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Abstract 

Objective  Diabetes mellitus is a global epidemic disease. Long-time exposure of patients to hyperglycemia can 
lead to various type of chronic tissue damage. Early diagnosis of and screening for diabetes are crucial to population 
health.

Methods  We collected the national physical examination data in Xinjiang, China, in 2020 (a total of more than 4 mil-
lion people). Three types of physical examination indices were analyzed: questionnaire, routine physical examination 
and laboratory values. Integrated learning, deep learning and logistic regression methods were used to establish a risk 
model for type-2 diabetes mellitus. In addition, to improve the convenience and flexibility of the model, a diabetes 
risk score card was established based on logistic regression to assess the risk of the population.

Results  An XGBoost-based risk prediction model outperformed the other five risk assessment algorithms. The AUC 
of the model was 0.9122. Based on the feature importance ranking map, we found that hypertension, fasting blood 
glucose, age, coronary heart disease, ethnicity, parental diabetes mellitus, triglycerides, waist circumference, total cho-
lesterol, and body mass index were the most important features of the risk prediction model for type-2 diabetes.

Conclusions  This study established a diabetes risk assessment model based on multiple ethnicities, a large sample 
and many indices, and classified the diabetes risk of the population, thus providing a new forecast tool for the screen-
ing of patients and providing information on diabetes prevention for healthy populations.
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Introduction
Diabetes mellitus (DM) is a metabolic disease character-
ized by hyperglycemia. Hyperglycemia can cause chronic 
damage to tissues over time [1]. Diabetes has become 
a major health problem worldwide with a significant 
increase in DM patients. According to the International 
Diabetes Federation (IDF), approximately 537 million 
adults worldwide had diabetes in 2021 (with a preva-
lence of 10.5%), and it is estimated that by 2045, approxi-
mately 783  million people worldwide are likely to have 
diabetes (with a prevalence of approximately 12.2%) [2, 
3]. In China, the number of adults with diabetes ranked 
first in the world in 2021 (approximately 140.9  million 
patients, with a prevalence rate of approximately 13.0%) 
[3, 4]. According to a survey, because individuals with 
type-2 diabetes mellitus (T2DM) usually lack the relevant 

†Lin Li, Yinlin Cheng and Weidong Ji have authors contributed equally.

*Correspondence:
Yining Yang
yangyn5126@163.com
Yushan Wang
wangyus8877@163.com
Yi Zhou
zhouyi@mail.sysu.edu.cn
1 Zhongshan School of Medicine, Sun Yat-sen University, No. 74, 
Zhongshan Second Road, Yuexiu District, Guangzhou 510080, 
Guangdong, China
2 People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi 
Road, Tianshan District, Urumqi 830001, Xijiang, China
3 Center of Health Management, The First Affiliated Hospital of Xinjiang 
Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi 830054, 
Xinjiang, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-023-01112-y&domain=pdf


Page 2 of 12Li et al. Diabetology & Metabolic Syndrome          (2023) 15:165 

knowledge, or they are asymptomatic, some individuals 
with T2DM patients can not be detected in time (approx-
imately 50% of individuals with T2DM are undiagnosed) 
[3, 5]. It is necessary to identify individuals with diabe-
tes in the population in an efficient and accurate manner. 
Therefore that early preventive measures and treatment 
can be taken to avoid further escalation of T2DM.

Currently, the scientific community has shifted its 
focus to the use of powerful computational methods for 
early and accurate prediction of diabetes [6–11]. Machine 
learning (ML) can iteratively learn nonlinear interactions 
from large amounts of data [12–14]. At present, based 
on electronic medical records and hospitalization data, 
ML methods have been used in the diagnosis and predic-
tion of diabetes, prediabetes, complications and disease 
progression [7, 8, 15–17], as well as real-time blood glu-
cose monitoring [18, 19], with some success. However, 
most of these models are created for the care of T2DM 
patients, and the sample size of training data is too small 
to reliably capture asymptomatic cases of early abnormal 
blood glucose, which are not suitable for mass screen-
ing of the population or public health planning [20, 21]. 
One study [22] reported that most models for diabetes 
prediction and risk assessment were rarely used because 
they relied on specific data. As physical examination data 
grows and ML rapidly develops, the use of physical exam-
ination data for disease risk assessment can provide bet-
ter clinical guidance and facilitate large-scale screenings 
at an earlier stage [23]. However, at present, fewer schol-
ars conduct diabetes screening based on health examina-
tion data [8, 24]. ML methods have not been applied to 
T2DM screening models and risk assessment in western 
China based on large-scale physical examination data.

