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Abstract

Background: PPARy is a member of the nuclear hormone receptor superfamily. It has been considered as a mediator
regulating metabolism, anti-inflammation, and pro-proliferation in the Vascular Smooth Muscle Cells (VSMCs).
Thiazolidinediones (TZDs), synthetic ligands of PPARy, have anti-proliferative and pro-apoptotic effects on VSMCs, which
prevent the formation and progression of atherosclerosis and restenosis following percutaneous coronary intervention

(PCl). However, the underlying mechanism remains elusive. This present study therefore aimed to investigate the
signaling pathway by which pioglitazone, one of TZDs, inhibits proliferation and induces apoptosis of VSMCs.

Methods: The effects of pioglitazone on VSMC proliferation and apoptosis were studied. Cell proliferation was
determined using BrdU incorporation assay. Cell apoptosis was monitored with Hoechst and Annexin V staining. The
expression of caspases and cyclins was determined using real-time PCR and Western blot.

Results: Pioglitazone treatment and PPARy overexpression inhibited proliferation and induced apoptosis of VSMCs,
whereas blocking by antagonist or silencing by siRNA of PPARy significantly attenuated pioglitazone’s effect.
Furthermore, pioglitazone treatment or PPARy overexpression increased caspase 3 and caspase 9 expression, and
decreased the expression of cyclin BT and cyclin D1 in VSMCs.

Conclusions: Pioglitazone inhibits VSMCs proliferation and promotes apoptosis of VSMCs through a PPARy signaling
pathway. Up-regulation of caspase 3 and down-regulation of cyclins mediates pioglitazone’s anti-proliferative and
pro-apoptotic effects. Our results imply that pioglitazone prevents the VSMCs proliferation via modulation of caspase
and cyclin signaling pathways in a PPARy-dependent manner.
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Introduction

Proliferation and apoptosis of the Vascular Smooth Muscle
Cells (VSMCs) play a key role in the development and
progression of the atherosclerosis and restenosis after
percutaneous coronary intervention (PCI) [1,2]. Several
signaling pathways are involved in the progression of
atherosclerosis and restenosis and the key players
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include peroxisome proliferators-activated receptor gamma
(PPARY) [3], platelet-derived growth factors (PDGF) [4],
endothelin-1 (ET-1) [5], thrombin, fibroblast growth factor
(FGF) [6]. Activation and interplay of these molecules in-
duce the proliferation and migration of VSMCs, leading to
formation of artery plaque. Several drugs, such as pioglita-
zone, a synthetic ligand of PPARYy, have been developed to
treat and prevent the proliferation of VSMCs by targeting
individual factors of these pathways.

PPARy is a member of the nuclear hormone receptor
superfamily [7]. It has been initially considered as a
mediator regulating glucose and lipid metabolism. More
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recently, studies have revealed the presence of PPARY in
endothelial cells (ECs), VSMCs, macrophages and cardi-
omyocytes. PPARy has multiple functions, including
anti-inflammation and pro-proliferation in VSMCs [8].
Apoptosis is an important contributor to the formation
of atherosclerosis, especially in the process of restenosis
after PCL. PPARy has anti-apoptotic effect herein by
modulation of caspase 3 [9].

Pioglitazone is commonly used as a primary anti-
diabetic drug. Previous studies have shown that pioglita-
zone was able to inhibit the proliferation and induce
apoptosis of VSMCs [10,11]. However, the underlying
mechanisms have not been well understood yet. Hence,
the aim of present study was to determine if pioglitazone
regulates cell cycle and caspase cascades, leading to an
inhibition in VSMCs proliferation.

