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syndrome are also discussed.
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The body's total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A
decrease in the body’s antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a
clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is
one of the major components of the body's total antioxidant defense system, primarily through its xenobiotic/drug
biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous
glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending
on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin’s
antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature) may increase the
risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated
detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic
syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic
syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn) and metabolic

Keywords: The skin, Antioxidant defense, Xenobiotic, Lipid homeostasis, Sedentary lifestyle, Metabolic syndrome,

Introduction
The metabolic syndrome (MetS), which is characterized by
obesity, insulin resistance, dyslipidemia, and hypertension,
is thought to be a driver of the modern-day epidemics of
type 2 diabetes and cardiovascular disease [1,2]. Over the
past few decades, there has been an alarming increase in
the prevalence of MetS. Approximately one third of the
adult population in developed countries can be categorized
as having MetS by different definitions [3]. Most evidently,
the rise of the epidemic of obesity, a major component of
MetS, seemed to begin almost concurrently in most high-
income countries in the 1970s and 1980s, which is thought
to result from changing global food system and increas-
ingly sedentary lifestyles, especially the former [4]. How-
ever, the exact cause remains under investigation.
Oxidative stress, which is thought to play a central
pathogenic role in the pathogenesis of MetS, is a condition

* Correspondence: zhouss@ymail.com

'Department of Physiology, Medical College, Dalian University, Dalian,
116622, China

Full list of author information is available at the end of the article

( BioMed Central

of oxidant/antioxidant imbalance in which the net amount
of reactive oxygen species (ROS) exceeds the antioxidant
capacity of the body [1,5]. Excessive ROS can react with
cellular macromolecules and cause lipid peroxidation,
protein oxidation, and oxidative DNA damage [1]. One of
the major sources of ROS is xenobiotics which are exogen-
ous chemicals, including drugs, environmental pollutants,
cosmetics, and even components of the diet [6-8]. Notably,
over the past few decades, excessive xenobiotic exposure
has occurred in the general population, for example due to
food additives and synthetic-nutrient supplements [9]. In
this case, there is the possibility that xenobiotics might be
involved in increased prevalence of MetS and related
diseases [2].

The skin, which is the body's largest organ, plays a role
in the metabolism and elimination of xenobiotics,
endogenous bioactive substances, lipids, and cholesterol
[10-15]. This review focuses on the relationship between
the variability of skin-mediated detoxification and elim-
ination of exogenous and endogenous toxic substances
and the development of MetS. The potential role of
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sebum secretion in lipid and cholesterol homeostasis and
its impact on MetS, and the association between skin
disorders (acanthosis nigricans, acne, and burn) and
MetS are also discussed.

Xenobiotics, oxidative stress and metabolic
syndrome

Xenobiotics, which are encountered by humans on a daily
basis, undergo metabolism and detoxification to produce
numerous metabolites, some of which have the potential
to cause toxic effects [8]. Xenobiotics are degraded or
biotransformed by two enzyme systems called phase I
and II, and eliminated from the body through urine and
sweat and other excretory pathways. The following
evidence suggests a possible involvement of xenobiotics
in the pathogenesis and prevalence of MetS.

1) Xenobiotic metabolism in the body generates ROS
and high exposure to xenobiotics can lead to
oxidative stress [6,7,16].

2) The degradation of many xenobiotics involves
methylation, a methyl-consuming reaction [2].
Therefore, high xenobiotic exposure may disturb
the methylation of endogenous substrates due to
competition for labile methyl groups. For example,
excess nicotinamide (a form of niacin) can inhibit
methylation-mediated degradation/inactivation of
catecholamines, resulting in an increase in the
levels of circulating norepinephrine [17], a
phenomenon commonly seen in MetS [18], which
provides the first evidence that methyl-consuming
xenobiotics may contribute to increased
circulating norepinephrine. In animal studies,
arsenic, a common environmental methyl-
consuming toxin that increases the risk of MetS
[19], is found to cause global DNA
hypomethylation [20,21].

3) There has been increasing evidence that numerous
xenobiotics, such as heavy metals [7,19], organic
pollutants [22-24], and long-term medications (e.g.,
atypical antipsychotic [25], anti-bipolar disorder [26],
and anti-cancer medications [27]), may play a causal
role in MetS.

