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Abstract 

Background:  Our recent findings support the idea that 3-deoxyglucosone (3DG), a dietary composition, has been 
suggested as an independent factor for the development of prediabetes. Secretion of glucagon-like peptide-1 (GLP-1) 
has been suggested to be impaired in T2DM and in conditions associated with hyperglycemia. Since low oral bioavail-
ability of 3DG has been indicated in a single administration study, in the present study we examined if 3DG is capable 
of accumulating in intestinal tissue of rats after 2-week administration of 3DG, and the 3DG treatment affects GLP-1 
secretion and glucose tolerance.

Methods:  Rats were administered by gastric gavage for 2 weeks. We measured 3DG contents of intestinal tissues (by 
HPLC), plasma levels of total GLP-1 (by ELISA), insulin and glucagon (both by radioimmunoassay) and blood glucose 
concentrations. The expressions of the sweet receptor subunits (TAS1R2, TAS1R3) and its downstream molecule 
TRPM5 in duodenum and colon tissues of rats were quantified by WB. We examined GLP-1 secretion in enteroendo-
crine STC-1 cells exposured to 3DG.

Results:  3DG treatment for 2 weeks increased 3DG content of intestinal tissues, fasting blood glucose concentration, 
and reduced plasma concentrations of GLP-1 and insulin at fasting and 15 and 180 min after the glucose load and 
oral glucose tolerance in conjunction with increased plasma glucagon concentrations. The expressions of TAS1R2, 
TAS1R3 and TRPM5 were shown to be reduced whereas 3DG treatment did not affect plasma dipeptidyl peptidase-4 
activity, indicating an impaired GLP-1 secretion in 3DG-treated rats. This idea was further supported by the fact that 
exposure to 3DG directly decrease GLP-1 secretion in STC-1.

Conclusion:  It is the first demonstration that 3DG was capable of accumulating in intestinal tissue and thereby 
decreased secretion of GLP-1 and insulin in a similar manner. 3DG-treated rats developed impaired glucose regulation 
(IGR) with obviously pancreatic islet cell dysfunction. It is further concluded that a decrease in the biological function 
of GLP-1 resulting from the decreased GLP-1 secretion is the most likely mechanism for the impaired insulin secretion, 
which ultimately promoted the development of IGR. These results will also contribute to a better understanding of 
the significance for restoring physiological GLP-1 secretion.
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Background
Dietary changes in overall structure have been clearly 
shown to be associated with the development of diabetes 
[1]. Aside from obviously increased intake of caloric and 
amounts of dietary fat, both of which have been demon-
strated to be important to the development of prediabe-
tes [2], the changes also toward increased sweetening of 
the diet, food additives intake, by-products during food 
processing or storing and other important elements [3]. 
Artificial sweeteners (e.g., saccharin) have been found 
to implicate in the development of obesity and obesity-
related metabolic syndrome, associated with the altera-
tions in composition and function of the intestinal 
microbiota [4]. It is worth noting that 1,2-dicarbonyl 
compounds [5–7] and advanced glycation end products 
(AGEs) [8, 9], both of which are easily formed from car-
bohydrates in caramelization course and Maillard reac-
tions in food, have been reported to increase the risk of 
type 2 diabetes mellitus (T2DM) and its complications. 
Based on an investigation of the content of 1,2-dicarbo-
nyl compound in a great variety of commonly consumed 
foods, 3-deoxyglucosone (3DG) was proved to be the 
predominant 1,2-dicarbonyl compound [10]. In addition 
to intensively investigate as a precursor for AGEs, 3DG 
itself has certain biological activities [11–13], specifically 
on the ability to induce insulin resistance in  vitro [13]. 
The further reports in clinical and animal research indi-
cated that 3DG had been linked to an impaired glucose 
tolerance [6, 14, 15], thereby constituting an independent 
factor for the development of prediabetes.

