
Shangguan et al. 
Diabetology & Metabolic Syndrome           (2024) 16:68  
https://doi.org/10.1186/s13098-024-01307-x

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Diabetology &
Metabolic Syndrome

Predictive value of insulin resistance 
surrogates for the development of diabetes 
in individuals with baseline normoglycemia: 
findings from two independent cohort studies 
in China and Japan
Qing Shangguan1, Qiuling Liu2, Ruijuan Yang3,4, Shuhua Zhang2, Guotai Sheng1, Maobin Kuang1,2,3* and 
Yang Zou2* 

Abstract 

Background Insulin resistance (IR) plays a crucial role in the occurrence and progression of diabetes. This study 
aimed to evaluate and compare the predictive value of four IR surrogates, including the triglycerides glucose (TyG) 
index, TyG and body mass index (TyG-BMI), triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) ratio, 
and the metabolic score for IR (MetS-IR) for diabetes in two large cohorts.

Methods A total of 116,661 adult participants from the China Rich Healthcare Group and 15,464 adult participants 
from the Japanese NAGALA cohort were included in the study. Multivariable Cox proportional hazards models were 
used to assess the standardized hazard ratio (HR) of the TyG index, TyG-BMI, TG/HDL-C ratio, and MetS-IR directly 
associated with diabetes. Receiver operating characteristic (ROC) curve and time-dependent ROC curve analysis were 
performed to evaluate and compare the predictive value of the four IR surrogates for diabetes.

Results In the two independent cohorts, the average follow-up time was 3.1 years in the China cohort, 
with 2681(2.30%) incident cases of diabetes recorded, and 6.13 years in the Japan cohort, with 373 incident cases 
(2.41%) of diabetes recorded. After adjusting for potential confounding factors, we found that among the four IR 
surrogates, TyG-BMI and MetS-IR showed stronger associations with diabetes. The stronger associations persisted 
even after further stratification by age, sex, hypertension, and obese subgroups. In terms of diabetes prediction, 
based on ROC analysis, TyG-BMI demonstrated the highest predictive accuracy for diabetes in the Chinese popula-
tion, while both TyG-BMI and MetS-IR showed the highest predictive accuracy in the Japanese population. The results 
of further subgroup ROC analysis confirmed the robustness of these findings. Furthermore, the time-dependent ROC 
results indicated that among the four IR surrogates, MetS-IR exhibited the highest accuracy in predicting future diabe-
tes at various time intervals in the Japanese population.
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Conclusion Our findings suggest that evaluating TyG-BMI and MetS-IR as IR surrogates may be the most useful 
for predicting diabetes events and assessing the risk of developing diabetes in East Asian populations.

Keywords Insulin resistance surrogates, Diabetes, IR surrogates, Triglycerides glucose index, TyG-BMI, TG/HDL-C ratio, 
MetS-IR

Background
Diabetes is one of the most prominent health issues 
globally, with high incidence and prevalence rates. It is 
a key risk factor contributing to increased cardiovascu-
lar disease, physical disability, and mortality rates [1–3]. 
According to the latest survey report released by the 
International Diabetes Federation, as of 2021, there were 
536.6 million adults (aged 21–79) worldwide with dia-
betes, and the number is projected to further increase 
to 783 million by 2045, representing a 45.92% increase 
[4]. In addition, diabetes has a significant and growing 
economic impact. The reported cost of diabetes-related 
diseases was approximately $966 billion in 2021, and it 
is estimated to reach $1054 billion by 2045, exerting tre-
mendous pressure on families and healthcare systems [4]. 
Given the high prevalence of diabetes and its increasing 
burden, early identification of effective screening strate-
gies to identify high-risk populations is crucial for reduc-
ing diabetes incidence rates.

IR is a critical characteristic preceding the development 
of diabetes [5, 6], and early quantification of IR is essen-
tial for reducing the incidence of diabetes. Various meth-
ods have been established for assessing IR, including the 
gold standard hyperinsulinemic-euglycemic clamp test 
[7], non-invasive homeostasis model assessment of IR 
(HOMA-IR), and quantitative insulin sensitivity check 
index (QUICKI) [8, 9], as well as several IR surrogates 
that involve combining simple parameters such as the 
TyG index, TyG-BMI, TG/HDL-C ratio, and MetS-IR 
[10–13]. Taken together, each of these IR assessment 
methods has its own advantages. However, from an epi-
demiological perspective, the invasive nature and com-
plexity of the hyperinsulinemic-euglycemic clamp test 
may limit its widespread use in population-based surveys 
[14]. The non-invasive nature of HOMA-IR and QUICKI 
offers certain advantages, but it is important to note that 
the measurement of serum insulin is not routine [15, 16], 
and the insulin-based assessment methods yield fewer 
ideal results in populations with impaired β-cell function 
[8]. On the other hand, most IR surrogates are combina-
tions of simple parameters, which do not require insulin 
quantification and offer convenience in measurement. 
These notable advantages make IR surrogates more suit-
able for epidemiological research and clinical practice in 
diabetes. Recent studies have provided compelling statis-
tical evidence demonstrating the significant advantages 

of insulin resistance (IR) substitutes in assessing the risk 
and predicting the onset of diabetes. Furthermore, an 
increasing number of studies are employing individual 
lipid and blood glucose level indicators, along with their 
combined values, to develop predictive models for meta-
bolic syndrome and diabetes, as well as other IR-related 
diseases [13, 17–20]. However, there is limited research 
systematically comparing the differences among IR sur-
rogates in diabetes prediction and risk assessment capa-
bilities, and the author believed that identifying one or 
two of the most recommended IR surrogates for diabe-
tes prediction may be very useful for clinical practice or 
epidemiological investigations. Therefore, the current 
study aimed to evaluate and compare the predictive value 
of four IR surrogates, namely the TyG index, TyG-BMI, 
TG/HDL-C ratio, and MetS-IR, for diabetes based on 
national health examination data from the Rich Health-
care Group and the NAGALA cohort data from Japan.