Materials and methods

Cell culture and in vitro cell treatment

Human coronary artery smooth muscle cells (Lonza,
Basel Switzerland) were grown and maintained in SmGM-
2 media (Lonza, Basel Switzerland) supplemented with 2%
fetal calf serum, 10 ng/mL human epidermal growth fac-
tor, 1.0 mg/ml hydrocortisone, 12 mg/mL bovine brain ex-
tract, 50 mg/mL gentamicin, and 50 ng/mL amphotericin
B at 37°C in 5% CO, atmosphere. The purity of each
VSMCs preparation in culture (>99%) was confirmed by
immunocytochemistry for a-smooth muscle actin. VSMCs
between passage 2 and 6 were used for following
experiments. VSMCs (1 x 10°) were treated for 24 h in
medium containing vehicle (0.5% methyl cellulose),
10 uM pioglitazone or 1 uM GW9662, (Sigma). To
over-express PPARy-1 in VSMCs, cells were transduced
with the recombinant adenovirus at titers of 100 MOI
for 24 hours. Wild type PPARy-1 adenovirus (Ad-wt-
PPARy) and mutation PPARy-1 adenovirus were kind
gifts from Dr. Qinglin Yang (Morehouse School of Medi-
cine, Atlanta, USA). According to the principles of siRNA
design and the PPARy gene sequence (GenBank Accession
No. NM_005037), the duplexes of specific siRNA sequences
5-GTTCAAACACATCACCCCC-3" was synthesized, non
targeting siRNA: 5'-GCATATTGTCTATGACCAACT-3".

Adenoviral transduction of VSMCs

The resultant recombinant virusmids were transfected
into packaging cells HEK293 to generate recombinant
adenoviruses. The primary crude lysates of the recombin-
ant adenoviruses were prepared and purified by cesium
chloride gradient ultracentrifugation as viral stocks and ti-
trated using a standard plaque assay. VSMCs were seeded
at a density of 2 x 10° in one 6-cm dish in antibiotic-free
medium containing 10% serum before incubation with the
transduction reagent Oligofectamine (Invitrogen Carlsbad,
CA). One day later, cells were transduced with the
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recombinant adenovirus at titers of 100 MOI for
24 hours following the manufacturer’s protocols. For
co-transduction studies, attractene (Qiagen) was employed
as the transduction agent following the manufacturer’s
recommendations, and non-targeting siRNA was used as
experimental controls. During the final 24 hours of trans-
fection, cells were treated with either vehicle (0.5% methyl
cellulose) or pioglitazone (1 uM) [12].

BrdU cell proliferation assay

The cell proliferation assay was performed by measuring
5-Bromo-2’-deoxy-uridine (BrdU) (Roche Applied Sci-
ence, USA) incorporation into the newly synthesized
DNA of replicating cells. To determine cell proliferation,
VSMCs were plated in 96-well plates and allowed to
attach for 24 hours. Cells were then treated with 1 uM
Pioglitazone, 10 uM GW9662 or transduced with the
recombinant adenovirus for 24 hours. The cells were
loaded with BrdU in the last 4 hours of treatment. BrdU
incorporation was quantified by an immunofluorescence
assay kit (Roche Applied Science, USA) following manu-
facturer’s instructions. Three fields were chosen ran-
domly from various sections to ensure objectivity of
sampling. Digital images were acquired using a confocal
microscope. Each assay repeated three times. The total
100 cells from each field were counted, and BrdU posi-
tive cell and the ratio of BrdU positive cell versus 100
cells were calculated using a confocal microscope. Each
assay repeated three times.

Apoptosis of VSMCs detected by Hoechst staining

To evaluate morphologic changes of apoptotic VSMCs,
morphology and apoptosis assay were performed using
the Hoechst staining as described previously [9]. Briefly,
cells were seeded on chamber slides, treated with 1 uM
Pioglitazone, 10 uM GW9662 or transduced with the re-
combinant adenovirus for 24 h. Cells then were washed,
fixed and stained with Hoechst 33258 (Sigma, St. Louis,
MO). Dead cells and apoptotic bodies were identified by
condensed or fragmented nuclei using a Nikon confocal
microscope. The apoptotic scores were counted from
five randomly selected fields by direct counting 500 cells
in each sample using a blinded method [13]. The per-
centage of apoptotic cells was calculated as the number
of apoptotic cells divided by the number of total cells.

Measurement of apoptosis by flow cytometry

Apoptosis was measured using the FITC-Annexin V
Apoptosis Detection kit (BD Bioscience, San Diego, CA)
as described previously with modifications [14]. Briefly,
VSMCs were harvested, incubated and treated with
10 uM GW9662, 1 uM pioglitazone or transduced with
the recombinant adenovirus for 24 h. After cell treat-
ment, VSMCs were washed twice with cold PBS and
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resuspended in 1x binding buffer, (10 mM HEPES/NaOH,
pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) at a concentration
of 1x10° cells/ml. Then 1 x 10> cells in 100 pl binding
buffer were transferred to 5 ml tubes and stained with 5 ul
of FITC-Annexin V and 5 pl propidium iodide (PI). The
cells were gently mixed and incubated at room tem-
perature for 15 min. After washing the cells with 1x bind-
ing buffer to remove the excess FITC-Annexin V and PI,
the cells were analyzed on a FACScan flow cytometer,
which the wavelength of excitation and emission were
488 nm and 525 nm, respecrively. The data were analyzed
using CellQuest software.