4) Lipid metabolism also increases the demand for
methyl groups (due to the synthesis of
phosphatidylcholine from phosphatidylethanolamine)
and methyl deficiency causes hepatic steatosis and
subsequent plasma dyslipidemia [28]. Thus, high fat
intake may have synergy with xenobiotics in the
development of MetS.

5) Strictly speaking, synthetic vitamins also belong to
the xenobiotic group, because excessive amounts of
vitamins, such as niacin (nicotinamide and nicotinic
acid) [29], vitamin D [30], vitamin E, and vitamin K
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[31], are degraded by xenobiotic/drug-metabolizing
enzymes. Our ecological evidence has suggested a
strong positive lag-correlation between the
prevalence of obesity and diabetes and the
consumption of B-vitamins (niacin, thiamin, and
riboflavin) in the U.S., primarily due to mandatory
food fortification [9]. Moreover, among the B-
vitamins, niacin has been known to cause hepatic
toxicity [32], insulin resistance [33,34], and oxidative
stress [29,35].

6) The metabolism of xenobiotics and ROS involves
numerous enzymes. The polymorphisms in the
genes of xenobiotic/drug-metabolizing enzymes and
ROS-scavenging enzymes are expected to be
involved in susceptibility to xenobiotic exposures
and MetS. Indeed, evidence has shown that the
gene polymorphisms of many of the enzymes, such
as N-acetyltransferase 2 [36], superoxide dismutases
[37], peroxiredoxins [38], glutathione S-transferase
[39], and NAD(P)H oxidase [40], may play a crucial
role in determining genetic susceptibility to
metabolic disorders. Moreover, current research also
shows correlations between polymorphisms in
xenobiotic/drug-metabolizing enzymes and cancer
susceptibility [41-43].

7) Dysfunctions of the organs that are responsible for
the biotransformation and excretion of xenobiotics,
such as the liver and kidney [44,45], may increase
the risk for MetS.

Recently, we hypothesize that MetS may be a conse-
quence of chronic xenobiotic poisoning [2], which may
involve a mechanism of xenobiotic-induced systemic
tissue damage and subsequent decrease in cellular
response to physiological signals (e.g., insensitive to insulin
[46,47]), and methyl depletion and subsequent disturbance
in numerous methylation-mediated reactions in the body
(e.g., inhibition of catecholamine degradation [17]). All of
the above evidence suggests that environmental/dietary
factors and genetic factors in MetS may be, to some extent,
a reflection of xenobiotic exposure and the efficiency of
the body’s xenobiotic-biotransforming/eliminating system
and ROS-scavenging system (Figure 1). Therefore, it seems
conceivable that any tissues/organs that contribute to the
body’s total antioxidant capacity might play some role in
the development of MetS.

The skin’s antioxidant and excretory systems

The skin provides both a mechanical and a chemical
barrier between the body and surrounding environment.
The chemical barrier is mediated by the skin’s xenobiotic
biotransformation system, ROS-scavenging system, and
excretory system, all of which contribute to the body’s total
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Figure 1 Possible link among environmental/dietary factors, genetic factors, oxidative stress, and aberrant methylation profile in MetS.
Increased xenobiotic and synthetic-nutrient exposure may be the primary cause of MetS (See text and Ref. [2] for further details). ROS, reactive
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antioxidant capacity. The following sections will discuss
the skin’s function and its role in MetS.

Xenobiotic-metabolizing and ROS-scavenging systems of
the skin

Xenobiotic-metabolizing phase I and II enzymes are
expressed differently in various tissues, determining the
antioxidant capacity of a given tissue or organ. The skin
expresses all known phase I and II enzymes, such as cyto-
chrome P450 enzymes, flavin-dependent monooxygenase,
monoamine oxidase, alcohol dehydrogenase, aldehyde
dehydrogenase, NADP(H): quinone oxidoreductase, gluta-
thione S-transferase, and catechol-O-methyhransferase
[14,48]. The xenobiotic-metabolizing enzymes are induced
in response to xenobiotic exposure [49,50]. Moreover,
endogenous bioactive and toxic substances, such as
catecholamines and steroids [48-51], are also substrates of
phase I and II enzymes. Moreover, the skin is also
equipped with an antioxidant system. For example, the
skin expresses superoxide dismutase, catalase, and gluta-
thione peroxidase, which can remove ROS [52].