We aimed to develop an ML model suitable for large-
scale screening of T2DM among adults in western 
China. In this study, we established the model based on 

logistic regression (LR) and ML algorithms, including 
classification and regression tree (CART), light gra-
dient boosting machine (LightGBM), random forest 
(RF), extreme gradient boosting (XGBoost), multilayer 
perceptron (MLP), and TabNet model, and combined 
them with western China large-scale health examina-
tion data, which are characterized by wide coverage, 
large volume and strong representation. In addition, in 
order to improve the convenience and flexibility of the 
model, a diabetes risk score card was established based 
on logistic regression to assess the risk of the popula-
tion. This study is the first T2DM screening model that 
systematically compares various algorithms on a multi-
ethnic and large sample basis.

Materials and methods
The dataset
We used the health examination data obtained from the 
national physical examination (NPE) project in 2020, 
which was previously described in detail [25]. The NPE 
health examination consisted of three parts: question-
naire, routine physical examination and laboratory tests.

A total of 9,333,091 people were enrolled in this study 
by signing an informed consent form. Participants 
were excluded from the study if they were (i) younger 
than 18 years old; or (ii) more than 20% of their base-
line and laboratory test data were missing. Second, we 
removed variables unrelated to the study, such as par-
ticipants’ names, contact phone numbers, and home 
addresses. After that, missing value processing (ran-
dom forest interpolation) and extreme value processing 
(deletion) were performed for the remaining variables. 
The detailed analysis process is shown in Fig. 1. Finally, 
4,075,431 samples were left, including 3,774,084 
healthy individuals and 3,013,47 T2DM patients.

Fig. 1  Flow Chart. CART​ classification and regression tree, LightGBM light gradient boosting machine, RF random forest, XGBoost extreme gradient 
boosting, LR logistic regression
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Feature fusion
In our computational model, we combined three types 
of physical examination data: questionnaire data (9 fea-
tures), routine tests (2 features), and laboratory values (9 
features). A total of 20 features were sufficient to identify 
diabetes risk. Through the questionnaire, we collected 
demographic characteristics, diet, smoking, hyperten-
sion, coronary heart disease, and parental history of 
T2DM in the population. Body mass index (BMI) and 
waist circumference (WC) were collected through rou-
tine tests. Through laboratory testing, nine laboratory 
values were collected.

T2DM was defined if any of the following cri-
teria were met: 2  h postprandial blood glu-
cose (2hPG) ≥ 11.1  mmol/L, fasting blood glucose 
(FBG) ≥ 7.0 mmol/L, or a complaint of diabetes and the 
use of antidiabetic drugs.

Feature selection
To adjust the parameters and measure the model’s per-
formance, the data were segmented using the 70–30 
holdout method. The training set contained 2852801 
samples (healthy population: 2641683, T2DM patients 
211118). The possible risk factors for DM were pre-
liminarily screened by reviewing the relevant literature. 
Univariate and multivariate logistic regression analyses 
were performed to analyze these characteristics, and cor-
relation analysis was used to determine the correlation 
between each characteristic.

Classification algorithms
In this study, integrated learning (CART, LightGBM, 
RF, XGBoost), deep learning (TabNet and MLP) and LR 
models were used to construct a diabetes risk assessment 
model.

The CART algorithm is a tree arrangement algorithm. 
CART has the advantages of fast operation speed, high 
accuracy, high-dimensional data and no parameter 
assumptions. There are some problems with it, including 
high variance and overfitting, which limit its applicability 
as an independent prediction model.

The RF algorithm is a combination of bagging ensem-
ble learning theory and the random subspace method 
[26, 27]. The core idea of the RF algorithm is to construct 
multiple independent classifiers, and then apply the aver-
age or majority voting principle to their predictions to 
determine the results of ensemble classifiers.

The XGBoost technique is a nonlinear machine 
learning technique based on trees [8]. XGBoost is 
based on combining weak estimators to predict hard-
to-evaluate samples repeatedly [28], so as to consti-
tute a strong estimator. The XGBoost can evaluate 

the importance of each input feature more easily than 
other black box techniques such as support vector 
machine (SVM) and artificial neural network (ANN) 
techniques.

The LightGBM algorithm is a decision tree-based 
ensemble algorithm that provides an effective implemen-
tation of gradient lifting [29]. Compared to traditional 
training algorithms, LightGBM has a faster training 
speed, a lower memory requirement, and a higher accu-
racy, which can lead to more efficient models.