The term “enteroinsular axis” refers to the signaling 
pathways between the gut and pancreatic islets that reg-
ulate blood glucose homeostasis [16]. The pathogenesis 
of T2DM is associated with a defect in this enteroinsu-
lar axis [17, 18]. The signaling pathways in gut related to 
regulation of glucose homeostasis are mediated by gut 
hormone, microbiota or immune system and those have 
gradually been a therapeutic target for diabetes. Gluca-
gon-like peptide-1 (GLP-1) is an important gut hormone 
that can act via the enteroinsular axis to potentiate insu-
lin secretion from pancreatic islets β-cell, known as the 
incretin effect [19]. Owing to the incretin effect, analogs 
of GLP-1, GLP-1 receptor agonists and dipeptidyl pepti-
dase-IV (DPP-IV) inhibitors are available as treatments 
for T2DM [20]. GLP-1 secretagogues also represent a 
potential approach to enhance incretin action in T2DM. 
Actually, increasing endogenous GLP-1 secretion by die-
tary non-digestible ingredient (e.g., resistant maltodextrin 
and oligofructose), has been shown to improve glucose 
tolerance [21, 22]. Reduced plasma GLP-1 concentrations 
were sometimes observed in T2DM [23–25] even predia-
betes [26] stages, which may provide an explanation to the 
markedly impaired incretin effect in patients with T2DM 

[27] in addition to the deficient in the β-cell response to 
GLP-1 after meal ingestion [20]. Impairment of GLP-1 
action caused by a blunted secretion of L-cells was also 
observed in early states of T2DM [28]. Impairment of 
GLP-1 secretion, therefore, has been also proposed to 
be associated with a reduced glucose-stimulated insulin 
secretion and an impaired glucose tolerance [29].

Considering the significance of the incretin effect of 
GLP-1, the factors related to harmful effects towards 
endogenous GLP-1 secretion become very important. To 
our knowledge, some endogenous or exogenous events 
that may decrease GLP-1 secretion have been investi-
gated involving of the direct regulation of GLP-1-se-
creting cell, but the studies tend to be few. Stimulated 
hyperlipidemia and a high fat diet given to mice induce a 
reduction of the number of GLP-1-secreting cells in vitro 
and in vivo [30]. In one more in vitro study, lipopolysac-
charide, a gut bacterial product, was found to induce 
the apoptosis in intestinal endocrine cell line STC-1 
in a dose-dependent manner [31]. Thus, continuing to 
seek other factors that potentially harm GLP-1 secre-
tion would help to restore physiological GLP-1 secretion 
and deserve to be explored. In an earlier study, 3DG was 
absorbed into the systemic circulation at a percentage 
of about 1‰ 2 h after single oral administration of 3DG 
[32], suggesting the absorption rate of 3DG from food-
stuffs is very slow. This result raises the possibility that 
3DG has the ability to affect GLP-1 secretion. We there-
fore investigated if 3DG is capable of accumulating in 
intestinal tissue where it may have a role in GLP-1 axis 
after continuous oral administration of 3DG.

In the current study, 3DG was administered by gastric 
gavage to Sprague–Dawley (SD) rats for 2 weeks to inves-
tigate the distribution of 3DG in intestinal tissues. We 
also examined the effects of intragastric administration 
of 3DG on plasma levels of GLP-1, insulin and glucagon, 
and glucose regulation. Furthermore, the expressions 
of the sweet receptor subunits (TAS1R2, TAS1R3) and 
its downstream molecule TRPM5 in duodenum and 
colon tissues of rats, which is related to GLP-1 secretion, 
were investigated. In addition, we used the STC-1 L-cell 
model to investigate the direct effect of 3DG on GLP-1 
secretion.

Methods
Synthesis of 3DG
According to the method of Kato et  al. [32], 3DG was 
synthesized from glucose as previously described [13].

Determination of appropriate doses of intragastric 
administration of 3DG
Previous reports have estimated an average dietary 3DG 
intake of about 50  mg/day based on the 3DG content 
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in commonly consumed foods [10]. In order to achieve 
the equivocal effect of a potential 3DG intake of 50  mg 
per day, we calculated a dose based on body surface area 
(4.5  mg/kg for rats). Previously, we have reported that 
intragastric administration of 5 mg/kg 3DG for 2 weeks 
lightly increased plasma glucose level under oral glu-
cose tolerance tests in mice. Therefore, we gave 5, 20 or 
50 mg/kg 3DG by gastric gavage.