Methods
Study data and population
This study utilized data from two population-based 
cohorts: the Rich Healthcare Group cohort in China 
and the NAGALA cohort in Japan. Detailed information 
regarding the design and methods of these cohorts has 
been previously published [21, 22], and the research data 
has been deposited in the public database DRYAD for 
open access [23, 24]. In brief, both the Rich Healthcare 
Group cohort and the NAGALA cohort are longitudinal 
follow-up studies conducted among individuals undergo-
ing routine health check-ups. The Rich Healthcare Group 
cohort recruited participants who underwent health 
examinations in 11 cities in China between 2011 and 
2016, while the NAGALA cohort recruited participants 
who underwent health examinations at the Murakami 
Memorial Hospital in Japan between 1994 and 2016. 
Building upon previous research, the current study aimed 
to further investigate the predictive value of four IR sur-
rogates, namely the TyG index, TyG-BMI, TG/HDL-C 
ratio, and MetS-IR, for diabetes. Figure  1 illustrates the 
participant selection process for this study.

Ethics approval and informed consent
The research protocol for the Rich Healthcare Group 
cohort has been approved by their institutional review 
board [21]. The NAGALA cohort also has obtained 
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approval from the Murakami Memorial Hospital eth-
ics committee [22]. The current study was a post-hoc 
analysis of data from these two cohort studies, and the 
research protocol was approved by the Institutional 
Ethics Committee of the authors’ institution (Eth-
ics Committee of Jiangxi Provincial People’s Hospital). 
Additionally, since the research data were anonymized, 
the informed consent requirement for participants was 
waived by the Jiangxi Provincial People’s Hospital Eth-
ics Committee. The entire study process was conducted 
in accordance with the principles of the Helsinki Dec-
laration and followed the guidelines for Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) statement (Additional file 3: Text S1).

Collection and measurements of baseline information
In both cohorts, the baseline information of the partici-
pants was recorded using standardized questionnaires 
administered by trained healthcare professionals. This 
information included demographic information (age, 
gender), clinical characteristics (height, weight, blood 

pressure), living habits (smoking status, drinking sta-
tus), and other relevant factors. Blood pressure, height, 
and weight were measured indoors using standard pro-
cedures. Fasting venous blood samples were collected 
from the participants after at least 8 h of overnight fast-
ing and analyzed using automated biochemical analyzers 
in standard laboratories to measure biochemical parame-
ters, including alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), fasting plasma glucose (FPG), 
HDL-C, low-density lipoprotein cholesterol (LDL-C), 
TG, and total cholesterol (TC). Note: The LDL-C concen-
tration in the NAGALA cohort was calculated using the 
Friedewald equation [25].

Calculation of IR surrogates
The four IR surrogates were calculated as follows:

TyG index = ln [TG (mg/dL) × FPG (mg/dL)/2] [10]
TyG-BMI = TyG index × BMI [11]
TG/HDL-C ratio = TG (mmol/L)/HDL-C (mmol/L) [12]

Fig. 1 Flow chart for inclusion and exclusion of study participants
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MetS-IR = Ln [(2 × FPG (mg/dL)) + TG (mg/dL)] × BMI 
(kg/m 2) / (Ln [HDL-C (mg/dL)]) [13]

Predefined subgroups
To explore whether the predictive value of the four IR 
surrogates for diabetes varied across different popula-
tion subgroups, several predefined subgroups were estab-
lished based on sex, age, hypertension status, and BMI, 
representing commonly observed phenotypes.

(i) Sex subgroups were divided into males and females 
based on physiological characteristics.

(ii) The obese subgroup in both the Chinese cohort 
and Japanese cohort was determined based on the clini-
cal cutoff values for BMI established by the Chinese 
Obesity Working Group and the Japanese Diabetes Soci-
ety. Participants were categorized into the obese group 
(Chinese cohort: BMI ≥ 28  kg/m2; Japanese cohort: 
BMI ≥ 25  kg/m2) and the non-obese group (Chinese 
cohort: BMI < 28  kg/m2; Japanese cohort: BMI < 25  kg/
m2) [26–28].

(iii) Age subgroups: Considering that the average age 
of natural menopause in Asian women is around 50 years 
[29], and 50 years is a critical age for the development of 
metabolic-related diseases in both sexes [30], the cutoff 
point for the age subgroup in the current study was set at 
50 years.

(iv) Hypertension subgroups were defined according 
to individuals with or without baseline hypertension. 
Hypertension was diagnosed as baseline measurements 
of systolic blood pressure (SBP) ≥ 140 mmHg or diastolic 
blood pressure (DBP) ≥ 90 mmHg [31].

Definition of diabetes
In both cohorts, the diabetes status was determined 
based on repeated health examinations conducted 
annually. The diagnosis of diabetes followed the criteria 
outlined in the American Diabetes Association guide-
lines [32], which included blood glucose measurements 
(FPG ≥ 7.0  mmol/L or HbA1c ≥ 6.5%) during follow-up 
visits and other physician-diagnosed cases of diabetes.

Statistical analysis
Cox proportional hazards regression models were estab-
lished to derive the HRs and 95% confidence intervals 
(CIs) for the associations between the four IR surrogates 
and diabetes. To eliminate the dimensionality and mag-
nitude differences of the four IR surrogates in calculat-
ing HR, we standardized these surrogates using Z-scores 
before incorporating them into the Cox regression mod-
els. The non-normally distributed TG/HDL-C ratio was 
logarithmically transformed to achieve a normal distribu-
tion before Z-score standardization. Prior to the formal 
regression analysis, we assessed the variance inflation 

factor through multiple linear regression to evaluate 
whether collinearity existed between the four IR surro-
gates and other baseline variables [33]. Additionally, we 
used Kaplan–Meier plots and log-rank tests to verify 
whether the inclusion of IR surrogates alone in the model 
complied with the proportional hazards assumption [34].