MLP is a feed-forward, supervised artificial neural net-
work structure that can contain multiple hidden layers 
through multilayer perceptrons to achieve classification 
modeling of nonlinear data.

TabNet is a neural network for tabular data that uses 
sequential attention mechanism to select the features to 
be reasoned about at each decision step, thus learning to 
obtain the most salient features for interpretability and 
more efficient learning.

In order to facilitate clinical and real-life applications, 
we designed a diabetes risk scorecard based on LR. In the 
process of establishing the score card, we used the chi-
square method for continuous variables, and the discrete 
variables were directly divided into categories. We deter-
mined the final number of boxes according to the infor-
mation value (IV) value curve. Then, the IV value of each 
feature was calculated and variables whose IV value was 
greater than 0.1 were selected into the scorecard model. 
Finally, the weight of evidence (WOE) value of each box 
was calculated, and the WOE was mapped back to the 
original dataset, and then LR was used to establish the 
model. The detailed process can be found in a previous 
study [8].

Model evaluation
To obtain the optimal parameters, we used grid search 
to perform hyperparameter debugging on four models 
to obtain the optimal parameters. Based on the confu-
sion matrix, we calculated the accuracy, recall, sensitiv-
ity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and receiver operating char-
acteristic (ROC) curve of each model. Furthermore, we 
utilized the Kolmogorov–Smirnov (KS) value to appraise 
the efficiency of the scorecard model. A higher value 
of KS is indicative of an improved model. The greater 
the KS value, the more successful the model is. The KS 
value, which varies from 0 to 1, and when KS surpasses 
0.3, the prediction performance of the model is deemed 
satisfactory.
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Statistical analysis
The baseline characteristics of the study population are 
represented as the mean ± standard deviation when they 
are continuous variables, and as frequency (percentage) 
when they are categorical variables.

The differences in variables between diabetic patients 
with diabetes and healthy people were analyzed. The 
t test or Mann–Whitney test was used for continuous 
variables. The chi-square test or Fisher’s exact test were 
used for categorical variables. Statistical significance was 
inferred at a two-sided P-value < 0.05.

This study utilized Python Software Version 3.8.3. The 
libraries “Pandas” “NumPy” and “Matplotlib” were used 
for determining nulls and outliers as well as for inter-
polation. Meanwhile, the “Sklearn” library was used for 
construction and validation of the ML model. We use 
“PyTouch” to build a deep learning framework.

Results
Basic characteristics
A total of 9,333,091 participants were included in this 
study. After data preprocessing, 4,075,431 partici-
pants were left, including 1,919,248 (47.09%) males and 
2,156,183 (52.91%) females. A total of 3,774,084 healthy 
people and 301,347 T2DM patients were included. The 
prevalence of T2DM was calculated at 7.39% among the 
study population. The general characteristics of the study 
population are presented in Table 1. Patients with diabe-
tes had older age, higher BMI, WC, HGB, WBC, FB, TC, 
TG, LDLC, lower PLT and HDLC than healthy people. 
Compared with the healthy population, the proportion 
of patients with hypertension and CAD was higher in 
diabetic patients with diabetes. The prevalence of T2DM 
was significantly different among people with different 
dietary habits and smoking statuses. For further details, 
see Table 1.

We compared the prevalence of diabetes in different 
age groups (Fig. 2). It was found that the age of diabetes 
patients was concentrated in the range of 50–80 years old, 
accounting for approximately 60% of diabetes patients. 
Diabetes patients younger than the age of 40 accounted 
for 2.5% of the total number of diabetes patients.

Feature selection
The possible risk factors for T2DM were preliminarily 
screened by reviewing relevant literature (Table  2). The 
Pearson’s Correlation Coefficient was utilized to reveal 
the interrelationship between the various features. The 
correlation between the factors was then depicted using 
heat maps (Additional file  1: Figure A1). In Additional 
file 1: Figure A1, BMI had a positive correlation with WC, 
while HTN and CDA showed a positive correlation.

Univariate logistic regression analysis (Additional file 1: 
Table  A1) and a multivariate logistic regression analysis 
(Table  2) were performed for these features. We found 
that age, unbalanced diet, smoking, hypertension, CAD, 
PDM, WC, BMI, WBC, FGB, TC, and TG were positively 
associated with the risk of T2DM. HDL was negatively 
associated with T2DM. Multivariate logistic regression 
showed that HGB, PLT and LDLC were negatively corre-
lated with the risk of T2DM, which may be related to the 
data itself and affected by missing values. Considering 
that some previous studies found a relationship between 
TC and T2DM, combined with correlation analysis and 
logistic regression analysis, finally, sex, age, ethnicity, EH, 
SS, HTN, CAD, PDM, WC, BMI, WBC, PLT, FBG, ECG, 
TC, TG, LDLC, and HDLC were chosen to construct the 
diabetes risk prediction model.