Animals
11-week-old SD rats were purchased from Matt Albert 
Technology Co. Ltd (Suzhou, China) and housed in a 
temperature-controlled room (23 °C) and 12 h light/12 h 
dark cycle. All of animal experimental procedures were 
conducted in compliance with Guide for care and use of 
laboratory animals (Eighth edition, 2011). The study was 
approved by the local ethic committee of Suzhou Hos-
pital of Traditional Chinese Medicine. The rats had free 
access to a standard rodent chow diet (Shuangshi Labo-
ratory Animal Feed Science Co. Ltd, Suzhou, China) and 
water. The diet contained water (≤10%), crude proteins 
(≥20.5%), crude fat (≥4%), crude fiber (≤5%), crude ash 
(≤8%) and mixture of vitamins and micronutrients. After 
1 week of acclimatization, the rats were randomly divided 
into four groups with similar fasting glucose concentra-
tion, and each group consisted of six rats. Vehicle (con-
trol), 5  mg/kg 3DG, 20 and 50  mg/kg 3DG were given 
by gastric gavage daily with an administrated period of 
2 weeks. Body weight was measured daily. The rats were 
fasted overnight before the experiments.

STC‑1 cells culture
STC-1 cells, an enteroendocrine intestinal cell line, were 
obtained from Cell Bank of the Chinese Academy of Sci-
ences (Shanghai, China). The cells were grown in Dulbec-
co’s modified Eagle’s medium (DMEM; Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) containing 
15% (v/v) horse serum, 2.5% (v/v) fetal bovine serum 
(FBS; Zhejiang Tianhang Biological Technology Co., Ltd., 
Huzhou, China), and 25 mmol/L glucose at 37 °C in a 5% 
CO2 humidified atmosphere. The cells were grown to 
70–80% confluence for the experiments.

Oral glucose tolerance test (OGTT)
After fasting overnight, a basal blood sample was col-
lected from a tail vein for the measurement of fasting 
glucose levels using a glucose meter (ACCU-CHEK, 
Roche, US). Then, the rats were fed with glucose by gas-
tric gavage (2.5 g/kg). And additional blood samples were 
collected from tail vein at 0, 30, 60, 90, 120 and 180 min 
following the glucose load, and glucose concentration 
was determined with a glucose meter. The area under the 

glycaemic curves (AUC) were calculated for each group 
of rats.

Measurements of GLP‑1, GIP, insulin and glucagon 
in plasma
Blood samples from aorta abdominalis were collected at 
15 and 180  min points following the glucose load for the 
measurements of insulin, glucagon, GLP-1 (total). Plasma 
levels of insulin and glucagon were assayed with the corre-
sponding radioimmunoassay kits (Beijing North Institute of 
Biological Technology, Beijing, China). Plasma GLP-1 con-
centration was measured using the ELISA kits (Millipore, 
MA, USA). Total GLP-1 includes both intact [GLP-1-(7–36) 
amide and GLP-1-(7–37)] and inactivated forms of GLP-1 
(GLP-19–36 amide and GLP-1 9–37 degraded by DPP-4).

Measurement of plasma dipeptidyl peptidase‑4 (DPP‑4) 
activity
According to the method of Pederson et al. [33], plasma 
DPP-4 activity was determined by a colorimetric assay, 
using H-Gly-Pro-p-nitroanilide (Sigma, St Louis, MO, 
USA) as a substrate.

Distribution of 3DG in intestinal tissues after treatment 
with exogenous 3DG
After 2 weeks of intragastric administration of 3DG, the 
rats were then killed and intestinal tissues were collected 
for the measurement of 3DG contents by HPLC. Before 
the measurement, the content of gastrointestinal tract 
was completely removed.

Western blot analysis
In rats treated with 50  mg/kg 3DG, the duodenum and 
colon tissues were collected 2  weeks after intragastric 
administration 3DG. Methods for quantification of whole 
protein content and western blot have been described 
previously [13]. Antibodies against TAS1R2, TAS1R3 and 
TRPM5 were obtained from Cell Signaling Tech (Massa-
chusetts, USA).

GLP‑1 secretion assay in vitro
STC-1 cells were seeded into six-well plates at a density of 
2 × 105 cells/well for 48 h; the cells were then incubated 
with L-DMEM (5.6  mmol/L glucose) containing 10% 
FBS. After 3 h, the medium was subsequently removed, 
and the cells were incubated with or without 3DG at final 
concentrations of 80, 300 and 1000 ng/mL in 0.2% BSA 
H-DMEM (25  mmol/L) containing 5 ×  10−7  M insulin 
for 6 h. After the incubation, the medium was collected 
and centrifuged at 12,000×g for 5 min at 4 °C to remove 
any floating cells. GLP-1 concentration in the superna-
tant was measured by ELISA (Millipore, MA, USA).
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Statistical analysis
Results of the experimental studies are expressed as 
mean  ±  SD. Statistical significance of differences was 
analyzed by the Student’s t test or One-way analysis of 
variance. All p values ≤0.05 were considered statistically 
significant.