Detection of active caspases 3/7, 8 and 9 in VSMCs
Caspases activities were measured using the Vybrant
FAM caspase 3/7, 8 and 9 Assay Kit (Molecular Probes,
Invitrogen) according to the manufacturer’s recommen-
dations after the incubation of cells with pioglitazone
(1uM), GW9662 (10uM), or transduced with the recom-
binant adenovirus for 24 h. The assay was performed on
a fluorescent inhibitor of caspases (FLICA) methodology.
The increase in the caspases activities was determined
by comparing these results with the level of the un-
treated control. Samples analyzed on a FACScan flow
cytometry with 488 nm excitation and green emission
for the FLICA-stained cells.

Western blot

After cell treatment, VSMCs were washed with phosphate-
buffered saline (PBS) and lysed in RIPA buffer (Biotech,
Shanghai, China). After one freeze/thaw cycle, lysates were
centrifuged. Protein concentration was determined by a
BCA protein assay (Biotech, Shanghai, China) using
bovine serum albumin as the standard. A quantity
amounting to 10 pg of protein sample was subjected to
SDS-polyacrylamide gel electrophoresis. Proteins were
then transferred to an ECL nitrocellulose membrane
(Millipore). Incubating the membrane in Superblock
(Pierce) for 1 h blocked nonspecific binding. Membranes
were then incubated overnight at 4°C in primary anti-
bodies, PPARy1, Cyclin D1, Cyclin Bl/cdc2 and p-actin
(AbCam: ab8924, ab95281, ab7959, ab1801). All primary
antibodies dilution was 1:1000 in each reaction. The blots
were washed three times with TBST buffer and then incu-
bated for 1 h at room temperature with anti-rabbit sec-
ondary antibody conjugated with horseradish peroxidase.
Western blot analysis was conducted according to stand-
ard procedures using Supersignal chemiluminescence
detection substrate (Pierce).

Real time RT-PCR

Total RNA was extracted from VSMCs using TRIZOL
reagent (Invitrogen, Carlsbad, CA, USA). cDNA was
synthesized from 0.5 pg of total RNA with superscriptor
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reverse transcriptase (Invitrogen, Carlsbad, CA, USA).
The following specific primers were used: PPARy-forward:
5"-GCCCTTTACCACAGTTGATTTCTCCA-3"; PPARy-
reverse: 5'-TATCCCCACAGACTCGGCACTCA-3’; Cyc-
lin Bl/cdc2-forward: 5'-CTGGGTCGGGAAGTCACTGG
AAAC-3’; Cyclin Bl/cdc2-reverse: 5'-GCAGCATCTTCT
TGGGCACACA-3’; Cyclin D1-forward: 5'-AGGCGGAG
GAGAACAAACAGATCA-3’; Cyclin Dl-reverse: 5'-AGA
GGAAGCGTGTGAGGCGGTAGTA-3; p-actin-forward:
5-TTTTGTGCCTTGATAGTTCGC-3'; B-actin- reverse:
5-GAGTCCTTCTGACCCATACCC-3'. The real-time
PCR analysis was performed using SyBR-Green mix (Ap-
plied Biosystems, Carlsbad, CA) on a 7500 Real Time PCR
station (Applied Biosystems). The results for real-time
PCR were calculated as ratio target gene expression
(experimental/ control) and were expressed as fold change.
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Figure 1 Validation of overexpression and silencing of PPARy.
A. Overexpression and silencing of PPARy in VSMCs. VSMCs were
transduced with Ad-mu-PPARy, Ad-wt-PPARy or Ad-siRNA-PPARy,
respectively. Cell pellets collected from different groups as indicated were
probed against PPARy and B-actin by Western blot. B. Quantification of
PPARy. The levels of PPARY from distinct groups in (A) were quantified
and normalized to the level of control. *P < 0.05, **P < 0.001. Each
experiment has been repeated three times.
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Statistical analysis

SPSS 11.0 software was used to for data analysis. Data
were presented as mean + SEM. Student’s t-test was em-
ployed to assess the statistical significance. P <0.05 was
regarded as significant.