Tuning of the parameters
To obtain the optimal parameters, we used grid search 
and cross-validation to conduct hyperparameter debug-
ging for seven models, as shown in Additional file  1: 
Table A2.

Comparison of model performance
In this study, we constructed various tree-based 
machine learning models, such as CART, LightGBM, 
RF, XGBoost, MLP and TabNet, as well as the LR model. 
Table 3 and Additional file 1: Figure A2 show the perfor-
mance of each prediction model on the validation group. 
The results showed that XGBoost had a good model per-
formance, with an AUC of 0.9122. XGBoost also showed 
superiority in accuracy (0.8314), precision (0.2800), PPV 
(0.9829) and NPV (0.9122). Table 3 demonstrates the effi-
cacy of each prediction model on the validation group.

Figure 3 shows the ROC curves and AUC of different 
prediction models in the development group and valida-
tion group. It is found that XGBoost performed better 
than the other prediction models. The AUC of the devel-
opment group was 0.9209, and the AUC of the validation 
group was 0.9122. The results showed that the XGBoost 
algorithm showed excellent advantages in predicting the 
risk of diabetes in this study.

We used SHapley Additive Explanations (SHAP) to 
explain the characteristic contributions of the XGBoost 
model. Figure  4 showes the feature importance of the 
XGBoost algorithms. We found that HTN, FGB, age, 
PDM, CAD, ethnicity, TG, WC, BMI and TC were identi-
fied as the top ten of the most important factors.

Diabete risk score card
A diabetes risk score card with a scale of 100 was 
designed for this study. The diabetes risk score card 
was used to evaluates an individual’s risk of diabetes by 
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Table 1  Characteristics of participants in this study

For continuous variables, the data are expressed as the mean ± standard deviation, and for categorical variables, the data are expressed as counts (percentage)

DM diabetes mellitus, EF exercise frequency, EH eating habits, SS smoking status, HTN hypertension, CAD coronary heart disease, PHTN parental hypertension, PDM 
parental diabetes mellitus, PCHD parental coronary heart disease, MS marital status, WC waist circumference, BMI body mass index, SBP systolic blood pressure, DBP 
diastolic blood pressure, HGB hemoglobin, WBC white blood cell, PLT platelet, FBG fasting blood glucose, ECG electrocardiogram, TC total cholesterol, TG triglyceride, 
LDLC low-density lipoprotein cholesterol, HDLC high-density lipoprotein cholesterol

Category Features Health (n = 3774084) Diabetes (n = 301347) p value

Questionnaire Sex, n(%)  < 0.001

 Male 1778128 (47.11%) 141120 (46.83%)

 Female 1995956 (52.89%) 160227 (53.17%)

 Age(year) 49.33 ± 15.58 61.77 ± 11.13  < 0.001

Ethnicity, n(%)  < 0.001

 Uyghur 2015933 (53.42%) 133687 (44.36%)

 Han 1106565 (29.32%) 128512 (42.65%)

 Kazak 369059 (9.78%) 12591 (4.18%)

 Hui 177841 (4.71%) 21256 (7.05%)

 Khalkha 36773 (0.97%) 1025 (0.34%)

 Mongol 34752 (0.92%) 1479 (0.49%)

 Tajik 6655 (0.70%) 105 (0.03%)

 Other 26506 (0.18%) 2692 (0.89%)

EH, n(%)  < 0.001

 Balanced diet 3647207 (96.64%) 289846 (96.18%)

 Meat based 54428 (1.44%) 4466 (1.48%)

 Vegetarian based 72449 (1.92%) 7035 (2.33%)

SS,n(%)  < 0.001

 Never smoked 3352894 (88.84%) 271177 (89.99%)

 Smoking 396921 (10.52%) 26578 (8.82%)

 Quit smoking 24269 (0.64%) 3592 (1.19%)

HTN,n(%)  < 0.001

 No 2977467 (78.89%) 109105 (36.21%)

 Yes 796617 (21.11%) 192242 (63.79%)

CAD,n(%)  < 0.001

 No 3609085 (95.63%) 252633 (83.83%)