Results
Increased 3DG contents in intestinal tissues of rats 2 weeks 
after intragastric administration of 3DG
Since lower absorption rate of 3DG has been indicated 
in in a single administration study [32], we further assess 
whether 3DG is capable of accumulating in intesti-
nal tissue after continuous oral administration of 3DG. 
After intragastric administration of 50  mg/kg 3DG for 
2  weeks, 3DG levels were increased significantly in the 
upper small intestine (1.4-fold), lower small intestine 
(1.4-fold), ileum (1.4-fold) and colon (twofold) compared 
with the basal levels in the corresponding control group. 
The colon had the greatest increase in the level of 3DG 
compared with control and had the highest levels among 
the tissue tested (Fig. 1a). Colon 3DG level was increased 
dependent on the concentration of 3DG administrated 
(Fig. 1b). A certain amount of 3DG in intestinal tissue of 
control rats may originate from intake of exogenous 3DG 
and production of 3DG in gut, which should be exam-
ined in a following study. These observations suggest that 
3DG is capable of accumulating in intestinal tissue after 
long-term regularly intake of dietary 3DG.

Intragastric administration of 3DG for 2 weeks led to a 
decrease in GLP‑1 secretion in rats
In consideration of the well-known relationship between 
increasing endogenous GLP-1 secretion and improved 
glucose tolerance, secretion of the gut hormone GLP-1 
has been suggested to be impaired in T2DM and in con-
ditions associated with hyperglycemia. We next deter-
mined whether 2-week intragastric administration of 
3DG as an independent factor for the development of 
prediabetes affected GLP-1 secretion. Under fasting con-
ditions, plasma GLP-1 concentrations were significantly 
decreased upon intragastric administration of either 20 
or 50 mg/kg of 3DG (Fig. 2a, vehicle vs. 20 mg/kg 3DG: 
22.698  ±  1.466  pM vs. 20.572  ±  1.395  pM, *p  <  0.05, 
n  =  6; vehicle vs. 50  mg/kg 3DG: 22.698  ±  1.466  pM 
vs. 20.233 ± 0.5219 pM, *p < 0.05, n = 6). Furthermore, 
plasma GLP-1 concentrations markedly increased after 
oral glucose loading in every group. Whereas glucose-
induced increment in GLP-1 concentrations at 15  min 
point were significantly attenuated in 3DG-treated 
rats with either 20  mg/kg dose or 50  mg/kg does. (Fig-
ure 2a, vehicle vs. 20 mg/kg 3DG: 34.048 ± 2.198 pM vs. 
30.858 ± 1.093 pM, #p < 0.05, n = 6; vehicle vs. 50 mg/
kg 3DG: 34.048  ±  2.198  pM vs. 29.35  ±  0.7828  pM, 
#p  <  0.01, n  =  6). Similarly, the plasma GLP-1 con-
centrations were significantly lower in 3DG-treated 
rats with either 20  mg/kg dose or 50  mg/kg does than 
that in control rats 180  min after the glucose load. In 
addition, we examined the plasma DPP-4 activity to 

Fig. 1  Increased 3DG contents in intestinal tissues of rats 2 weeks after intragastric administration of 3DG, n = 6 for each group. The upper small 
intestine, lower small intestine, ileum (a) and colon (b) 3DG levels were measured by HPLC after 2-week administration of 3DG or vehicle. Values are 
mean ± SD. *p < 0.05, **p < 0.01 compared with control group
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determine whether the decreased plasma GLP-1 levels 
associated with 3DG treatment were due to the poten-
tiation of DPP-4 or not. We found no significant differ-
ences in plasma DPP-4 activity between 3DG-treated 
groups and vehicle-treated group (Fig.  2b), which indi-
cates a decrease in GLP-1 secretion in 3DG-treated rats. 
We next determined whether 3DG directly affects GLP-1 
secretion from the L-cells, mouse enteroendocrine 
STC-1 cells were exposed to 3DG at concentrations simi-
lar to those obtained from intestinal tissues contents in 
3DG-treated rats. As shown in Fig. 2c, GLP-1 secretion 
in response to treatment with 300 or 1000 ng/mL 3DG in 
regular culture media was significantly reduced. Further-
more, under the conditions tested 3DG at concentrations 

of 80, 300 and 1000 ng/mL failed to alter STC-1 cell via-
bility (Fig. 2d). These results indicated an impaired GLP-1 
secretion in 3DG-treated rats.