The expression of both xenobiotic/drug-metabolizing
and ROS-scavenging enzymes suggests that the skin may
contribute to the body’s total antioxidant defense. To test
this hypothesis, our previous study investigated the role
of the skin in the degradation of nicotinamide, a known
insulin resistance inducer [34], by using a rat burn
model, and found that rats underwent a 40% total body

surface area burn injury exhibited a significantly higher
baseline plasma N'-methylnicotinamide (the toxic inter-
mediate metabolite of nicotinamide) levels than sham-
treated rats [29]. A nicotinamide (100 mg/kg body
weight, ip.) plus glucose (2 g/kg body weight, ip.)
loading test further revealed that the tolerance of burned
rats to nicotinamide significantly decreased, which was
characterized by high levels of plasma nicotinamide and
N'-methylnicotinamide associated with high levels of
plasma H,O, (a form of ROS) and insulin after co-
administration of nicotinamide and glucose (unpublished
data). These findings suggest that the skin may be a
major component of the body’s total antioxidant defense.

Sweat-mediated elimination of toxic substances

The skin also acts as an excretory organ. It is estimated
that 3 to 4 million eccrine sweat glands which together
roughly weigh the same as one kidney (i.e., 100 g) are
distributed over almost the entire human body surface.
An individual can perspire as much as several liters per
hour and approximately 10 liters per day [11]. Water-
soluble exogenous and endogenous toxic/bioactive
substances, such as metals [11], drugs [10], cytokines
[53], and steroids [54], can be eliminated in the sweat.
Genuis et al. [55] analyzed for approximately 120 various
compounds, including toxic elements, and found that
many toxic elements appeared to be preferentially
excreted through sweat. It is worth noting that some
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xenobiotics that are rarely excreted in the urine without
being metabolized, but can be excreted in the sweat. For
example, excess nicotinamide cannot be eliminated
through urine because of its reabsorption by the renal
tubules, but it can be effectively excreted by the sweat
gland [29].

Xenobiotic metabolism may produce toxic intermedi-
ate products and ROS [6-8,16,29]. Therefore, sweating-
induced elimination of xenobiotics is expected to reduce
the production of toxic intermediate products and thus
prevent oxidative stress. Indeed, our previous study
found that the levels of nicotinamide but not its toxic
intermediate metabolite N'-methylnicotinamide in the
sweat significantly increased after nicotinamide loading
[29]. Masuda et al. have also observed that sauna, which
increases the skin temperature and induces sweating, can
protect against oxidative stress [56]. Moreover, sauna has
been found to alleviate symptoms of intoxication [57,58]
and improve lifestyle-related diseases [59-61]. The
beneficial effect of saunas is thought to be related sweat-
mediated elimination of toxic substances from the body
[61]. Although not proved, increased skin temperature-
induced changes in the activity of xenobiotic- and
ROS-metabolizing enzymes may also contribute to the
beneficial effect of sauna. Thus, it appears that sweating
might be an important antioxidant mechanism, especially
for individuals who have a genetic enzymatic defect in
dealing with xenobiotics and ROS.

Sebum-mediated elimination of excess lipids and
cholesterol
It is known that there are two major pathways for the
elimination of water-soluble compounds (including
excessive nutrients) from the circulation: urine and
sweat. As for the elimination of excessive circulating
lipids and fat-soluble substances, sebum secretion may
be an important pathway, though this factor has received
little attention in the investigation of lipid homeostasis.
Sebaceous gland, which produces sebum, is found
throughout the human body except on the palms of the
hands and soles of the feet. Sebum is composed of trigly-
cerides, fatty acids, cholesterol, squalene, and wax esters.
The major component of human sebum is triglycerides
and fatty acids (57%), which is much higher than that of
other species, such as rodents and rabbit (their triglycer-
ides and free fatty acids <10%) [15]. Studies have shown
that the production of sebum is linked to diet, for
example, caloric deprivation decreases the production of
sebum [62,63], whereas a high fat diet significantly
increases it [64]. Since an increase in energy intake
mainly increases the excretion of triglycerides and
cholesterol and its esters in sebum, but not of squalene
[62,63], it appears that the major function of sebum
secretion may be to eliminate excessive lipids and
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cholesterol from the body, and thus play a role in
maintaining lipid and cholesterol homeostasis. This
notion is supported by the observation that inhibition of
sebum secretion by isotretinoin significantly increases
plasma triglyceride and cholesterol levels [65,66].