In the regression analysis, we first used an unadjusted 
univariate Cox proportional hazards regression model 
to initially explore the association between all baseline 
indicators and diabetes risk; subsequently, based on the 
results of univariate Cox regression analysis and follow-
ing the recommendations of the STROBE guidelines, 
three sequentially adjusted multivariable Cox regres-
sion models were established to assess the associations 
between four IR surrogates and diabetes risk in the entire 
study population, as well as separately in the Chinese or 
Japanese populations [35]. Model 1 adjusted for poten-
tial confounders, including sex, age, race, and height. In 
the subsequent adjustment strategy (Model 2), we con-
sidered the influence of SBP, DBP, and smoking status. 
Finally, in Model 3, we further adjusted for blood glucose 
parameters (FPG), lipid parameters (HDL-C and LDL-
C), and liver enzyme parameters (ALT) based on Model 
2. Additionally, we calculated the corresponding E-values 
based on the HR and 95%CI of each IR surrogate in the 
Model 3 to explore the potential impact of unmeasured 
confounders on the association between these IR surro-
gates and diabetes risk. The E-value quantifies the degree 
of association that unmeasured confounders would need 
to have with the risk of diabetes to negate the observed 
associations [36]. After establishing the significant asso-
ciations between the four IR surrogates and diabetes, we 
proceeded to calculate and compare the area under the 
curve (AUC) for these four IR surrogates in predicting 
diabetes using ROC analysis and the DeLong test in both 
the Chinese and Japanese populations [37]. Furthermore, 
we conducted time-dependent ROC analysis in the Japa-
nese population to explore the predictive performance of 
TyG index, TyG-BMI, TG/HDL-C ratio, and MetS-IR for 
future diabetes at various time intervals.

To explore whether the correlation/predictive value of 
the four IR surrogates with diabetes varied across differ-
ent populations, we performed the same analysis steps in 
predefined subgroups using a multivariable Cox regres-
sion model (Model 3) and ROC analysis. All statistical 
analyses were conducted using R software version 3.4.3 
and Empower Stats 2.0 software. Two-sided tests were 
used, and statistical significance was defined as P < 0.05.

Results
Baseline characteristics analysis of two cohorts
A total of 132,125 participants were included in this 
study, with 88.3% of the study population from the 
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Chinese cohort and the remaining 11.7% from the Japa-
nese cohort. The baseline characteristics of the two 
cohort populations were summarized in Table 1. Overall, 
the distribution and proportions of most baseline char-
acteristics were comparable between the Chinese and 
Japanese cohorts, such as age (median age 41 vs 42), sex 
composition (male 53.80% vs 54.51%; female 46.20% vs 
45.49%), height, ALT and HDL-C levels, and the propor-
tion of drinkers. However, there were some differences 
between the two cohorts in certain measured param-
eters and biochemical indicators. It can be observed 

that, compared to the Japanese population, the Chinese 
population generally had higher weight and BMI, higher 
baseline levels of SBP, DBP, TG, AST, and the four IR 
surrogates, and relatively lower levels of FPG, TC, and 
LDL-C.

Standardized HRs for the associations between the four IR 
surrogates and diabetes
In the two independent cohorts, the average follow-up 
time was 3.1  years (maximum 7.56  years) in the Chi-
nese cohort, with 2681 incident cases (2.30%) of diabetes 
recorded, and 6.13  years (maximum 13.14  years) in the 
Japanese cohort, with 373 incident cases (2.41%) of dia-
betes recorded.

In the screening for collinearity between the four 
IR surrogates and baseline variables (Additional file  1: 
Tables S1–4), we identified that weight, BMI, TC, TG, 
and drinking status were collinear and were not included 
in the subsequent multivariable models. Furthermore, 
the Kaplan–Meier curve analysis, incorporating follow-
up time and exposure variables, indicated that the Cox 
proportional hazards models constructed to assess the 
associations between the four IR surrogates and dia-
betes were appropriate for this study (Additional file  1: 
Figures S1–4).

The results of univariate Cox regression analysis indi-
cated that, except for drinking status, all other baseline 
indicators were significantly associated with the risk 
of diabetes. Among them, having a smoking habit and 
higher levels of age, height, weight, BMI, SBP, DBP, FPG, 
TC, TG, LDL-C, ALT, AST were significantly associated 
with an increased risk of diabetes. Conversely, higher 
levels of HDL-C and being female were associated with 
a lower risk of diabetes (Additional file 1: Table S5). Sub-
sequently, the independent associations between the 
IR surrogates and diabetes were demonstrated in three 
sequentially adjusted multivariable Cox regression mod-
els (Table  2). Consistent with the majority of previous 
findings, after adjusting for potential confounders, all 
four IR surrogates showed a significant positive asso-
ciation with diabetes. Based on the standardized HRs, 
TyG-BMI and MetS-IR exhibited the strongest associa-
tions with diabetes among the four IR surrogates (Model 
3, HR: TyG-index 1.33 vs TyG-BMI 1.51 vs TG/HDL-C 
ratio 1.37 vs MetS-IR 1.51). Furthermore, after stratifying 
by ethnicity, this stronger association was still observed 
in the Chinese population (Model 3, HR: TyG-index 1.33 
vs TyG-BMI 1.48 vs TG/HDL-C ratio 1.37 vs MetS-IR 
1.47) and the Japanese population (Model 3, HR: TyG-
index 1.23 vs TyG-BMI 1.79 vs TG/HDL-C ratio 1.26 
vs MetS-IR 1.86). These findings suggested that both 
TyG-BMI and MetS-IR may be more useful in assessing 

