass index) and 
outcomes(rotator cuff syndrome). Table S3. Information of identified SNPs 
in exposure (waist circumference) and outcomes(rotator cuff syndrome). 
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Table S6. Information of identified SNPs in exposure (type 1 diabetes) 
and outcomes(rotator cuff syndrome). Table S7. Information of identified 
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of identified SNPs in exposure (fasting insulin) and outcomes(rotator 
cuff syndrome). Table S10. Information of identified SNPs in exposure 
(systolic blood pressure) and outcomes(rotator cuff syndrome). Table S11. 
Information of identified SNPs in exposure (diastolic blood pressure) and 
outcomes(rotator cuff syndrome). Table S12. Wald ratio estimate results of 
individual SNPs in exposure (metabolic syndrome) and outcomes(rotator 
cuff syndrome). Table S13. Wald ratio estimate results of individual SNPs 
in exposure (body mass index) and outcomes(rotator cuff syndrome). 
Table S14. Wald ratio estimate results of individual SNPs in exposure 
(waist circum) and outcomes(rotator cuff syndrome). Table S15. Wald 
ratio estimate results of individual SNPs in exposure (HDL cholesterol) 
and outcomes(rotator cuff syndrome). Table S16. Wald ratio estimate 
results of individual SNPs in exposure (triglycerides) and outcomes(rotator 
cuff syndrome). Table S17. Wald ratio estimate results of individual SNPs 
in exposure (type 1 diabetess) and outcomes(rotator cuff syndrome). 
Table S18. Wald ratio estimate results of individual SNPs in exposure 
(type 2 diabetes) and outcomes(rotator cuff syndrome). Table S19. Wald 
ratio estimate results of individual SNPs in exposure (fasting glucose) and 
outcomes(rotator cuff syndrome). Table S20. Wald ratio estimate results 
of individual SNPs in exposure (fasting insulin) and outcomes(rotator cuff 
syndrome). Table S21. Wald ratio estimate results of individual SNPs in 
exposure (systolic blood pressure) and outcomes(rotator cuff syndrome). 
Table S22. Wald ratio estimate results of individual SNPs in exposure (dias-
tolic blood pressure) and outcomes(rotator cuff syndrome). Table S23. 
Detailed result of the MVMR analysis.
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