Factors affecting skin antioxidant and excretion
efficiencies

The skin function is affected by external factors, such as
lifestyles and working conditions [67]. Among known
factors, temperature may be probably the most important.
The optimum temperature for human enzymes, including
skin biotransformation enzymes [12,68], is about 37 °C.
The activity of enzymes in internal organs is rather stable,
because the core temperature of the body is maintained at
a constant level close to 37 °C; but the activity of skin
enzymes changes with the skin temperature, which is
considerably affected by ambient temperature [69]. More-
over, the activity of sweat glands is also conditional. During
heat exposure, increases in body temperature trigger
cutaneous vasodilation and sweating. With hyperthermia
in humans, blood flow to the skin can increase from
approximately 250 mL/min in thermoneutral environ-
ments to as much as 6 to 8 L/min or 60% of the cardiac
output [70]. A heat exposure-induced increase in blood
flow to the skin and the skin temperature could, in theory,
increase: 1) the activity of skin enzymes; 2) the probability
of enzymes catching toxic substances in the circulation; 3)
sweat-mediated elimination of toxic substances, because
water-soluble toxic substances can be excreted in sweat
[10,11,53,54]; and 4) sebum-mediated elimination of circu-
lating lipids and cholesterol, because sebum secretion is
temperature-dependent [71-73]. All of these changes
during heat exposure strengthen the body’s antioxidant
defense and increase the excretion of circulating lipids and
cholesterol. On the contrary, upon exposure to cold
environments, blood flow to the skin decreases via cutane-
ous vasoconstriction [70], which results in a decrease
in the functions of the skin. Obviously, changes in
skin function might lead to changes in the body's total
antioxidant capacity.

Sedentary lifestyles and skin’s antioxidant
efficiency

A sedentary lifestyle is associated with an increased risk
of MetS [74,75], which is usually attributed to decreased
energy expenditure. Indeed, moderate-to-vigorous phys-
ical activity, which increases energy expenditure, may
produce beneficial effects [76-78]. However, recently,
Thorp and colleagues [74], after having reviewed
forty-eight studies published between 1996 and January
2011 on sedentary behaviors and subsequent health out-
comes in adults, concluded that the effect of sedentary
behavior on health outcomes may be independent of
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physical activity. Moreover, Sisson et al. [79] examined
leisure time sedentary behavior and usual occupational/
domestic activity and their relationship with MetS and
individual cardiovascular disease risk factors, and also
found that usual occupational/domestic activity was not
strongly associated with MetS or CVD risk factors,
although their data also showed an association between
sedentary behavior and MetS. It seems that the effect of
sedentary lifestyles on MetS may be not just a matter of
decreased energy expenditure.

The body usually does not sweat at room temperature
(ie., living a sedentary lifestyle), which may reduce sweat-
mediated elimination of toxic substances and excess
nutrients from the body. In contrast, sweating-inducing
factors, such as sauna and exercise, can facilitate the
elimination, as discussed above. Unfortunately, in most
studies on sedentary lifestyle and exercise and their rela-
tionship with MetS and related diseases, the accompanying
changes in skin contribution to the body’s antioxidant
capacity are usually neglected.

It might be worth noting that exercise might be a
double-edged sword, for it also increases the generation
of ROS and subsequent risk of oxidative stress [80].
Moreover, not everyone is healthy enough for exercise
that induces sweating. In contrast, sweating induced by
exposure to a hot environment (natural sweating) could
not only effectively eliminate toxic substances from the
body, but it also avoid the generation of ROS through
muscle activity. Theoretically, natural sweating might be
more effective and practical than exercise-induced sweat-
ing in the prevention and treatment of MetS.
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In addition, Pearson and Biddle [75], after having
reviewed fifty-three relevant studies, concluded that
sedentary behavior is clearly associated with unhealthy
diet including lower fruit and vegetable consumption
and higher consumption of snacks and fast foods.
Because snacks and fast foods, which are used as a forti-
fication vehicle [81], have much higher concentrations of
synthetic vitamins than other food items (e.g., the
amount of niacin in ready-to-eat cereals is 76 mg/pound
in 1974-2000 according to the fortification recommenda-
tions [81]), high consumption of these foods may lead to
an excessive synthetic-vitamin intake, whereas sedentary
lifestyle may decrease skin-mediated elimination of toxic
substances and excess nutrients, as discussed above. The
combination of these two factors might play a major role
in the development of MetS.