Results

Manipulation of PPARy expression in VSMCs

The expression levels of PPARy in VSMCs were evaluated
by Western blot after transduction with Adenovirus en-
coding wild type PPARy (Ad-wt-PPARy), mutant PPARy
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(Ad-mu-PPARy), or siRNA against PPARy (Ad-siRNA-
PPARY). As shown in Figure 1, PPARY protein levels were
significantly increased in cells transduced with Ad-wt-
PPARy compared to Ad-mu-PPARy (3.8 £ 0.57 vs. 1.09 +
0.12, P<0.05) (Figure 1B). On the other hand, silencing
PPARy in VSMCs has been achieved by Ad-siRNA-
PPARy comparing with Ad-wt-PPARy was 0.34 + 0.02 vs.
3.8+0.57 (P<0.001), and Ad-siRNA-PPARy comparing
with Ad non targeting siRNA was 0.147 + 0.03 vs. 0.2415 +
0.15 (P <0.05) (Figure 1B). The efficiency of overexpres-
sion and knockdown of PPARY has been determined.
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Figure 2 Pioglitazone induced proliferation of VSMC through PPARy. A. Proliferation of VSMCs is regulated by pioglitazone through PPARy
signaling pathway. VSMCs alone (control), transduced with Ad-vector, Ad-wt-PPARYy, or siRNA-PPARy were labeled with BrdU, respectively. In
addition, VSMCs treated with pioglitazone (PIO) (1uM), wt-PPARy-overexpressing VSMCs treated with PIO (Pio + wt-PPARy), and PPARy silenced
VSMCs treated with PIO (Pio + siRNA) were harvested 24 h later after treatment followed by BrdU labeling. The BrdU positive VSMCs from
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indicated groups were recorded by confocal microscopy (600x). BrdU positive VSMCs cells from wt-PPARy, PIO + wt-PPARy, and PIO alone groups
were less than those from control and vector alone groups. On the other hand, the addition of PIO in the absence of PPARy (PIO + siRNA-PPARy)
and GW6992 alone induced the proliferation of VSMCs. The data is the representative of three individual experiments. B. The ratio of BrdU positive
cells to total cells was quantified. The BrdU positive cell numbers and total cell numbers from each field were counted and the ratio of BrdU
positive cell versus total cell numbers was calculated. **P < 0.01, *P < 0.05. Each experiment has been repeated three times.
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Pioglitazone inhibits VSMCs proliferation through PPARy
signaling pathway

We initially investigated whether pioglitazone inhibits
proliferation of VSMCs. VSMCs were treated with
pioglitazone (PIO), and the cell proliferation was deter-
mined by BrdU assay 24 hours later. As shown in
Figure 2, a significant decrease in cell proliferation was
observed in the PIO treated group compared with
controls (0.051 +0.01 vs. 0.175 + 0.031, P < 0.05).

We next determined if PPARy pathway mediates pio-
glitazone’s anti-proliferative effect. VSMCs were treated
with GW9662, a potent antagonist of PPARy. GW9662
treatment significantly enhanced VSMCs proliferation
(0.248 £+ 0.054 vs. 0.175+0.031, P<0.05) (Figure 2).
Furthermore, PPARY silenced VSMCs were treated with
pioglitazone. Interestingly, PPARY silencing by siRNA in
VSMCs totally abolished the inhibitory effects of PIO
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(0.279 £ 0.009 vs. 0.051 + 0.01, P<0.001) (Figure 2). Our
results indicate that anti-proliferative effect of pioglita-
zone is mediated by PPARYy signaling pathway.