Table 1 Characteristics regarding the study variables at baseline 
in two cohort studies

The data of continuous variables were described by means and standard 
deviations. Categorical variables were expressed as proportions

BMI Body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, 
FPG fasting plasma glucose, TC total cholesterol, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipid cholesterol, TG triglyceride, TyG index the 
triglyceride-glucose index, TyG-BMI triglyceride glucose-body mass index, TG/
HDL-C ratio triglyceride/high-density lipoprotein cholesterol ratio, METS-IR 
metabolic score for insulin resistance, ALT alanine aminotransferase, AST 
aspartate aminotransferase

Chinese cohort Japanese cohort

No. of subjects 116,661 15,464

Age (years) 41.00 (34.00–53.00) 42.00 (37.00–50.00)

Sex

 Male 62,759 (53.80%) 8430 (54.51%)

 Female 53,902 (46.20%) 7034 (45.49%)

Height (cm) 166.29 (8.31) 165.12 (8.47)

Weight (kg) 64.88 (12.11) 60.64 (11.62)

BMI (kg/m2) 23.35 (3.30) 22.12 (3.13)

SBP (mmHg) 119.43 (16.68) 114.50 (14.97)

DBP (mmHg) 74.44 (10.98) 71.58 (10.50)

FPG (mmol/L) 4.95 (0.61) 5.16 (0.41)

TC (mmol/L) 4.79 (0.90) 5.13 (0.86)

TG (mmol/L) 1.10 (0.76–1.66) 0.73 (0.50–1.12)

HDL-C (mmol/L) 1.35 (1.16–1.56) 1.41 (1.16–1.71)

LDL-C (mmol/L) 2.70 (2.29–3.16) 3.04 (2.56–3.57)

ALT (IU/L) 18.00 (13.00–27.50) 17.00 (13.00–23.00)

AST (IU/L) 22.00 (18.60–26.90) 17.00 (14.00–21.00)

TyG index 8.41 (0.61) 8.03 (0.65)

TyG-BMI 197.29 (36.96) 178.60 (34.54)

TG/HDL-C ratio 0.82 (0.52–1.34) 0.51 (0.30–0.91)

MetS-IR 33.82 (6.61) 31.16 (6.50)

Drinking status

 No 26,237 (22.49%) 11,805 (76.34%)

 Yes 6396 (5.48%) 3659 (23.66%)

 Not recorded 84,028 (72.03%) 0 (0.00%)

Smoking status

 No 24,649 (21.13%) 9031 (58.40%)

 Yes 7984 (6.84%) 6433 (41.60%)

 Not recorded 84,028 (72.03%) 0 (0.00%)
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the risk of diabetes, whether in the Chinese or Japanese 
population.

Furthermore, to validate the stability of the aforemen-
tioned association analysis results, we calculated the 
E-values for each IR surrogate based on Model 3. In the 
All cohort, the E-values for TyG index, TyG-BMI, TG/
HDL-C ratio, and MetS-IR were 1.99, 2.39, 2.08, and 2.39, 
respectively. Upon further differentiation by ethnicity, in 
the Chinese population, the E-values for TyG index, TyG-
BMI, TG/HDL-C ratio, and MetS-IR were 1.99, 2.32, 
2.08, and 2.3, respectively; in the Japanese population, the 
E-values for TyG index, TyG-BMI, TG/HDL-C ratio, and 
MetS-IR were 1.76, 2.98, 1.83, and 3.12, respectively. We 
observed that the E-values for these IR surrogates were 
all relatively large and higher than the corresponding HR 
values, indicating that it is unlikely that unmeasured con-
founders were affecting the stability of the results.

Association analysis of the four IR surrogates with diabetes 
in predefined subgroups
In predefined subgroups representing common phe-
notypes, we further explored the associations between 
the four IR surrogates and diabetes in the Chinese and 
Japanese populations. Detailed results were shown in 
Table 3. Across all subgroups, a consistent finding was 

observed: TyG-BMI and MetS-IR had the highest asso-
ciations with diabetes among the four IR surrogates, 
which aligned with the results obtained from the over-
all population analysis and the analysis stratified by 
ethnicity (Table  2). This finding further supported the 
notion that TyG-BMI and MetS-IR may be the strong-
est IR surrogates for assessing the risk of diabetes.

ROC analysis to evaluate the predictive value of the four IR 
surrogates for diabetes
Table  4 presents the AUC values of the four IR surro-
gates for predicting diabetes. It can be observed that in 
the overall population (Fig. 2), TyG-BMI had the high-
est AUC value for predicting diabetes compared with 
other IR surrogates (0.7707, all DeLong test P < 0.05), 
followed by MetS-IR (0.7596), TyG-index (0.7589), and 
TG/HDL-C ratio (0.7021). After stratifying by ethnic-
ity, we found that in the Chinese population, TyG-BMI 
had the highest AUC value (0.7741, all DeLong test 
P < 0.05), while in the Japanese population, although 
TyG-BMI and MetS-IR had relatively higher AUC val-
ues (0.7738 and 0.7796) (Fig.  3), after performing the 
DeLong test for comparison, we found that they were 
only significantly higher than TG/HDL-C ratio, with no 
statistically significant difference from TyG index.