The skin function and obesity

Obesity is the result of a chronic excess energy intake.
As shown in Figure 2, excess dietary carbohydrates can
be converted either into liver and muscle glycogen [82]
or into fat in adipose tissue [83], while excess dietary fat,
besides being stored as body fat, can also be eliminated
in the form of sebum. In the circumstances of chronic
excess energy intake and inhibition of sebum secretion,
excess lipids are only stored as adipose tissue, whereas
excess cholesterol can accumulate in the arterial wall,
which has long been recognized [84]. As a result, obesity
and atherosclerosis may occur. This notion is supported
not only by the observations that there is usually
low sebum secretion [71-73] but high blood lipid levels
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[85-88] and weight gain [89,90] in winter, but also by the
findings that medication-induced inhibition of sebum
secretion increases the levels of circulating lipids and
cholesterol, and, consequently, the risk of dyslipidemia
and MetS [65,66,91].

Studies have revealed that: (1) the driver for the global
obesity epidemic may be in the food system [4], (2) food
insecurity leads to obesity [92,93], (3) there is a correlation
between the epidemic of obesity and diabetes and
increased exposure to synthetic B-vitamins (niacin,
thiamin, and riboflavin) due to food fortification (Figure 3),
(4) obese and overweight persons have uncontrollable
eating [94,95], and (5) evidence suggests that oxidative
stress caused dysregulated production of inflammation-
related adipocytokines (fat-derived hormones) [96-98]. We
therefore suspected that xenobiotics might be related to
the etiology of uncontrollable eating in obesity. Our previ-
ous work tested this hypothesis by conducting oral glucose
tolerance tests with or without the presence of nicotina-
mide in the same healthy subjects, and, as expected, found
that co-loading of glucose and nicotinamide triggered a
hypoglycemic reaction (i.e. low blood glucose levels with
hunger feeling) in the later phase of the loading test (3 h)
due to increased ROS generation and insulin resistance
occurred in the earlier phase [35]. This finding provides
evidence, for the first time, that dietary xenobiotics may
play a primary causal role in uncontrolled eating. Sweating
can excrete toxic substances [10,11,55], including excess
nicotinamide [29]. Thus, sweating-mediated toxin elimin-
ation is expected to prevent eating disorders. In agreement
with this notion, Biro et al. found that sauna could
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effectively reduce not only body weight and body fat but
also the abnormal eating behavior in obesity [59]. All of
the above evidence suggests that the skin antioxidant and
excretory functions may play a role in obesity.

The skin function and seasonal variations of
metabolic syndrome

Metabolic disorders share two common features: 1)
regional differences in their prevalence and 2) seasonal
variations in their symptoms and signs. The prevalence
of MetS and related diseases in high-latitude regions is
higher than that in low-latitude regions; for example, the
prevalence of hypertension, obesity and cardiovascular
disease is higher in North China than in South China
[99-101]. Blood pressure also shows seasonal fluctuations
(higher in cold season) [85,102]. Kamezaki et al. found
that the prevalence rates of MetS are higher in winter
than in summer [85]. One of the most compelling factors
contributing to the seasonal and regional variations may
be temperature. Indeed, two recent studies after three-
year observations have found a negative correlation
between blood pressure and outside temperature
[103,104]. Kimura and colleagues found that a 1 °C
decrease in the mean outdoor temperature was asso-
ciated with rises of 0.43 mmHg in systolic blood pressure
and 0.29 mmHg in diastolic blood pressure [103]. Hozawa
et al. reported that when the outside temperature was >
10 °C, 1 °C increment of outside temperature corresponded
to 0.40 and 0.28 mmHg decrease of systolic blood pressure
and diastolic blood pressure [104]. Thus, it is possible that
the skin may mediate the association between blood
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pressure fluctuations and ambient temperature, because the
skin is more vulnerable to environmental temperature than
other organs in the body. Although there currently is no
systematic study on this issue, several lines of evidence
suggest that the seasonal variation of MetS may involve sea-
sonal fluctuations in skin-mediated elimination, excretion
and biotransformation of toxic substances and excess
nutrients, such as lipids, catecholamines, and niacin.