Reduced expressions of TAS1R2, TAS1R3 and TRPM5 
in both duodenum and colon of rats 2 weeks 
after intragastric administration of 3DG
Since sweet taste receptors (TAS1R2-TAS1R3) in intes-
tine have been demonstrated to regulate GLP-1 secretion 
following sugar ingestion, we further examine the expres-
sions of sweet receptor subunits and its downstream 
molecular TRPM5 in duodenum and colon. After 50 mg/
kg 3DG administrated to rats for 2 weeks by gastric gav-
age, the protein expressions of TAS1R2, TAS1R3 and 

Fig. 2  Intragastric administration of 3DG for 2 weeks led to a decrease in GLP-1 secretion in rats n = 6 for each group. After 2 weeks of intragastric 
administration of 3DG, an OGTT was performed in rats fasted overnight. Plasma total GLP-1 concentrations (a) were measured with ELISA kits before 
and after oral glucose load (2.5 g/kg) in 3DG (5, 20, 50 mg/kg) or vehicle treated rats. b Basal plasma DPP-4 activity was measured in 3DG (5, 20, 
50 mg/kg) or vehicle treated rats. c STC-1 cells were exposed to different concentrations of 3DG (80, 300, 1000 ng/mL) for 6 h, and thereafter GLP-1 
concentration in the supernatant was measured by ELISA. d STC-1 cells were treated with different concentrations of 3DG (80, 300, 1000 ng/mL) for 
12 h and thereafter their viability was measured using an MTT assay. Values are mean ± SD. *p < 0.05, **p < 0.01 compared with control group at 
the same point (a). *p < 0.05, **p < 0.01, ***p < 0.001 compared with control group (a, b, c, d)
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TRPM5 in both duodenum (Fig. 3a) and colon (Fig. 3b) 
were significantly decreased. These observations further 
suggest a decreased GLP-1 secretion in 3DG-treated rats.

Reduced plasma insulin concentrations and elevated 
plasma glucagon concentrations in rats 2 weeks 
after intragastric administration of 3DG
Reduced plasma GLP-1 levels sometimes observed in 
T2DM have been suggested to be associated with an 
impaired insulin secretion. We examined plasma insulin 
concentrations before and 15 and 180  min points after 
an oral glucose load in rats. Under fasting conditions, 
plasma insulin concentrations were significantly lower in 
20 and 50 mg/kg 3DG-treated groups than that in control 
group (Fig.  4a). Plasma insulin concentrations markedly 
increased at 15  min in every group, whereas increase in 
plasma insulin concentrations was significantly lower in 

3DG-treated rats with either 20 mg/kg dose or 50 mg/kg 
does than that in control rats (Fig. 4a). Plasma insulin con-
centrations at 180 min returned to the basal level in every 
group, and 20 and 50 mg/kg 3DG-treated rats displayed 
lower insulin concentrations than those in the control rats 
at 180  min (Fig.  4a). Additionally, plasma glucagon con-
centrations before and 180  min after oral glucose load 
in rats were also examined. As shown in Fig. 4b, plasma 
glucagon concentrations in 3DG-treated rats with either 
20 mg/kg dose or 50 mg/kg does were higher than that in 
control rats 180 min after oral glucose loading. Similarly, 
the plasma glucagon concentrations at fasting conditions 
were significantly higher in 3DG-treated rats with either 
20 mg/kg dose or 50 mg/kg does than that in control rats 
(Fig.  4b). These results indicated that 3DG-treated rats 
displayed obviously pancreatic islet cell dysfunction that 
is one of the typical characteristic of T2DM.