Pioglitazone induced apoptosis in VSMCs

The viability of VSMCs was detected with chromatin
condensation under the fluorescence microscope. Pio-
glitazone treatment or PPARy overexpression signifi-
cantly increased the numbers of condensed chromatin
positive cells (5.51 +2.14% vs. 3.21 £ 0.27%, P < 0.01; and
6.32+1.47% vs. 3.21 + 0.27%, P < 0.001, respectively), indi-
cating an increase in VSMC apoptosis by pioglitazone
treatment. In contrast, GW9662 and PPARYy silencing sig-
nificantly reduced cell numbers of undergoing apoptosis
(1.67 £0.15% vs. 3.21+0.27%, P<0.01, and 1.17 £+ 0.16%
vs. 3.21 £ 0.27%, P < 0.001, respectively) (Figure 3).
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Figure 3 Induction of chromatin condensation of VSMCs by piolitazone. A. Pioglitazone induced chromatin condensation in the nuclei of
VSMCs. VSMCs were seeded on top of coverslips and transfected with vector, wt-PPARy, or siRNA-PPARy, respectively. Cells (non-transduced and
transduced) were then treated with different drugs as shown followed by Hoechst staining. Arrows indicate the nuclei with condensed chromatin.
B. Quantification of condensed chromatin from apoptotic VSMCs. The numbers of VSMCs from different treatments were counted. The percentage of
condensed-chromatin positive cells was determined. **P < 0.001, *P < 0.01. Values are presented as the mean + SEM of three different fields. Each
experiment has been repeated three times.
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The capability of pioglitazone to induce the apoptosis
of VSMCs has been further confirmed using Annexin V
staining (Figure 4). The frequency of the Annexin V*/PI’
cell population, which represents early apoptotic cell
subset, has been indicated (Figure 4A). Pioglitazone
increased apoptosis (6.38 +1.78% vs. 3.42 +0.16%, P <
0.001) and GW9662 reduced apoptosis (2.03 £0.11% vs.
3.42+0.16%, P<0.01). Overexpression of PPARy was
able to induce apoptosis of VSMCs (6.09+0.12% vs.
3.58 +0.04%, P < 0.001). This effect was further enhanced
by the treatment of pioglitazone (7.05+ 0.24 vs. 3.58 +
0.04%, P < 0.001). Silencing PPARy completely blocked the
induction of apoptosis mediated by Pioglitazone (Figure 4).
These results suggest that pioglitazone induced VSMC
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apoptosis is in a PPARy dependent pathway (Figure 4),
which is in consistent with the results from BrdU staining
(Figure 3).

Pioglitazone treatment activates caspase3/7 and 8

Activated caspase 3/7 is a critical effector in the apoptosis
signal pathway. Caspase 8 is a factor related to the extrin-
sic pathway, and caspase 9 is a key member along with
intrinsic pathway. To further investigate whether activated
caspases were involved in anti-proliferative effect of pio-
glitazone, activities of caspase3/7, 8, 9 were measured in
PIO treated VSMCs. As shown in Figure 5, PIO treatment
resulted in significant increases in activated caspase 3/7
(121.67 £ 3.06%) and caspase 8 (151.2 + 7.03%), but not in
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Figure 4 Pioglitazone induced apoptosis of VSMCs. A. Pioglitazone-treated VSMCs are inclined to apoptosis. Cultured VSMCs were transfected
with vector, wt-PPARYy, or siRNA-PPARy, respectively. Cells (non-transdued or transduced) were then treated with different drugs as indicated.
VSMCs from distinct groups were then harvested and subjected to Annexin V staining. The representative staining plots (A) and the frequency of
apoptotic cells from three independent experiments (B) was shown. The numbers indicate the frequency of the Annexin V+/PI- cell population.
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Figure 5 Pioglitazone regulated activities of caspases. A. The
activity of the effector caspase3/7 was shown in the control,
GW9662, Pioglitazone, PIO + siRNA-PPARy and PIO + wt-PPARy
treated VSMCs, respectively. B. The activity of the initial caspase of
intrinsic pathway-caspase8 in different gr006Fups. C. The activity of
the initial caspase of extrinsic pathway-caspase9 in different groups.
**P <0001, **P < 0.0001. The activity of different caspases is normalized
to the control (100%). Percentage is presented as the mean + SEM of
triplicates. Each experiment has been repeated three times.

activated caspase 9. A similar effect was seen when wt-
PPARy was overexpressed in VSMCs (137.76 +1.91%,
173.56 + 13.12%). In contrast, GW9662 treatment resulted
in significant decreases in the activation of caspase 3/7
(20.67 £ 2.51%) and caspase 8 (42.27 + 1.46%) (Figure 5).
Silencing PPARy inhibited pioglitazone’s effect on the
activation of caspase 3/7 (10.67 + 1.53%) and caspase 8
(24.67 + 3.1%), but has no influence on caspase 9 activa-
tion (Figure 5). These results suggest that pioglitazone
activates the extrinsic, not the intrinsic pathway through a
PPARYy dependent pathway.