Numerous studies have shown that there is a substantial
increase in blood cholesterol level in winter [85-88], while
the data on the seasonal variation of serum triglycerides
appear to be inconsistent [85,88]. Low ambient
temperature decreases the elimination of triglycerides and
cholesterol due to a reduction in sebum secretion [71-73],
which is expected to raise the level of both triglycerides
and cholesterol in the blood. However, excess triglycerides
can be stored as fat in adipose tissue (indeed, body mass
may increase in winter [89,90]), while excess cholesterol
would likely be left in the blood streams in decreased
sebum-secretion condition. As a result, the serum choles-
terol level is elevated in winter. This interpretation is
supported by the observation that inhibition of sebum
secretion by isotretinoin may lead to an increase in both
serum triglyceride and cholesterol levels [65,66,91]. Unlike
the effect of cold exposure, which may be regional and
dependent upon clothing condition, the effect of isotreti-
noin should be an overall sustained inhibition of the
sebaceous glands in the body. This may explain the
increase in serum triglyceride level during isotretinoin
treatment.

Catecholamines, which mediate the cardiovascular
effects of the adrenergic nervous system, are degraded/
inactivated by monoamine oxidase and catechol-O-
methyhransferase [105]. An increase in the degradation
of catecholamines generates more end metabolites (i.e.,
homovanillic acid and vanillylmandelic acid), while a
decrease in the degradation might result in an increase
in the levels of circulating catecholamines [17]. The
skin expresses monoamine oxidase and catechol-O-
methyhransferase [48], and thus might play a role in the
inactivation of circulating catecholamines. Studies have
shown that the blood concentrations of the end metabo-
lites of catecholamines are lower in winter than in sum-
mer [106], whereas the levels of plasma norepinephrine
and epinephrine are higher in winter than in summer
[107]. These observations suggest a decrease in the
degradation of catecholamines in winter. It seems that
there is a negative relationship between the degradation
rate of catecholamines and the seasonal fluctuations of
blood pressure. Given that 1) seasonal changes may
change the skin temperature and subsequent the activ-
ities of cutaneous catecholamine-degrading enzymes, but
do not change the core temperature and the enzyme
activity in internal organs; and 2) water-soluble free
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amino acids and neurotransmitters can be excreted in
sweat [11], it appears that the seasonal variation in circu-
lating catecholamines might be related to the seasonal
variation in skin functions.

Niacin is precursor of NAD and NADP, which are
coenzymes in numerous essential redox reactions in
cellular metabolism. Niacin deficiency causes pellagra,
while excessive nicotinamide may increase the risk for
MetS, for it induces oxidative stress and insulin
resistance [29,33-35] and disturb the degradation of cate-
cholamines [17]. Pellagra occurs mostly in the summer
months (i.e, a season facilitating sweating) in rural
poor people who consume a niacin-poor diet [108],
while MetS is worse in winter (i.e., a season inhibiting
sweating) [85], and commonly occurs in people who
consume a niacin-fortified diet [9]. Since niacin can be
excreted in the sweat [29], these phenomena may involve
sweating-mediated niacin elimination, but further studies
needed to confirm this.

Skin diseases and metabolic syndrome

Numerous studies have shown that a variety of skin disor-
ders are frequently associated with metabolic disorders.
Based on available evidence, it seems that the associations
might involve skin antioxidant and excretory functions.

Acanthosis nigricans

Acanthosis nigricans, a hyperplastic skin lesion, is asso-
ciated with insulin resistance, obesity, MetS, and type 2
diabetes [109,110]. The following evidence suggests that
acanthosis nigricans might be linked to skin-mediated
xenobiotic detoxification:

e Long-term exposure to xenobiotics, such as niacin,
glucocorticoids, and oral contraceptives, increases
the risk for both acanthosis nigricans [109] and
MetS [111].

e There has been a significant increase in xenobiotic
exposure in general population due to food additives
and especially mandatory implementation of
synthetic vitamin fortification [9].

e The prevalence of obesity, which is closely associated
with acanthosis nigricans [109], is positively
correlated with niacin consumption [9,35].

e Physical activity, which can increase the sweaty
excretion of xenobiotics, reduces the risk of
acanthosis nigricans [112].