 Yes 164999 (4.37%) 48714 (16.17%)

PDM,n(%)  < 0.001

 No 3742806 (99.17%) 294209 (97.63%)

 Yes 31278 (0.83%) 7138 (2.37%)

Routine examination WC (cm) 86.36 ± 11.46 91.39 ± 11.46  < 0.001

BMI (kg/m2) 25.08 ± 3.89 26.65 ± 3.76  < 0.001

Laboratory test HGB, g/L 140.96 ± 16.65 143.11 ± 15.5  < 0.001

The WBC, × 109/L 6.29 ± 1.47 6.6 ± 1.5  < 0.001

PLT, × 109/L 235.08 ± 57.5 227.88 ± 57.92  < 0.001

FBG, mmol/L 5.19 ± 0.69 5.81 ± 0.68  < 0.001

ECG,n(%) 0.21 ± 0.41 0.3 ± 0.46  < 0.001

Normal 2982273 (79.02%) 212044 (70.37%)

Abnormal 791811 (20.98%) 89303 (29.63%)

TC, mmol/L 4.41 ± 0.96 4.68 ± 1.01  < 0.001

TG, mmol/L 1.26 ± 0.54 1.49 ± 0.56  < 0.001

LDLC, mmol/L 2.48 ± 0.8 2.62 ± 0.86  < 0.001

HDLC, mmol/L 1.36 ± 0.36 1.32 ± 0.36  < 0.001
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aiding in the calculation of their risk score. Based on the 
IV value, the risk score card model was established using 
age, FBG, HTN, WC, BMI, TG, CAD and ethnicity as 

variables. The ROC and KS curves of the validation group 
are displayed in Fig. 5.

Table 2  Multivariate logistic regression analysis in the development group

EH eating habits, SS smoking status, HTN hypertension, CAD coronary heart disease, PDM parental diabetes mellitus, WC waist circumference, BMI body mass index, 
HGB hemoglobin, WBC white blood cell, PLT platelet, FBG fasting blood glucose, ECG electrocardiogram, TC total cholesterol, TG triglyceride, LDLC low-density 
lipoprotein cholesterol, HDLC high-density lipoprotein cholesterol

Category Features Multivariate logistic regression analysis

Beta OR(95%CI) P value

Questionnaire Sex, n(%)

 Male

 Female 0.1095 1.116 (1.103 1.129)  < 0.001

 Age(year) 0.0299 1.03 (1.030 1.031)  < 0.001

Ethnicity, n(%)

 Uyghur

 Han 0.384 1.469 (1.452 1.485)  < 0.001

 Kazak 0.549 0.578 (0.564 0.592)  < 0.001

 Hui 0.465 1.592 (1.56 1.624)  < 0.001

 Khalkha 0.732 0.481 (0.445 0.52)  < 0.001

 Mongol 0.524 0.592 (0.554 0.632)  < 0.001

 Tajik 1.09 0.335 (0.264 0.419)  < 0.001

 Other 0.142 1.153 (1.094 1.215)  < 0.001

EH, n(%)

 Balanced diet

 Meat based 0.0762 1.079 (1.037 1.123)  < 0.001

 Vegetarian based 0.018 1.018 (0.985 1.052) 0.282349

SS, n(%)

 Never smoked

 smoking 0.0645 1.067 (1.048 1.086)  < 0.001

 Quit smoking 0.171 1.186 (1.131 1.244)  < 0.001

HTN, n(%)

 No

 Yes 1.212 3.361 (3.324 3.398)  < 0.001

CAD, n(%)

 No

 Yes 0.471 1.603 (1.579 1.627)  < 0.001

PDM, n(%)

 No

 Yes 1.310 3.706 (3.575 3.841)  < 0.001

Routine examination WC (cm) 0.0121 1.012 (1.012 1.013)  < 0.001

BMI (kg/m2) 0.0147 1.015 (1.013 1.017)  < 0.001

Laboratory test HGB, g/L 0.001 0.999 (0.999 0.999)  < 0.001

WBC, × 109/L 0.126 1.134 (1.13 1.138)  < 0.001

PLT, × 109/L 0.002 0.998 (0.998 0.998)  < 0.001

FBG, mmol/L 0.946 2.574 (2.556 2.593)  < 0.001

ECG, n(%)

 TC, mmol/L 0.005 1.005 (0.999 1.012) 0.090

 TG, mmol/L 0.255 1.29 (1.278 1.303)  < 0.001

 LDLC, mmol/L 0.019 0.981 (0.974 0.988)  < 0.001

 HDLC, mmol/L 0.196 0.822 (0.810 0.833)  < 0.001
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We used the score card scaling algorithm to convert 
the model into score cards (Table 4). The score card com-
prises the baseline score as well as the associated score 
for each box within each feature. When using a score-
card, the total score is the sum of the base score and the 

feature score, which represents the diabetes risk value. In 
this study, the base score was 46.3.