Effect of pioglitazone on cyclins in VSMCs

To address the possibility that the down-regulation of
cyclins in pioglitazone treated VSMCs resulted in the in-
hibition of cell proliferation, the effect of pioglitazone on
transcription and expression levels of cyclin Bl and D1
were examined by RT-PCR and Western blot. As shown
in Figure 6, pioglitazone treatment significantly down-
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regulated expression of cyclin Bl and cyclin D1 at both
mRNA (0.46 +0.08, 0.41 +£0.11) and protein (0.75 + 0.12,
0.54£0.17) levels. In contrast, GW9662 up-regulated
the mRNA (2.73 £0.22, 1.49 + 0.31) and protein (2.18 +
0.25, 3.32 £ 0.72) levels of cyclin Bland cyclin D1. More-
over, PPARy silencing completely abolished pioglita-
zone’s effect. These results suggest that cyclin pathway
may involve in anti-proliferative effect of pioglitazone.

Discussion

The restenosis after PCI has become one of the most
concerned issues worldwide [15]. The proliferation and
apoptosis of VSMCs play critical roles in this pathologic
process [16]. Thus, many therapeutic treatments focused
on preventing VSMC proliferation and inducing apop-
tosis in VSMCs. TZD is one of the most well studied
agents. TZDs are synthetic ligands of PPARy, which is a
member of the nuclear hormone receptor super-family.
TZDs are primarily used as anti-diabetes drugs. TZD
has also been indicated to have an anti-proliferative
function in rat renal arteriolar smooth muscle cells [17].
Recently, given their anti-proliferative and pro-apoptotic
effect, TZDs have been considered as novel drugs to pre-
vent or even reverse the formation of atherosclerosis
and post-PCI restenosis. Importantly, TZDs do not in-
crease the risk of overall cardiovascular morbidity or
mortality in comparison with standard glucose-lowering
drugs [18,19], although there was the controversy that
TZDs might potentially lead to serious adverse cardio-
vascular effects, such as heart failure after treatment
with rosiglitazone for type 2 diabetes [20-22] . However,
the mechanisms by which TZDs regulate VSMC prolifer-
ation have not been determined.

Previous studies have shown that TZDs suppress the
expression of inflammatory molecules, including TNF
(tumor necrosis factor)-a, MCP (monocyte chemotactic
protein)-1, IL-1p and IL-6 in VSMCs [23,24]. Moreover,
recent studies have revealed that c-fos was involved in
PPARYy agonists- induced growth suppression in VSMCs,
and TZDs inhibited the expression of c-fos via the block-
ade of MAPK pathway [25]. Furthermore, Eukaryotic initi-
ation factor 4E-binding protein (4EBP) and Src homology
2—containing inositol phosphatase 2 (SHIP2) mediate the
inhibitory effects of TZD on cell growth [26]. Finally, it
has been shown that TZDs prevent G1/S phase transition
in PDGF or insulin stimulated VSMCs, suggesting that
TZDs can induce cell cycle arrest [27].

It has been known that TZDs have anti-proliferative
effect in different cell types via PI3-Kinase pathway [28].
However, whether this effect is PPARy-dependent re-
mains to be clarified [29,30]. The effects of PPARy in
the vascular cells indicate its beneficial function in vas-
cular disorders including hypertension and atheroscler-
osis [31]. Goetze group [29] has shown that troglitazone
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Figure 6 Pioglitazone down-regulated the expression levels of the cyclin B1 and cyclin D1 in VSMCs. A, B, The protein levels of cyclin B1
and cyclin D1 from VSMCs treated with GW9662, Pioglitazone, PIO + wt-PPARy, or PIO + siRNA-PPARy were analyzed by Western blot, respectively.
C, D. The protein levels of cyclin BT and cyclin D1 from VSMCs transduced with control, Ad-wt-PPARy or Ad-siRNA-PPARy were shown. One
representative blot is shown. Each experiment has been repeated at least three times. E and F, the mRNA levels of cyclin B1 and cyclin D1 in
VSMCs treated with GW9662, Pioglitazone, PIO + wt-PPARy, or PIO + siRNA-PPARy were analyzed by real-time RT-PCR. The transcripts of cyclin B1
and cyclin D1 were also determined in PPARy-overexpressed or -silenced VSMCs. Values are presented as the mean + SEM. *P < 0.01, **P < 0.001.
Each experiment has been repeated three times.