Fig. 3  Reduced expressions of TAS1R2, TAS1R3 and TRPM5 in both duodenum and colon of rats 2 weeks after intragastric administration of 3DG 
n = 6 for each group. After 2 weeks of intragastric administration of 50 mg/kg 3DG, the duodenum and colon tissues were freshly isolated from rats. 
Representative western blotting analysis of protein expressions in duodenum (a) and colon (b) tissues using specific antibodies against TAS1R2, 
TAS1R3 and TRPM5

Fig. 4  Reduced plasma insulin concentrations and elevated plasma glucagon concentrations in rats 2 weeks after intragastric administration of 
3DG, n = 6 for each group. Plasma insulin concentrations (a) and glucagon concentrations (b) were measured before and after oral glucose load 
(2.5 g/kg) in 3DG (5, 20, 50 mg/kg) or vehicle-treated rats for 2 weeks. Values are mean ± SD. #p < 0.05, #p < 0.01 ###p < 0.001 compared with control 
group at the same point (a, b). *p < 0.05, ***p < 0.001 compared with control group (a, b)
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Intragastric administration of 3DG for 2 weeks caused 
normal rats to develop elevated fasting blood glucose 
concentration and impaired oral glucose tolerance
3DG has been suggested as an independent factor for 
the development of prediabetes. We also evaluated the 
effect of 3DG treatment on fasting blood glucose and 
oral glucose tolerance in rats. After oral administration 
of 20 and 50 mg/kg 3DG, the fasting blood glucose level 
of 3DG-treated groups were significantly higher than 
that of vehicle-treated group (vehicle vs. 20 mg/kg 3DG: 
4.32 ± 0.376 mmol/L vs. 4.89 ± 0.278 mmol/L, *p < 0.05; 
vehicle vs. 50  mg/kg 3DG: 4.32  ±  0.376  mmol/L vs. 
5.08 ±  0.327  mmol/L, *p  <  0.05) (Fig.  5a). As shown in 
Fig. 5b, the groups of 3DG-treated rats had impaired oral 
glucose tolerance in dose-dependent manner when com-
pared to that of vehicle-treated group (vehicle vs. 20 mg/
kg 3DG: at 30, 60, 90, 120, 180 min, #p < 0.05, #p < 0.05, 

##p  <  0.01, ###p  <  0.001, ##p  <  0.01, respectively; vehicle 
vs. 50 mg/kg 3DG: at 30, 60, 90, 120, 180 min, #p < 0.05, 
#p < 0.05, ##p < 0.01, ###p < 0.001, ##p < 0.01, respectively). 
Consistent results were obtained when the glycaemic 
response was expressed as the area under the curve 
(AUC) (Fig. 5c).

Discussion
The objective of this study was to investigate whether 
3DG is capable of accumulating in intestinal tissue of 
Sprague–Dawley (SD) rats after 2-week administration of 
3DG by gastric gavage and if so, the effects of intragastric 
administration of 3DG on plasma levels of GLP-1, insulin 
and glucagon, and glucose regulation are further inves-
tigated. We demonstrated for the first time that intra-
gastric administration of 3DG to rats for 2 weeks led to 
an obvious increase in 3DG content of the upper small 

Fig. 5  Intragastric administration of 3DG for 2 weeks caused normal rats to develop increased fasting blood glucose concentration and impaired 
oral glucose tolerance n = 6 for each group. a Fasting plasma glucose levels were measured in rats after 2 weeks of 3DG (5, 20, 50 mg/kg) or vehicle 
treated. b OGTT (2.5 g/kg) was performed after 2-week administration of 3DG (5, 20, 50 mg/kg) or vehicle in rats. c The glycaemic response was 
expressed as the area under the curve. Values are mean ± SD. #p < 0.05, ##p < 0.01 ###p < 0.001 compared with control group at the same point (b). 
*p < 0.05, ***p < 0.001 compared with control group (a, c)
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intestine, lower small intestine, ileum and colon, and 
reduced plasma total GLP-1 and insulin concentrations 
in a similar manner, in conjunction with increased fasting 
blood glucose concentration and reduced oral glucose 
tolerance. The reduced plasma GLP-1 levels occurred 
in conjunction with reduced expressions of TAS1R2, 
TAS1R3 and TRPM5 in duodenum and colon and plasma 
dipeptidyl peptidase-4 activity was not altered, which 
suggested a reduced GLP-1 secretion in 3DG-treated 
rats. Moreover, non-cytotoxic concentrations of 3DG 
directly attenuated GLP-1 secretion in STC-1 cells. From 
this study, we also observed that 3DG-treated rats dis-
played obviously pancreatic islet cell dysfunction char-
acterized by decreased plasma insulin level and elevated 
plasma glucagon level, associated with the development 
of impaired glucose regulation (IGR). Body weight was 
equivalent between 3DG-treated rats and vehicle-treated 
rats (data not shown).