The Kolmogorov–Smirnov curve (Fig.  5) was utilized 
to illustrate the totality of the score and to determine 
the risk interval. The higher the KS value is, the greater 
the segmentation ability of the model’s corresponding 
threshold value will be. As illustrated in Fig. 5, the apex 
of the inflection point is achieved when the score is equal 
to 45. Therefore, to easily calculate the risk interval, we 
set 50 as the intermediate threshold. The higher the score 
generated from testing, the lower the risk of diabetes; 
conversely, the lower the score, the greater the likeli-
hood of developing diabetes. To supply users with a more 
direct evaluation, four risk categories have been estab-
lished in accordance with the KS chart (Table 5).

Comparison with existing models
To further validate the efficacy of our model, a compari-
son of the proposed model against other leading meth-
ods was conducted, the results of which are presented in 
Table 6.

Fig. 2  Distribution of diabetes patients and healthy people by age. 
Healthy people (yellow) and T2DM patients (blue)

Table 3  Performance metrics of the machine learning models

PPV positive predictive value, NPV negative predictive value, AUC​ area under the receiver operating characteristic curve

Models Accuracy Sensitivity Specificity PPV NPV AUC​

CART​ 0.7870 0.8181 0.7845 0.2322 0.9819 0.8839

LightGBM 0.7799 0.8237 0.7764 0.2269 0.9822 0.8808

RF 0.7663 0.8217 0.7619 0.2156 0.9817 0.8730

XGBoost 0.8314 0.8180 0.8324 0.2800 0.9829 0.9122

MLP 0.8008 0.7803 0.8025 0.2394 0.9787 0.8754

TabNet 0.8068 0.7728 0.8095 0.2443 0.9781 0.8759

LR 0.9260 0.07522 0.9938 0.4918 0.93097 0.8161

Fig. 3  ROC curves of different learning machine learning algorithms on the training and validation sets. A ROC curve in the development group. B 
ROC curve in the validation group
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Discussion
The increasing burden of diabetes has become a global 
challenge [3, 32]. Through mass screening, early identi-
fication and intervention of patients with diabetes can 
be achieved to delay or prevent the development of the 
disease [33, 34]. The most efficacious method for wide-
spread screening of diabetes has yet to be identified. 
In this study, the T2DM risk prediction models were 

developed and validated on data from more than 4 mil-
lion people. The data were obtained from the cross-
sectional data of NPE, including more than 9  million 
people in 14 prefectures of Xinjiang, China, which can 
be considered representative of the overall population of 
Xinjiang. Following the evaluation of the model’s perfor-
mance, it was determined that the XGBoost model was 
the optimal model for predicting the risk of T2DM, with 
an AUC was is 0.9122.

In this study, we used questionnaires to obtain indica-
tors of hypertension and cardiovascular diseases, genetic 
history and smoking and diet in the population, which 
not only captured the medical history of each patient, but 
also included demographic factors and laboratory test 
indicators. Univariate and multivariate logistic regression 
analyses showed that sex, age, ethnicity, EH, SS, HTN, 
CAD, PDM, WC, BMI, WBC, PLT, FBG, ECG, TC, TG, 
LDLC, and HDLC were important factors for diabetes. 
HTN, FGB, age, PDM, CAD, ethnicity, TG, WC, BMI, 
and TC were the most important predictors of diabetes. 
Except that the FGB was viewed as a recognized risk fac-
tor and predictor of T2DM, hypertension and CAD were 
the most important features of T2DM risk models, which 
presented with high predictive ability. Some studies have 
confirmed that hypertension, cardiovascular disease and 
diabetes are mutually promote and influence each other 
[35, 36]. Many pathophysiological mechanisms under-
lie the association between diabetes and cardiovascular 
disease. Among these mechanisms, several have been 
identified as potential contributors [36]. Including insu-
lin resistance in the nitric-oxide pathway, the stimula-
tory effect of hyperinsulinemia on sympathetic drive, 
smooth muscle growth, and sodium-fluid retention, 
as well as the excitatory effect of hyperglycemia on the 