inhibited insulin-induced mitogenic signaling through a
PPARy-mediated inhibition of ERK-dependent phos-
phorylation and activation of nuclear transcription fac-
tors. However, this group revealed that TZDs activated
MEK/ERK pathway through PI3-kinase and promoted
c-fos mRNA expression and DNA synthesis, a process
independent of PPARy pathway [30]. Cersosimo group
suggested pioglitazone preserved Akt phosphorylation
and attenuates MAPK signaling in insulin-stimulated
VSMC s, and may play a role in arterial smooth muscle
cells migration, proliferation, and inflammation in

conditions of acute hyperinsulinemia [32]. In our study,
we found that pioglitazone treatment and PPARy over-
expression inhibited VSMC proliferation. Whereas silen-
cing PPARy with siRNA attenuated the inhibitory
effects. These results clearly indicate that the PPARy
signaling pathway is involved in anti-proliferative effect
of pioglitazone. Pioglitazone is already shown to inhibit
in-stent neointimal formation in humans [33].

Cyclins play critical roles in cell cycle regulation, espe-
cially cyclin B1 and cyclin D1 [34]. PPARy ligands inhib-
ited G; to S transition by inhibiting the expression of
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minichromosome maintenance (MCM) gene, one of the
downstream effector factors of pRB/E2F pathway [35].
Stimulation of PPARY induced the arrest of cell cycle,
accompanied by the down-regulation of cyclin D and
cyclin B in VSMCs [36-39]. To determine the detailed
mechanisms by which pioglitazone regulates VSMC pro-
liferation, in this study the mRNA and protein levels of
cyclin B1 and cyclin D1 were tested. We found that pio-
glitazone treatment and PAPRy overexpression signifi-
cantly down-regulated both mRNA and protein levels of
cyclin Bl and cyclin D1. These results suggest that the
beneficial functions of the TZDs are mediated, at least in
part, by regulating the expression and transcription of
cyclin B and cyclin D.

Aside from the impact of proliferation of VSMCs on
the formation of atherosclerosis and restenosis, the
apoptosis of VSMC also plays an important role in these
processes. The pro-apoptotic effect of PPARy in VSMCs
has been reported. Bruemmer’s group revealed that the
Oct-1 protein was regulated by the TZDs, which in turn
induced overexpression of the growth arrest and DNA
damage inducible protein 45(GADD45) gene, ultimately
leading to the apoptosis of VSMCs [40]. Other groups
have shown that pioglitazone also activated TGF (Trans-
forming Growth Factor)-B-smad2-GADD45 pathway
[41,42]. Pioglitazone induced apoptosis in VSMCs through
Smad2 phosphorylation [11]. Caspases are a family of
cysteine proteases that play important roles in apop-
tosis. Caspase 8 and caspase 9 are the two initiative cas-
pases involved in both extrinsic and intrinsic apoptotic
pathways, while caspase 3 is a terminal effector caspase
[43]. Bruedigam group showed that rosiglitazone stimu-
lated mineralization by induction of caspase-dependent
apoptosis [44]. Here, we found that pioglitazone treat-
ment and PPARY overexpression induced activation of
caspase 8 and caspase 3/7, indicating that pioglitazone
induces VSMC apoptosis through the extrinsic caspase
pathway.

In summary, our study shows for the first time the regu-
latory pathways involved in the anti-proliferative effect of
pioglitazone in VSMCs. Pioglitazone treatment inhibits
proliferation of the VSMCs and induces VSMC apoptosis
in a PPARy-dependent pathway. Down-regulation of cyc-
lin Bl and cyclin D1 and activation of caspase 8 and
caspase 3/7 may be one of the mechanisms by which
pioglitazone inhibits VSMC proliferation.
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