A recent study on the influence of dietary on metabo-
lism of 3DG in healthy volunteers experimented by Julia 
Degen et  al. [34]., who speculated that orally ingested 
3DG remained in the content of gastrointestinal tract to 
a major degree. As previous reports have indicated that 
the absorption rate of 3DG from foodstuffs is very slow 
in a single administration study [32]. This idea is further 
strengthened by the results that 3DG content of intestinal 
tissues was significantly higher in rats 2 weeks after intra-
gastric administration of a high dosage (50 mg/kg) of 3DG 
than control rats, especially in colon section (Fig.  1a). 
Furthermore, increased 3DG content in colon section 
was also observed in rats after administration of a lower 
dosage (20 mg/kg) of 3DG (Fig. 1b). Similar with the dis-
tribution of 3DG in intestinal tissue, it has been reported 
that GLP-1 is secreted postprandially by intestinal L-cells 
that increase in density along the intestine and are found 
in highest amount in the colon [35]. In the present study, 
plasma GLP-1 concentrations decreased after intragastric 
administration of 3DG (Fig.  2a). Furthermore, at con-
centrations similar to those obtained from intestinal tis-
sues contents in 3DG-treated rats, 3DG directly reduced 
GLP-1 secretion in the STC-1 cells in a dose-dependent 
manner (Fig.  2c) together with the unaltered plasma 
DPP-4 activity in 3DG-treated rats (Fig.  2b), indicating 
that accumulation of 3DG in intestinal tissue could reduce 
GLP-1 secretion in rats. Additional, although no effect 
was observed in response to 5 mg/kg of 3DG on any of the 
parameters, the 5  mg/kg 3DG group had similar GLP-1 
content in colon section compared with the control 
group, and further support for the notion that decreased 
GLP-1 secretion was the result of increased 3DG con-
tent in intestinal tissues. This idea was also supported 
by the results that 3DG-treated rats displayed reduced 

expressions of TAS1R2, TAS1R3 and TRPM5 in duo-
denum and colon (Fig. 3). Several lines of evidence have 
demonstrated that sweet taste receptors in intestine reg-
ulate GLP-1 secretion following sugar ingestion [36, 37]. 
Furthermore, disruption of sweet taste receptors action in 
animal experiments and L-cell model, using antagonists 
or genetic manipulation, displayed significantly reduced 
glucose-stimulated GLP-1 secretion [36–38]. Therefore, 
the attenuated GLP-1 secretion in 3DG-treated rats could 
be responsible for the decreased plasma GLP-1 concen-
trations. In addition, there was no significant difference 
in AGEs levels in the colon section between 20  mg/kg 
3DG-treated group and the corresponding control group 
(Additional file  1: Figure S1). These results clearly indi-
cates that 3DG was capable of accumulating in intestinal 
tissue of rats 2 weeks after administration of 3DG, which 
led to reduced GLP-1 secretion independently from AGEs 
action. Additionally, reduced expressions of TAS1R2, 
TAS1R3 and TRPM5 in duodenum and colon (Fig. 3) also 
provide an explanation for the results that 3DG treated 
decreased GLP-1 secretion in vitro and in vivo. Research 
for the confirmation of this mechanism is in progress. 
Although treatment of STC-1 cells with 3DG at concen-
trations similar to those obtained from intestinal tissues 
contents in 3DG-treated rats failed to alter cell viability 
(Fig. 2d), whether intragastric administration of 3DG for 
2 weeks also could result in increased apoptosis of GLP-
1-secreting cells in vivo remains unknown and deserves to 
be further investigated.