Table 2 Cox regression analyses for the association between TyG index, TyG-BMI, TG/HDL-C ratio, MetS-IR and incident DM in different 
models

Model 1 adjusted for gender, age, race and height

Model 2 adjusted for gender, age, race, height, smoking status, SBP and DBP

Model 3 adjusted for gender, age, race, height, smoking status, SBP, DBP, FPG, HDL-C, LDL-C and ALT

Race variables are not adjusted in the grouping of races

Hazard ratios (95% confidence interval) (Per SD increase)

TyG index TyG-BMI TG/HDL-C ratio MetS-IR

All cohort

 Model 1 2.09 (2.02, 2.16) 2.17 (2.10, 2.24) 1.65 (1.59, 1.71) 1.92 (1.86, 1.98)
 Model 2 2.00 (1.93, 2.07) 2.09 (2.02, 2.16) 1.57 (1.51, 1.63) 1.84 (1.78, 1.90)
 Model 3 1.33 (1.28, 1.38) 1.51 (1.45, 1.57) 1.37 (1.31, 1.44) 1.51 (1.45, 1.57)

E value = 1.99 E value = 2.39 E value = 2.08 E value = 2.39

Races (model 1)

 Chinese cohort 2.09 (2.02, 2.17) 2.13 (2.06, 2.20) 1.61 (1.55, 1.67) 1.86 (1.80, 1.92)
 Japanese cohort 2.15 (1.93, 2.40) 2.54 (2.31, 2.79) 1.94 (1.76, 2.15) 2.38 (2.19, 2.60)

Races (model 2)

 Chinese cohort 2.01 (1.93, 2.08) 2.05 (1.98, 2.12) 1.54 (1.48, 1.60) 1.78 (1.73, 1.85)
 Japanese cohort 2.03 (1.81, 2.26) 2.54 (2.28, 2.83) 1.85 (1.67, 2.04) 2.33 (2.12, 2.57)

Races (model 3)

 Chinese cohort 1.33 (1.28, 1.39) 1.48 (1.42, 1.54) 1.37 (1.31, 1.44) 1.47 (1.41, 1.53)
E value = 1.99 E value = 2.32 E value = 2.08 E value = 2.3

 Japanese cohort 1.23 (1.07, 1.40) 1.79 (1.57, 2.04) 1.26 (1.08, 1.47) 1.86 (1.62, 2.13)
E value = 1.76 E value = 2.98 E value = 1.83 E value = 3.12
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Analysis of the predictive value of the four IR surrogates 
for diabetes in predefined subgroups
To evaluate whether the predictive value of the four IR 
surrogates for diabetes varied across different popula-
tions, we further conducted ROC analysis in predefined 
subgroups. Detailed results are presented in Table  5. 
Overall, consistent with the findings from the stratifica-
tion by ethnicity in Table 4, we observed similar patterns 
in the ROC analysis of the subgroups. In the Chinese 
cohort, TyG-BMI demonstrated the best predictive value 
for diabetes in almost all subgroups, with statistically 
significant differences observed in the majority of AUC 
values after conducting the DeLong test for comparison; 
while in the Japanese cohort, MetS-IR had the highest 
AUC values for predicting diabetes in all subgroups, fol-
lowed by TyG-BMI. However, the differences between 
the two were statistically insignificant in almost all sub-
groups, and only in the male subgroup, obese subgroup, 
age < 50 years subgroup, and no hypertension subgroup, 
both MetS-IR and TyG-BMI exhibited significantly 
higher AUC values than TyG index and TG/HDL-C ratio. 
Additionally, in both cohorts, the predictive accuracy for 
predicting diabetes was higher in females compared to 
males, in non-obese individuals compared to obese indi-
viduals, in younger individuals (Age < 50 years) compared 
to older individuals (Age ≥ 50  years), and in individuals 
with normal baseline blood pressure compared to those 
with hypertension.

Time-dependent ROC analysis of IR surrogates 
for prediction of future diabetes
To further compare the predictive abilities of TyG index, 
TyG-BMI, TG/HDL-C ratio, and MetS-IR for future 
diabetes at different time intervals, we conducted time-
dependent ROC analysis in the Japanese population 
and presented the results in Additional file  1: Table  S6. 
By comparing the AUC values of the four IR surrogates 
for predicting diabetes occurrence over 1–13  years, we 
found that MetS-IR had the highest AUC values at almost 
all time points, and TyG index and TyG-BMI exhibited 
similar predictive abilities, while TG/HDL-C ratio had 
relatively weaker predictive ability, consistent with the 
previous analyses. Therefore, in the Japanese population, 
MetS-IR may be a better surrogate marker for diabetes 
prediction.

Discussion
In this analysis of two diabetes cohort studies based in 
China and Japan, four IR surrogates, TyG index, TyG-
BMI, TG/HDL-C ratio, and MetS-IR, were positively 
associated with diabetes. After standardizing for HRs, 
TyG-BMI and MetS-IR showed stronger associations 

Table 3 Stratified association between TyG index, TyG-BMI, 
TG/HDL-C ratio, MetS-IR and diabetes by age, BMI, sex, and 
hypertension

Abbreviations as in Table 1. Models adjusted for the same covariates as in model 
3 (Table 2), except for the stratification variable

Hazard ratios (95% confidence interval) 
(Per SD increase)

Chinese cohort Japanese cohort

Sex (male)

 TyG index 1.28 (1.22, 1.34) 1.14 (0.98, 1.32)

 TyG-BMI 1.45 (1.38, 1.52) 1.62 (1.38, 1.90)
 TG/HDL-C ratio 1.31 (1.24, 1.38) 1.17 (0.99, 1.38)

 MetS-IR 1.44 (1.38, 1.52) 1.71 (1.45, 2.03)
Sex (female)

 TyG index 1.40 (1.28, 1.52) 1.51 (1.10, 2.07)

 TyG-BMI 1.47 (1.36, 1.58) 2.12 (1.63, 2.74)
 TG/HDL-C ratio 1.10 (1.04, 1.16) 1.35 (1.01, 1.80)

 MetS-IR 1.43 (1.32, 1.55) 2.19 (1.65, 2.89)
Non-obese

 TyG index 1.33 (1.27, 1.40) 1.18 (0.99, 1.42)

 TyG-BMI 1.61 (1.50, 1.72) 1.30 (0.98, 1.72)
 TG/HDL-C ratio 1.37 (1.30, 1.45) 1.21 (0.99, 1.48)