Fig. 4  Feature importance of the XGBoost model. HTN hypertension, 
FBG fasting blood glucose, PDM parental diabetes mellitus, CAD 
coronary heart disease, WC waist circumference, BMI body mass 
index, WBC white blood cell, HGB hemoglobin, PLT platelet, TC total 
cholesterol, TG triglyceride, LDLC low density lipoprotein cholesterol, 
HDLC high density lipoprotein cholesterol

Fig. 5  ROC and KS curves of the diabetes risk score card. A ROC curve; B KS curve
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renin–angiotensin–aldosterone system, provide plau-
sible explanations for the association between diabe-
tes and cardiovascular disease. On the other hand, the 
functional changes occurring in the context of T2DM 
and hypertension significantly alter the hemodynamic 
stress on the heart and other organs. Some studies have 
also demonstrated the important role of ECG in the pre-
diction of diabetes [37], and our study confirmed the 

association between abnormal ECG results and T2DM. 
Understanding these underlying mechanisms is crucial 
for developing targeted interventions to prevent and 
manage cardiovascular complications in individuals with 
diabetes.

Our study showed that age was also an important fea-
ture of diabetes prediction models. The FDRSMA is 
a classic and widely used diabetes risk scoring model 
[38]. The objective of FDRSM is to utilize six risk factors 
(including BMI, FBG, PDM, HDLC, blood pressure and 
TG) to evaluate the risk of T2DM among middle-aged 
individuals. T2DM is generally observed in adults and 
appears to be more prevalent among the elderly individu-
als. As people age, the glucose sensitivity of pancreatic 
cells decline and insulin secretion is impaired, leading to 
hyperglycemia and T2DM [39]. Several studies reported 
differences in the incidence of diabetes between eth-
nic groups [40–42] and confirmed that ethnicity could 
be a predictors of diabetes [40, 43–46]. In our study, we 
used Uyghur as a reference, with Han and Hui ethnic 
groups exhibiting a heightened susceptibility to diabe-
tes. The kazakh, Mongolian and Tajik ethnic groups had 
a lower risk. Genetic and environmental differences (i.e., 
economic level, diet, lifestyle, climate) were taken into 
account. Family history of diabetes was also identified as 
an important risk factor for T2DM in our model, which 
is consistent with previous studies [47]. There is a signifi-
cant genetic predisposition to T2DM, with a 2 to 30 fold 
increased risk for T2DM in those with a family history 
compared with those without a family history [48].

Many studies have demonstrated a connection between 
obesity and diabetes. Furthermore, our study discovered 
that augmented BMI and WC were correlated with a 
higher probability of having diabetes. The development 
of obesity gain can result in insulin resistance and dimin-
ished β-cell functionality in humans. According to the 
World Health Organization, the global increase in the 
prevalence of diabetes is believed to be related to chronic 
stress, being overweight [49], lacking of physical activity 
[50, 51], excessive consumption of alcohol [52, 53] and an 
unhealthy diet [54]. Our model also demonstrated that 
EH and SS were predictors of T2DM. In addition, we also 

Table 4  Diabetes risk score card

Feature Threshold Score Feature Threshold Score

Age (-inf, 39.0] 17.75 CDA No 0.60

(39.0, 46.0] 6.39 Yes − 5.97

(46.0, 50.0] 2.86 Ethnicity Uyghur 1.65

(50.0, 56.0] − 1.02 Han − 3.32

(56.0, inf ] − 5.28 Kazak 7.52

FGB (-inf, 5.3] 11.04 Hui − 3.58

(5.3, 5.6] 1.69 Khalkha 9.33

(5.6, 5.8] − 4.56 Mongol 5.54

(5.8, 6.1] − 9.43 Other − 0.51

(6.1, 6.43] − 15.07 WC (-inf, 82.0] 2.13

(6.43, inf ] − 11.60 (82.0, 90.0] 0.17

BMI (-inf, 20.4] 1.87 (90.0, 102.0] − 1.23

(20.4, 22.86] 1.08 (102.0, inf ] − 2.55

(22.86, 24.28] 0.37 TG (-inf, 0.62] 3.84

(24.28, 26.48] − 0.20 (0.62, 1.01] 1.95

(26.48, inf ] − 0.74 (1.01, 1.34] 0.69

HTN No 6.26 (1.34, 1.6] − 0.62

Yes − 8.90 (1.6, inf ] − 2.41

Table 5  Risk interval division and threshold of diabetes risk score 
card

Score Proportion of 
health

Proportion of 
diabetes

Risk group

0–25 4.16% 33.10% Very high

25–50 26.94% 52.02% High

50–75 44.53% 13.93% Normal

75–100 24.37% 0.95% low

Table 6  Comparison with existing models

Author Feature Method AUC​

Gao et al. [30] Age, Sex, WC, Systolic pressure and PDM LR 0.635

Yang et al. [8] BMI, FGB, Waist-toheight ratio, Age, Mean systolic pressure, Urine glucose XGBoost 0.881