IGR, sometimes referred to as prediabetes includ-
ing isolated impaired glucose tolerance (IGT), isolated 
impaired fasting glucose (IFG) or combined IGT/IFG, is 
a high risk state for developing diabetes [39]. It has been 
reported that intragastric administration of 3DG for 
2  weeks increased plasma glucose level under oral glu-
cose tolerance tests (OGTT) in normal mice [15]. Such an 
effect was also observed in our present study. The intra-
gastric administration of 3DG for 2 weeks caused normal 
SD rats to develop IFG (Fig. 5a) in conjunction with IGT 
(Fig.  5b) and increased AUC (Fig.  5c) in dose-depend-
ent manner. Furthermore, treatment with 3DG resulted 
in reduction of GLP-1 secretion (Fig. 2) and sweet taste 
receptors expression in duodenum and colon (Fig. 3). In 
support of the observations by other studies, (i) disrup-
tion of the GLP-1 receptor action in mice caused IFG and 
IGT [40]; (ii) reduced glucose tolerance was observed in 
the TAS1R3−/− mice [41]. Additionally, we also observed 
the elevated plasma glucagon levels in 3DG-treated in 
addition to decreased plasma insulin levels (Fig. 4). The 
main pathophysiological feature of T2DM is pancreatic 
islet cell dysfunction which manifests as both insuffi-
cient insulin secretion from β cells and inappropriately 
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elevated glucagon secretion from α-cell [42]. Therefore, 
we obtained a conclusion that 3DG-treated SD rats dis-
played typical pancreatic islet cell dysfunction, suggesting 
the pancreatic islet cell dysfunction occurred prior to the 
development of T2DM.

It is now generally accepted that GLP-1 has a broad role 
in glucose homeostasis, in great part through stimula-
tion of nutrient-induced insulin secretion from pancreatic 
β-cells [35]. In healthy individuals, insulinotropic effects 
of GLP-1 accounted for 50–70% of prandial insulin secre-
tion from pancreatic β-cells [43]. As previous reports 
have documented that administration of GLP-1 to T2DM 
significantly enhanced and may even restore to normal 
glucose-induced insulin secretion [44, 45]. In T2DM, 
reduced postprandial GLP-1 concentrations in T2DM 
have been suggested to result in an impaired insulin secre-
tion [23]. This hypothesis is supported by the results that 
intragastric administration of 3DG for 2 weeks decreased 
plasma GLP-1 concentrations at fasting and 15 and 
180 min points during an oral glucose load in rats (Fig. 2a) 
and at the same points with insulin (Fig. 4a). In addition, 
disruption of GLP-1 action in animal experiments, using 
antagonists or genetic manipulation, displayed signifi-
cantly reduced insulin secretion [46, 47]. From above, it 
was concluded that the decreased plasma GLP-1 con-
centrations in rats induced by intragastric administra-
tion of 3DG resulting from a decreased GLP-1 secretion 
led to reduced plasma insulin concentrations and thereby 
resulted in IGR. Thus, the reduced GLP-1 secretion 
sometimes observed may explain part of impaired incre-
tin effect in T2DM. Additionally, (i) GLP-1 is known to 
induce the β-cells proliferation, and GLP-1R−/− mice 
exhibit increased susceptibility to β-cell apoptosis injury 
[48]; (ii) GLP-1 also reduces glucagon secretion, and the 
GLP-1 secretion in present study was accompanied by 
an increased in plasma glucagon concentrations (Fig. 4). 
These observations also support the above suspection. 
Thus, a decrease in the biological function of GLP-1 from 
reduced GLP-1 secretion could result in an impaired insu-
lin secretion but may not the only cause. For example, 
whether intragastric administration of 3DG for 2  weeks 
increases plasma 3DG levels in rats is unknown. And if 
so, whether increased plasma 3DG directly affects insulin 
secretion from β-cells will be investigated.

Conclusions
Our study demonstrated for the first time that 3DG 
was capable of accumulating in intestinal tissue and 
decreased secretion of GLP-1 and insulin in a similar 
manner in rats after 2-week oral administration of 3DG. 
We also found that 3DG-treated rats displayed obvi-
ously pancreatic islet cell dysfunction that is one of the 
typical characteristic of T2DM. Our data indicate the 

possibility that a decrease in the biological function of 
GLP-1 resulting from the decreased GLP-1 secretion by 
the accumulation of intestinal tissue 3DG is the most 
primary mechanism for the impaired insulin secretion, 
which ultimately promoted the development of IGR. 
These results provide insights into a potential action 
pathway linking some non-digestible dietary ingredients 
intake and development of diabetes. It will also con-
tribute to a better understanding of the significance for 
restoring physiological GLP-1 secretion, and could lead 
to a new strategy to prevent the development of predia-
betes or reverse IGR states.
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