 MetS-IR 1.59 (1.49, 1.71) 1.31 (0.96, 1.81)
Obese

 TyG index 1.15 (1.05, 1.26) 1.16 (0.94, 1.42)

 TyG-BMI 1.54 (1.45, 1.62) 1.90 (1.52, 2.39)
 TG/HDL-C ratio 1.35 (1.29, 1.41) 1.18 (0.94, 1.49)

 MetS-IR 1.50 (1.42, 1.58) 1.97 (1.57, 2.49)
Age (≥ 50 years)

 TyG index 1.22 (1.16, 1.28) 1.14 (0.92, 1.42)

 TyG-BMI 1.30 (1.23, 1.37) 1.49 (1.15, 1.92)
 TG/HDL-C ratio 1.24 (1.17, 1.31) 1.16 (0.91, 1.48)

 MetS-IR 1.28 (1.22, 1.36) 1.51 (1.15, 1.98)
Age (< 50 years)

 TyG index 1.44 (1.33, 1.55) 1.25 (1.05, 1.48)

 TyG-BMI 1.74 (1.62, 1.86) 1.79 (1.53, 2.10)
 TG/HDL-C ratio 1.50 (1.38, 1.64) 1.29 (1.06, 1.56)

 MetS-IR 1.76 (1.63, 1.89) 1.86 (1.58, 2.19)
Hypertension (no)

 TyG index 1.36 (1.29, 1.43) 1.28 (1.11, 1.49)

 TyG-BMI 1.51 (1.44, 1.59) 1.87 (1.63, 2.15)
 TG/HDL-C ratio 1.39 (1.32, 1.47) 1.33 (1.13, 1.56)

 MetS-IR 1.49 (1.42, 1.57) 1.99 (1.71, 2.30)
Hypertension (yes)

 TyG index 1.26 (1.18, 1.35) 1.03 (0.73, 1.44)

 TyG-BMI 1.38 (1.29, 1.47) 1.44 (1.05, 1.97)
 TG/HDL-C ratio 1.29 (1.20, 1.40) 1.03 (0.70, 1.50)

 MetS-IR 1.38 (1.29, 1.49) 1.50 (1.08, 2.08)
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with diabetes among the four IR surrogates. These 
stronger associations remained consistent when further 
stratifying by age, sex, hypertension, and BMI subgroups. 
Additionally, the ROC analysis of the four IR surrogates 
in the Chinese population showed that TyG-BMI had the 

highest accuracy for predicting diabetes, while in the Jap-
anese population, both TyG-BMI and MetS-IR showed 
the highest predictive accuracy.

Previous studies have reported associations between 
individual IR surrogates and diabetes [13, 17–19], but 

Table 4 Predictive value of four IR surrogates for the diabetes

AUC  area under the curve; other abbreviations as in Table 1
* : Delong test P < 0.05 compared with TyG-BMI

AUC 95%CI low 95%CI up Best threshold Specificity Sensitivity

All cohort

 TyG index 0.7589* 0.7507 0.7672 8.5654 0.6509 0.7466

 TyG-BMI 0.7707 0.7628 0.7786 212.6980 0.7082 0.7063

 TG/HDL-C ratio 0.7021* 0.6931 0.7111 1.0237 0.6503 0.6539

 MetS-IR 0.7596* 0.7515 0.7677 35.9734 0.6811 0.7243

Race (Chinese)

 TyG index 0.7650* 0.7564 0.7736 8.5673 0.6312 0.7766

 TyG-BMI 0.7741 0.7658 0.7824 213.2966 0.6954 0.7251

 TG/HDL-C ratio 0.6988* 0.6893 0.7084 1.0090 0.6236 0.6774

 MetS-IR 0.7586* 0.7501 0.7672 35.6670 0.6502 0.7553

Race (Japanese)

 TyG index 0.7505 0.7255 0.7754 8.1960 0.6198 0.7748

 TyG-BMI 0.7738 0.7498 0.7979 197.2987 0.7416 0.6836

 TG/HDL-C ratio 0.7445* 0.7192 0.7698 0.7505 0.6858 0.6971

 MetS-IR 0.7796 0.7562 0.8029 33.6338 0.7001 0.7185

Fig. 2 ROC curve for predicting diabetes using TyG index, TyG-BMI, TG/HDL-C ratio, MetS-IR. TyG index the triglyceride-glucose index, TyG-BMI 
triglyceride glucose-body mass index, TG/HDL-C ratio triglyceride/high-density lipoprotein cholesterol ratio, METS-IR metabolic score for insulin 
resistance



Page 9 of 14Shangguan et al. Diabetology & Metabolic Syndrome           (2024) 16:68  

few have systematically compared the value of different 
IR surrogates in assessing diabetes risk. To date, only a 
few studies from China have reported differences in the 
assessment of diabetes risk using IR surrogates, with 
some analyzing them as original continuous variables 
and others as categorical variables [19, 38–40]. Notably, 

two published comparative studies by Li et al. and Dong 
et  al. utilized the China Health and Retirement Longi-
tudinal Study for analysis. Li et al. investigated the asso-
ciation between quartiles of TyG index, TyG-BMI, TG/
HDL-C ratio, and diabetes [19], while Dong et al. evalu-
ated the continuous variables of TyG index, TG/HDL-C 

Fig. 3 ROC curves for predicting diabetes using TyG index, TyG-BMI, TG/HDL-C ratio, MetS-IR in Chinese cohort and Japanese cohort. TyG index 
the triglyceride-glucose index, TyG-BMI triglyceride glucose-body mass index, TG/HDL-C ratio triglyceride/high-density lipoprotein cholesterol ratio, 
METS-IR metabolic score for insulin resistance
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ratio, and MetS-IR in relation to diabetes [38]. Both 
studies found positive associations between IR surro-
gates and diabetes. However, due to differences in data 
processing, comparing the HRs of different IR surrogates 

and their associations with diabetes was challenging, as 
the scales and magnitudes of the surrogates varied. Simi-
lar data processing approaches were employed in two 
other published studies in Ningxia, China, and Wuyuan, 