Zhou et al. [31] Age, Sex, Systolic pressure, BMI, WC, PDM LR 0.748

Ravaut et al. [16] demographics, routine diagnosis codes and history, laboratory values, geographical information 
prescription history, information on the specialty of each doctor encounter, and hospitalizations

XGBoost 80.26

This study Sex, Age, Ethnicity, EH, SS, HTN, CAD, PDM, WC, BMI, WBC, PLT, FBG, ECG, TC, TG, LDLC, HDLC XGBoost 0.9122
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found that people who smoked and those who had quit 
smoking had a higher risk of T2DM than those who did 
not smoke, and those who ate a vegetarian or meat-based 
diet had a higher probability of T2DM than those who 
ate a balanced meat-vegetarian diet.

We incorporated laboratory variables, including TC, 
TG and HDLC into the diabetes prediction model. Our 
findings indicated that TG was an independent risk fac-
tor for T2DM, while TC was not an independent risk fac-
tor for T2DM in our study. Consistent with other studies 
[55]. The feature importance ranking showed that TC, 
TG, LDLC and HDLC were all important features of 
the T2DM risk prediction model. Multiple studies have 
revealed that dyslipidemia and T2DM often coexist in 
individuals and share common pathological mecha-
nisms, such as insulin resistance, metabolic disturbances, 
inflammation, and alterations in the gut microbiota [55, 
56].

Currently, ML algorithms are increasingly used to pre-
dict diabetes and related diseases [11, 12, 18, 19, 30, 57–
59]. In this study, a diabetes screening model based on 
CART, LightGBM, RF, XGBoost TabNet and MLP mod-
els was constructed. The AUC (0.9122), PPV (0.2800), 
NPV (0.9829) and accuracy (0.8314) of the XGBoost 
prediction model showed good performance in the vali-
dation group. It appears that our model outperforms the 
majority of existing models, which may be because the 
model is built on the basis of multiple features and big 
data. Other studies also found that XGBoost was effec-
tive in predicting the risk of diabetes [8, 16].

The development of the diabetes risk assessment score 
card assists clinicians and individuals alike in conducting 
self-examinations, with the aim of increasing the rate of 
diabetes cascade screening and enhancing individual life-
style management. Hence, utilizing large-scale physical 
examination information to achieve prompt risk notifica-
tion and identification of diabetes is the most practicable 
course of action.

This study has several advantages. First, based on the 
NPE project, it not only has a wide coverage and a large 
amount of data, but also includes a number of major 
ethnic groups in China, which can enable better assess-
ment of the characteristics of the population in Xinji-
ang, China; in addition the risk prediction model has a 
good generalization ability in Xinjiang, China. Second, 
the risk factors affecting diabetes were fully considered 
in this study. Laboratory examination, questionnaire sur-
vey and routine examination data were fully taken into 
account to obtain indicators such as hypertension and 
cardiovascular diseases, genetic history and exercise and 
diet in the population, and the influencing factors of dia-
betes were comprehensively analyzed. Third, the results 
of our model all showed satisfactory predictive effects 

(XGBoost: AUC = 0.9122). This study also has several 
limitations. First, it is not possible to establish causality 
using cross-sectional data derived from national health 
examinations, therefore, these results should be sub-
ject to further investigated in subsequent research. Sec-
ond, the health examination data used in our study were 
highly heterogeneous and had a high rate of missing data, 
which affected the power of the model.

Conclusion
T2DM imposes an inexorable and significant burden on 
society, including intangible costs of lost productivity, 
premature death, and poor quality of life. Our model is 
based on large-scale health examination data in Xinjiang, 
China, which was used to construct a large-scale early 
diabetes risk screening model. Our model can be applied 
directly to the physical examination database, providing 
a highly efficient means for the identification of high-risk 
diabetes records over at a large range. This allows for the 
understanding of potential diabetes risk ratios at the pub-
lic health level and the implementation of more effective 
diabetes prevention and control strategies. It is of great 
significance for the early control of diabetes to identify 
early risk warning sings and perform screening based on 
large-scale physical examination data.
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