Since  xenobiotics induce xenobiotic-metabolizing
enzymes [49,50] and cell proliferation [113,114], it appears
that increased cell proliferation in acanthosis nigricans
might be a compensatory mechanism in response to
chronic high xenobiotic exposure, but further studies are
needed to test this hypothesis.
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Acne

Acne, a common skin condition, is closely related to
increased sebum production [115]. As mentioned above,
increased sebum secretion may be helpful to remove
excess lipids and cholesterol from the body. Therefore,
in theory, inhibition of sebum secretion would increase
the accumulation of lipids and cholesterol in the body.
In fact, numerous studies have found that long-term
medication-induced inhibition of sebum secretion can
lead to significant increases in the levels of lipids and
cholesterol in the circulation, and consequently increase
the risk of MetS [91] and atherosclerosis [65,66]. Given
that sebum secretion is positively related to caloric
intake [62,63], it seems that increased sebum secretion,
although increasing the risk of acne, may be a protective
mechanism in response to excess energy intake. Indeed,
in a retrospective follow-up study of 11,232 men who
attended Glasgow University between 1948 and 1968
and whose mortality was traced into 2004, the authors
found that participants who reported having acne during
adolescence had a significantly lower risk of death from
coronary heart disease [116]. The analysis of the available
literature suggests that the best solution for solving the
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acne problems may be to reduce appetite and total
energy intake, rather than to inhibit sebum secretion
with medications.

Burns

Severe burns covering >40% of the total body surface
area lead to profound metabolic changes. Insulin resist-
ance is one of the most prominent post-burn metabolic
abnormalities. Burn-induced insulin resistance, unlike
other trauma-induced temporary insulin resistance, is a
long-lasting phenomenon, and it still persists after burn
wounds have already healed [117]. Obviously, severe skin
burns cause a permanent decrease in or loss of the
biotransformation, detoxification, antioxidant, and excre-
tory functions in the burned area, which may cause a
permanent decrease in the bodys total antioxidant
capacity due to decreased skin contribution. If this were
the case, it is expected that there would still be an accu-
mulation of toxic and bioactive substances in the circula-
tion after burn injuries have healed. Indeed, a recently
published study has found that healed severe burns are
still associated with an elevation in circulating cortisol,
catecholamines, and cytokines, all of which are insulin

Exogenous ROS-generating
substances from natural
food sources

Endogenous ROS-generating
substances

Antioxidant factors from
other tissues/organs

Renal excretion

Liver biotransformation &
ROS-scavenging system

Exogenous ROS-generating
substances from natural
food sources

Endogenous ROS-generating
substances

e

Antioxidant factors from
other tissues/organs

Renal excretion

Liver biotransformation &
ROS-scavenging system

Figure 4 Factors affecting the balance between ROS production and scavenging. A, In traditional lifestyles, ROS are derived from the
metabolism of endogenous and exogenous (i.e., natural dietary) substances. The skin, especially its sweat glands, may play an important
antioxidant role. B, In modern lifestyles, dietary xenobiotics have significantly increased, while the skin functions, especially sweat-mediated
excretion, is decreased due to sedentary lifestyles. As a result, an imbalance between ROS production and the body’s antioxidant defense system
takes place. OK, antioxidant defense capacity > ROS production; OS, oxidative stress.
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resistance-inducing factors [118]. Therefore, it appears
that post-burn metabolic disorders might be due to a
permanent decrease in the skin-contribution to the
body’s antioxidant capacity.

Conclusion and perspectives
The imbalance between ROS generation and the body
total antioxidant defense system in MetS may be a conse-
quence of the combination of excessive xenobiotic expos-
ure (including fortification-induced high synthetic-vitamin
exposure) and decreased detoxification/elimination of
xenobiotics due to lifestyle and genetic factors. The skin’s
antioxidant and excretory function may be one of the
major components of the bodys antioxidant defense
system and play an important role in anti-MetS (Figure 4).
The physiological functions of skin might be probably
more complex than expected. In this review we focused
solely on the possible relationship between the skin
detoxification and excretory functions and MetS. The
skin, without doubt, has some other important functions,
for example, it is involved in the metabolism of many
endogenous bioactive substances and some vitamins.
Although the basic functions of skin have been well
documented, the role of skin in systemic metabolic
disorders is far from clear. Therefore, further studies are
required for deep understanding of the role of the skin
in the development of MetS.
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