Table 5 The best threshold, sensitivities, specificities, and area under the curve of four IR surrogates for predicting diabetes in different 
subgroups

AUC  area under the curve; other abbreviations as in Table 1
* : Delong test P < 0.05 compared with TyG-BMI

Chinese cohort Japanese cohort

AUC Best threshold Specificity Sensitivity AUC Best threshold Specificity Sensitivity

Sex (male)

 TyG index 0.7221* 8.7791 0.6470 0.6859 0.6966* 8.7670 0.8002 0.5105

 TyG-BMI 0.7356 220.2488 0.6465 0.7145 0.7251 206.1369 0.7113 0.6573

 TG/HDL-C ratio 0.6454* 1.1398 0.5567 0.6679 0.6936* 0.8178 0.5687 0.7448

 MetS-IR 0.7186* 36.7735 0.5754 0.7532 0.7346* 37.6406 0.7627 0.6154

Sex (female)

 TyG index 0.7996 8.4446 0.7030 0.7831 0.7934 8.0568 0.7346 0.7816

 TyG-BMI 0.8000 197.4111 0.7221 0.7604 0.8016 180.6269 0.7858 0.7241

 TG/HDL-C ratio 0.7396* 0.9309 0.7469 0.6204 0.7796 0.4560 0.6764 0.7931

 MetS-IR 0.7842* 33.8494 0.7369 0.7352 0.8001 29.8919 0.7256 0.7471

Non-obese

 TyG index 0.7622 8.5659 0.6598 0.7457 0.7269 8.2027 0.6830 0.6667

 TyG-BMI 0.7653 202.0524 0.6430 0.7603 0.7238 179.9124 0.6782 0.6617

 TG/HDL-C ratio 0.6938* 1.0237 0.6601 0.6341 0.7150 0.7524 0.7477 0.5871

 MetS-IR 0.7457* 34.6257 0.6482 0.7392 0.7314 31.2083 0.6762 0.6667

Obese

 TyG index 0.6497 8.8756 0.5268 0.7057 0.6531* 8.7738 0.6926 0.5523

 TyG-BMI 0.6440 272.1837 0.6726 0.5476 0.6898 8.7738 0.6926 0.5523

 TG/HDL-C ratio 0.5712* 1.8093 0.6730 0.4348 0.6494* 1.2743 0.6543 0.5698

 MetS-IR 0.6131* 44.9568 0.5091 0.6603 0.7049 41.7010 0.6330 0.6860

Age (≥ 50 years)

 TyG index 0.6780* 8.7798 0.6351 0.6276 0.6747 8.5186 0.7224 0.5396

 TyG-BMI 0.6927 219.2980 0.6528 0.6406 0.6889 198.2597 0.7009 0.6043

 TG/HDL-C ratio 0.6146* 0.9931 0.5048 0.6680 0.6741 1.1047 0.7813 0.4748

 MetS-IR 0.6835* 36.1923 0.5831 0.7070 0.7012 35.5029 0.7451 0.5468

Age (< 50 years)

 TyG index 0.8099* 8.6016 0.7122 0.7835 0.7776* 8.1960 0.6600 0.7991

 TyG-BMI 0.8272 214.0949 0.7489 0.7795 0.8094 192.9588 0.7241 0.7692

 TG/HDL-C ratio 0.7607* 1.1092 0.7142 0.7025 0.7716* 0.7505 0.7132 0.7350

 MetS-IR 0.8175* 36.0175 0.7099 0.7942 0.8143 33.7494 0.7235 0.7650

Hypertension (No)

 TyG index 0.7719* 8.5426 0.6524 0.7698 0.7544* 8.1960 0.6376 0.7695

 TyG-BMI 0.7811 213.7032 0.7413 0.6888 0.7752 197.2987 0.7625 0.6667

 TG/HDL-C ratio 0.7076* 1.0091 0.6544 0.6683 0.7465* 0.7747 0.7145 0.6791

 MetS-IR 0.7673* 35.4151 0.6774 0.7468 0.7795 34.7236 0.7680 0.6542

Hypertension (Yes)

 TyG index 0.6694 8.7874 0.5699 0.6784 0.6476 8.7327 0.6996 0.5577

 TyG-BMI 0.6595 219.6879 0.5193 0.7144 0.6708 230.2559 0.7401 0.5385

 TG/HDL-C ratio 0.6023* 1.1509 0.5223 0.6257 0.6501 0.9933 0.5813 0.6731

 MetS-IR 0.6474* 36.7532 0.4840 0.7359 0.6900 38.3738 0.6352 0.6538
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China, where the associations between the TyG index, 
TG/HDL-C ratio, MetS-IR, and diabetes were assessed 
[39, 40]. In the Ningxia study, IR surrogates were ana-
lyzed based on tertiles [39], while in the Wuyuan study, 
they were analyzed as original continuous variables [40]. 
To address the issue of comparing HRs related to diabe-
tes for IR surrogates, the current study standardized the 
four IR surrogates using Z-transformation before includ-
ing them in the multivariable models. The analysis of the 
two large independent population cohorts in this study 
demonstrated that the TyG index, TyG-BMI, TG/HDL-C 
ratio, and MetS-IR were all positively associated with 
diabetes in both the Chinese and Japanese populations. 
Among them, TyG-BMI and MetS-IR showed stronger 
associations with diabetes, and further subgroup analysis 
confirmed TyG-BMI and MetS-IR as the best IR surro-
gates for assessing the risk of diabetes. Considering that 
this study standardized and compared the four IR surro-
gates in two large independent cohorts and consistently 
found TyG-BMI and MetS-IR to be the best markers for 
assessing diabetes risk, the results can be considered rela-
tively reliable.

The question of which IR surrogate is most valuable for 
predicting diabetes has been explored in recent studies 
based on Chinese populations, but there is currently no 
consensus. Some studies supported TyG-BMI as the supe-
rior IR surrogate [19, 41], while others supported the TyG 
index [38, 40, 42]; for example, the study by Mo Z and col-
leagues found a strong correlation between the TyG index 
and gestational diabetes (OR = 12.923), and it demonstrated 
high predictive performance for future occurrences of ges-
tational diabetes (AUC = 0.807) [42]. It should be noted that 
the published studies included no more than three IR sur-
rogates, and none of them simultaneously compared the 
predictive value of the TyG index, TyG-BMI, TG/HDL-C 
ratio, and MetS-IR for diabetes. In the present study, we 
simultaneously assessed the predictive value of the TyG 
index, TyG-BMI, TG/HDL-C ratio, and MetS-IR for dia-
betes in two independent cohorts. The new analysis results 
indicated that TyG-BMI was the most accurate IR surro-
gate marker for predicting diabetes in the Chinese popula-
tion, while in the Japanese population, both TyG-BMI and 
MetS-IR exhibited the highest predictive accuracy. These 
findings were consistent with some observations in other 
metabolic disease studies, including hypertension, hyper-
tension combined with hyperuricemia, and coronary artery 
disease [43–45]. These findings collectively suggested that 
TyG-BMI and MetS-IR may serve as better predictors of 
metabolic-related diseases and should be considered in fur-
ther research.

The subgroup analyses based on age, sex, hypertension, 
and BMI were noteworthy and worth emphasizing, as the 
results of these analyses were highly consistent with the 

main analysis, despite accounting for racial differences. 
These subgroup findings further supported the stability 
and reliability of the main results of this study, indicat-
ing that TyG-BMI and MetS-IR were likely to be the most 
useful IR surrogates in assessing diabetes risk; while TyG-
BMI was recommended for the prediction of diabetic 
events in the Chinese population, MetS-IR and TyG-BMI 
were recommended for the Japanese population. Fur-
thermore, based on subgroup ROC analysis we identi-
fied specific populations that were more suitable for the 
prediction of diabetic events using IR surrogates, includ-
ing females, non-obese individuals, those under 50 years 
of age, and those with normal baseline blood pressure. 
The reasons behind these specific phenomena currently 
lack an answer, but they can be partially explained from 
a risk factor perspective. Generally, male gender, obesity, 
hypertension, and advanced age are important risk fac-
tors for diabetes [30, 46–49]. These confounding factors 
may additionally affect the accuracy of IR surrogates in 
predicting diabetes. In relatively lower-risk popula-
tions such as females, non-obese individuals, younger 
age groups, and those with normal blood pressure, the 
potential confounding effects are reduced, making IR 
surrogates a more significant risk factor for diabetes. 
Consequently, reaching the respective threshold values of 
IR surrogates may have higher predictive significance for 
diabetes in these populations.

Strengths and limitations
Current research has several advantages: (i) This study is 
the first to simultaneously evaluate and compare the pre-
dictive value and risk assessment ability of several IR sur-
rogates for diabetes, including the TyG index, TyG-BMI, 
TG/HDL-C ratio, and MetS-IR. (ii) IR surrogates are 
combinations of commonly used clinical markers that are 
easily accessible and computationally straightforward. 
The evidence from this study provided valuable reference 
material for diabetes prevention and clinical practice. (iii) 
This study is based on two large independent cohorts, 
and the results obtained from both cohorts were highly 
consistent. The high stability of these results was further 
confirmed through subgroup analysis, which added to 
the reliability of the study’s conclusions.

There are some limitations that need to be mentioned: 
(i) The study population is derived from China and Japan, 
and the results may be more applicable to East Asian 
populations. Further research is needed to assess the 
generalizability of these findings to other regions. (ii) 
The diabetes cohorts in China and Japan did not include 
measurements of postprandial glucose levels, which may 
result in an underestimation of the true diabetes inci-
dence. However, despite the lower disease prevalence, the 
study consistently obtained highly consistent findings in 
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different populations and subgroups, which may indicate 
the robustness of the current results. Moreover, meas-
uring postprandial glucose levels may not be necessary 
for routine medical examinations in large epidemiologi-
cal surveys. (iii) The study did not differentiate between 
types of diabetes. Further investigation of the applicabil-
ity of IR surrogates for type 1 and type 2 diabetes could 
enhance the quality of the current research. However, 
based on the integration of published data [50, 51], the 
evidence from the current study was likely more suitable 
for the prediction and risk assessment of type 2 diabetes. 
(iv) The current study, being a post hoc analysis based 
on publicly available data, faced limitations in the study 
database that prevented the further assessment of factors 
such as the use of glucocorticoids, estrogen, thiazide-
type drugs, and beta-blockers among the participants, 
as well as their dietary habits and physical activity. Con-
sequently, there may be some residual confounding [52]. 
As an alternative approach, we calculated the E-values 
for the IR surrogates to assess the potential impact of 
confounding factors on the findings of the current study. 
More rigorous study designs are needed in the future to 
further validate our findings.

Conclusion
In this analysis of two large cohort studies in China and 
Japan, strong associations between TyG index, TyG-
BMI, TG/HDL-C ratio, and MetS-IR with diabetes were 
observed, with TyG-BMI and MetS-IR showing the high-
est correlations with diabetes. These findings were fur-
ther validated through subgroup analysis. Additionally, 
in terms of diabetes prediction, TyG-BMI exhibited the 
highest predictive value in the Chinese population, while 
both TyG-BMI and MetS-IR showed the highest predic-
tive value in the Japanese population.
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